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The structure of antiphase domain boundaries in the ordered phase of body-centered-cubic alloys is

investigated by Monte Carlo simulations, studying a fairly realistic model of iron-aluminum alloys that
includes a description of the magnetic properties of iron within a nearest-neighbor Heisenberg Hamil-

tonian. An interface is enforced by employing in one lattice direction an odd number of lattice planes

and choosing periodic boundary conditions throughout. At the temperatures of interest, the antiphase

domain boundary is not localized in the system and is rough, which implies a logarithmic dependence of
the interfacial width on the linear dimension L~~ parallel to the interface. Methods are introduced to
define an instantaneous interface position for each configuration that is analyzed. Choosing a coordinate
frame whose origin is fixed at this (moving) interface position, profiles of order parameter, concentration,
etc., can be estimated. It is found that capillary wave theory accounts for the interface widths reasonably

well. Near the bulk critical temperature the lengths characterizing the intrinsic interfacial widths agree
with the bulk correlation length, which is obtained from an independent investigation of correlation
functions in the bulk. Finally, the interfacial enrichment of the majority species in the domain wall is
studied and it is shown that the critical behavior of the interfacial excess concentration is consistent with

scaling predictions.

I. INTRODUCTION

The study of interfaces in solids represents a topic of
great importance in materials research as well as in sta-
tistical physics. From the theoretical point of view, one
is interested in what happens if the translational symme-
try of a system is broken in one direction. In materials
research interfaces represent a large class of defects in
crystals and thus determine many properties of these sys-
tems. Interfaces in solid systems have therefore been in-
vestigated by experiments very extensively' and there ex-
ist some theoretical concepts to describe them. Yet
theoretical studies of microscopic systems usually treat
very simple model systems, such as, e.g., the Ising model
with nearest-neighbor interaction. However, interfaces in
more complex systems exhibit a variety of interesting
phenomena. In alloys, for example, the effect of interfa-
cial segregation has attracted considerable interest. '

Usually, this effect is explained by the occurrence of
mechanical strains and forces in the neighborhood of the
interface, but still the question remains open to what ex-
tent segregation could already arise in a system without
mechanical constraints. One might also be interested in
the behavior of the interface near the disorder transition.
Actually the evolution of an interface, if one approaches
a line of first-order transitions, has recently been studied
both experimentally and theoretically in a fcc-based al-
loy. ' Among other things, we will present here a similar
(theoretical} investigation for a line of second-order tran-
sitions.

In an earlier paper we have introduced a model for a
substitutional bcc-based binary alloy, particularly adapt-
ed to the system iron-aluminum. The model takes into
consideration configurational (Ising) and magnetic

(Heisenberg} degrees of freedom and its exchange interac-
tions are directly based on the microscopic properties of
iron-aluminum (short-range order). We showed that it in
fact reproduces the iron-rich side of the iron-aluminum
phase diagram in a topologically correct way. The
knowledge of the bulk properties of this model enables us
now to study interfaces in this complex model, which is
moreover strongly related to a real system.

Our paper is organized as follows. First we define the
model, describe our Monte Carlo method, and comment
on some special finite size effects. In the next section we
present a simple Landau theory and review some impor-
tant features of the capillary wave approximation. Our
simulation results are described in Sec. IV. We first con-
centrate on the length scales related to the interface,
comparing them with the capillary wave theory and with
the bulk correlation length. Furthermore, as already
mentioned, we will take particular interest in the oc-
currence of interfacial segregation and in its evolution
with temperature. We will also have a look at the scaling
properties of other quantities near the transition. We
summarize our results in Sec. V.

II. THE MODEL
AND THE SIMULATION METHOD

Basically, our model is an Ising model on a bcc lattice.
The Ising spins take the values S, =+1, modeling in this
way a binary substitutional alloy (the Ising spin +1
stands for iron, the Ising spin —1 represents aluminum).
Furthermore, sites with Ising spin +1 are supposed to
have a magnetic moment, modeled by a classical Heisen-
berg spin (~tr;~=1). In the grand canonical ensemble,
the Hamiltonian of this model is given by

46 13 553 Qc 1992 The American Physical Society



13 554 F. SCHMID AND K. BINDER

&=—
—,
' g V, S,S, ——,

' g J,,
1+5, 1+5-

2 I J

H—g S, ,

where H is related to the chemical potential difference be-
tween the two species and the exchange interactions V, -

and J are chosen to be V, = —12 meV,
V, /I Vt I

= —o. 167, V3/I Vt1=0 208, J t /I Vt I
=1.65 (see

Refs. 7 and g). The notation V„refers to site j being the
pth coordination shell of site i. Thus the crystallographic
interactions extend to third nearest neighbors, while only
nearest-neighbor interaction is taken into account. Fig-
ure 1 shows the bulk phase diagram in the grand canoni-
cal ensemble.

Within this model, we have studied a (100) antiphase
boundary in the ordered 82 phase (see Fig. 2). Therefore
we considered rectangular systems of body-centered-
cubic lattices with periodic boundary conditions in all
directions and linear dimensions L~ XL~~ XLII. To pro-
duce the interface, we chose the number of layers L~ in
the x direction to be odd. Hence the interface is not
pinned to a particular position, it can wander and one has
translational invariance (Fig. 3). To be able to study
profile properties like profile widths, interface segrega-
tion, etc., one has to localize the interface in each
configuration separately.

We used two different ways of doing this: To begin
with we note that the periodic boundary conditions define
a periodic continuation

FIG. 2. An antiphase boundary in (100) direction in the or-
dered B2 phase. If one subdivides the bcc lattice in two simple
cubic lattices a and b, the order parameter of the B2 phase can
be defined as M=c&(a) —c&(b). At the interface two B2
domains displaced by —,

' ao(111)meet.

Mt, (x +Lt ) = —Mp(x) (2)

Pe(x +L, )
=Pc(x)— (3)

for the profile of other quantities like concentration,
internal energy, etc. ( A = ,'L l

is th—e cross-section area. )

The "interface position" h may then be defined by (a)

(Li —
& )/2

M~(x +h, ) =min ( =0)
—(L —1 )/2

(4)
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Summation extends over the x coordinate perpendicular
to the interface.

In systems with very big cross-section area A, Mt-. (x)
will be smooth and antisymmetric with respect to h, and
both definitions will yield the same value. The physical
meaning of these definitions is verified by, e.g. , assuming
a hyperbolic tangent profile Mt (x)=M„„,ktanh[(h
—h & /I & j, h & being the position of the interface in

configuration C and 1& the associated interface width.
Both definitions then yield h, hb =h&. More generally,

FIG. 1. Bulk phase diagram of our model in the grand
canonical ensemble. A2 denotes the crystallographically disor-
dered structure of the bcc alloy. In the B2 structure the lattice
is split into two simple cubic sublattices, one taken preferential-
ly by the A atoms and the other by the B atoms of the binary
(AB) alloy. In the DO3 phase the lattice splits into four face-
centered-cubic sublattices, one of which is occupied preferen-
tially by B atoms while the three others are occupied preferen-
tially by A atoms. A2 and DO3 phases occur both in ferro- and
in paramagnetic states. Second-order transitions are shown as
broken curves, while full curves denote first-order transitions.
In the present work only H/I V, I

=4 is considered at
T/I V, ~ I.S {from Ref. 7}.
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FIG. 3. Fluctuation of the interface position h(t) during the
Monte Carlo simulation at T/T, =0.85, H =4I V, I, system size

L, =159, LII =40. Time t is measured in units of Monte Carlo
steps per site (MCS), lengths are measured in units of half the
lattice spacing a&/2.



46 ROUGH INTERFACES IN A bcc-BASED BINARY ALLOY 13 555

one gets an intuitive understanding of those definitions if
one considers a solid-on-solid (SOS) model. There h, is

simply the mean position of the interface and hb gives the
value of x where M(x) passes zero.

The value hb is most sensitive on changes of the order
parameter profile in the direct neighborhood of the inter-
face, whereas h, also reacts on changes far away from it.
Hence one would tend to prefer definition (b) at low tem-
peratures, where the interface is well localized. However,
because of finite size effects, definition (a) turns out to be
more practical near T„as we will see. Actually we used
both definitions and got the same results over nearly the
whole range of temperatures. We will mainly show the
results for definition (a) here.

Once the interface is localized in every configuration
C, one easily averages over profiles of quantities

P (x)= (Pp(x +fig) ) . (6)

( ) means an average over configuration 8 that are ana-
lyzed in this way. We will now discuss the finite size
effects related to this averaging procedure. In order to
provide a qualitative understanding of the finite size
effects that should be expected, we first construct a sim-

ple interface model.
(1) The interface itself has neither overhangs nor bub-

bles and may be described by a function h (y, z) (SOS
model).

(2) Quantities have local intrinsic profiles P;„„(x)with

respect to local interface position.
(3) The fluctuations ri(x, y, z) are the same in the bulk

and at the interface. They show Ornstein-Zernicke be-
havior.

The order paraineter in a configuration C is then given
by

M~(x, y, z) =M;„«[x —h (y, z) ]+rI~(x, y, z) .

Let us first consider the case where local fluctuations
can be neglected. Using the two procedures mentioned
above, one gets the reference points h, and hb as well as
the "ideal profiles" (index zero means that no fluctuations
are included)

Mo(x)= J dh M;„„(x—y)f, b(h),
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FIG. 4. Fluctuation-induced deviations from ideal profiles.

where f, &(x) is the distribution function of the local in-

terface position

f, &(x —h, & ) = (5(x [h (y, z) h,—b ])—) .

Note that f, b(x) may still depend on the system size;
e.g. , within the capillary wave approximation, f, is
Gaussian with a width increasing logarithrnically with L

j~

[cf. Eq. (21)].
Fluctuations change the reference points h, and hb of a

configuration and thus affect the averaged profiles. The
calculation of these effects is carried out in Appendix A.
One gets in case (a)

M(x) =Mo(x)+
z

—Mo'(x)
2

C i „1
O, bu1k

Li
8 4Li 2g

+ g sin nx
7T 1

( 1 )(n —1)i2

tt~0, odd i (~~ ) +(LJ.
(10)

and in case (b)

C 1 „1 I.~ 7rM(x)=MD(x)+
2

—Mo'(x),
2

tanh + g sin nx
Lll I

2 MP(0) 4L& 2( P dd LJ

1 1 nn
(m.n) +(Lil() Mo(0) Li
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where C is an amplitude measuring the strength of the
fluctuations and g is the bulk correlation length in the
direction normal to the interface. The effect of the
second correction term is illustrated in Fig. 4 for different
correlation lengths g. Close to T„ the way (a} of localiz-
ing the interface obviously gives more reasonable results,
because the largest deviations occur far away from the in-

terface, whereas with procedure (b} they concentrate at
the interface. Due to the numerous approximations
made Eqs. (10) and (11)of course give qualitative descrip-
tions of the expected finite size behavior only. But the ac-
tual simulation data indeed suggest that Eqs. (10) and (11)
are useful.

Figure 5 shows profiles from simulations at tempera-
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tures very close to T, . One recognizes the structure of
Fig. 4. The profiles slowly converge to a unique shape
with increasing system size Lii as expected.

III. THEORETICAL CONSIDERATIONS

Generally the Landau expansion for the system near
the second-order transition from the B2 phase to the A2
phase is given by

F=fd r —M (r)+ —M (r)+ (VM—) +F0 pc(—r),
2 4 2

(12)

where A, B, C, and FO will depend on the concentration
c(r) of negative Ising spins and on the temperature, and

p is a chemical potential. As is well known, in the bulk
of the system this expression reduces to

F=F +—M +—M —pc
A 2 B 4

0 2 4

and the extrema of the free energy are given by M =0
(disordered phase, unstable) and M =+Mb„,„
=+&—A /B (ordered phase, minimum) at temperatures
below T, [ A ~ ( T —T, ) (0]. The corresponding concen-
trations follow implicitly from the equations
)M=(B/Bc)(FD —A /4B)iI, in the ordered phase and

)u, =(B/Bc)F~i, in the disordered phase. Near the criti-
dis

cal point we may expand (8/Bc)Foi, =(8/Bc)Foi,
+ (cz;, —c„~)(8 /Bc )Fo i, neglecting higher-order

ord

terms. As we consider both ordered and disordered
phases in the grand canonical ensemble at the same
given chemical potential, we thus have to leading or-
der (cz;, —c„~)(8 /Bc )Foi, = —(8/Bc)(A /4B)i,
Therefore the difference between the two concentrations
behaves as

)u= (A /4B+Fo)i, , (0) .=a
ac

One now expands p again at c =c„d and gets

(8 /Bc )(2F ),
c(0)—c„~=(c~;,—c„~)'" (a'/ac')(F + A'/4B)

(18)

~(T, T) . — (19)

Provided A /B ~(T, —T) varies with concentration,
the Landau theory thus predicts a segregation effect. Of
course, the critical exponent (g= 1) predicted by Eqs. (14)
and (19) is a mean-field result and hence not reliable.

The Landau theory naturally fails in describing the in-
terface especially when it is rough. In this case the capil-
lary wave approximation will be a more adequate ap-
proach. ' We now recall some of its main features: The
capillary wave model is a SOS model and starts from as-
suming that on the scale of the bulk correlation length g,
the effective energy of an interface is proportional to the
interface area. This leads to the Hamiltonian

qmax

h(q)h( —q)q',
2

&min

(20)

where h is the Fourier transform of the interface position
h (y, z). The Fourier component q =0 is usually omitted
in the sum. This corresponds to fixing a reference point
(a) [Eq. (5)]. h is Gaussian distributed

As we are interested in interface segregation, we compute
the deviation of the concentration at M(x}=0and x =0,
respectively. There one has to solve

C d M +Fo =P . (17)
Bc 2 dx x=0

After inserting M(x) from Eq. (15) this leads to

c . cdis ord

—1

a A ~'Fo

Bc 4B, ()c2

~(T, —T) .

f (x)= (5(h (y, z) —x ) }= e
&2n.w

with Gaussian width

(21)

Here we took into account that T, varies linearly with
concentration for the cases of interest.

At the interface one has to consider variations of the
order parameter in one direction, M=M(x), c =c(x),
and boundary conditions M(2oo )=+M»)k. If one as-
sumes the variation 5c(x) of the concentration to be
small, and therefore A, B, and C to be constant to first
order, the minimization of F with respect to M(x} yields
an order parameter profile

M (x)=M»» tanh(x /2g) (15)

with the correlation length g= &—C/2A .
The corresponding concentration profile in this ap-

proximation follows then as the solution of the equation
r '2

)M= ~ —M (x}+—M (x)+— M(x) +F0A 2 8 4 C d
Bc 2 4 2 dx

(16)

w ~in(Lii/g), (22)

which depends on the extension LIi of the system in y, z
direction. Thus one gets an order parameter profile

Note that via the logarithmic dependence of w on Lii
M(x) also depends on Ll.

IV. SIMULATION DATA

We did our simulations at H/i V, i
=4 in a temperature

range of T/iV)i=1. 5 to T/iV)i=T, /iV, i=7. 1. The
system size perpendicular to the interface was kept con-
stant and very large (Lj =159), so that we could neglect
corresponding finite size effects up to a temperature of
T/i V, i

=6.9. This was checked by partially comparing

M(x)=M»)k f dh e(x —h)f (h)=Mb„)),erf(x/&2w) .

(23}
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with even larger systems (Li =239). yWe onl varied the
system size parallel to the interface i.

~~

=20, 30,40, 60,

F 6 shows a typical order parameter profile. Ap-igure s
parent y its s ape m'1 t hape might as well be descnbed y a yp

thebolic tangent as yb an error function. However, e
kl b t clearly broadens with increasing sys-

tem size. The corresponding concentration profile ex i-
its an obvious segregation effec & g.t (Fi . 7).

Li/2
W = g F(x)x

—L~/2

L~ /2

F(x)x
—L~ /2

(24)

with

The next step in analyzing the simulatjon data was to
determine the profile width in a suitable way. We tried
three possible definitions:
(a) the second moment of the order parameter profile

2

0. 8 F(x)= [M(x) —M(x —1)j,1

2M bulk
(25)

0. 6

0 4
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—0. 2
T/ I V, I = 6.0

(a)

L~ —1
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and (c) the relative excess of the concentration
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W~ = g [C (X) Cbulk ]
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C (0) Cbulk p

(2&)
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FIG. 7. (a) Concentration profile c(x) o p'of s ins "—l" at
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data can very well be fitted to a logarithmic law

8' =a ln(L/s) (28)

(Fig. 8). One now can extract the two characteristic
lengths a and s for each temperature. For comparison we
also determined the bulk correlation length g, defined by

X I XdX
$2— (29)

Jx I (x)dx

where I (x) is the bulk correlation function

1 (x)= &M(x)M(0) &
—

& M &' . (30)

=2& Ih l &ff (0),
C

(31)

where f is the distribution function of the interface posi-
tion h(y, z) (see Appendix B). The capillary wave ap-
proximation then yields [Eq. (21)]

8;
WM 2

' (32)

[At low temperatures g is expected to depend on the
direction in the lattice. " As we are interested in the
correlation length in the direction normal to the interface
tnainly, we inserted the bulk correlation function I'(x} in
cubic directions (100) here. To determine it we did simu-
lations on cubic bulk systems with 8192 and 16000
spins. ] The results are shown in Fig. 9. The bulk correla-
tion length clearly shows the expected behavior
)co )T, —T~ "with v=0. 63, and a and s follow the same
power law. Obviously the correlation length also remains
the only relevant length scale at the interface as is the
case in the bulk.

To finish the discussion of the profile widths we com-
pare the width extracted from the excess of the order pa-
rameter (b) and from the excess of the concentration (c).
In a pure SOS model the local order parameter follows a
step function at the interface and the local concentration
has a sharp maximum. This would lead to

segr extr bulk ( c (33)

6'.
5.
I O-

3 1.9 ((T, -T)/IV, I )

/

'Q

-&& oo

0.2 0.3 2 3 5

08 (o )

05 1

(T,-T}/ IVtl

With this result another independent check of the theory
is available. Figure 10 shows that the capillary wave ap-
proximation seems to be valid at temperatures higher
than T/~Vt~ ~4. However, there still remains a small

systematic deviation of about 3%. It depends neither on
the system size, nor on the temperature —therefore one
cannot explain this effect simply by the fact that a lattice
model has been described by a continuous theory.

Next we will have a closer look at the phenomenon of
interface segregation. As Figs. 7 and 11 illustrate, there
is a clear enrichment of spins "+1"at the interface.
Qualitatively this can be understood quite easily: The B2
ordering favors equal concentration of both atom types
On the other hand, at H=4, one would expect a higher
concentration of spins +1 in a disordered system. The
interface resembles a disordered layer, therefore spins + 1

will accumulate there.
The critical exponent of the segregation can be de-

duced by a simple analysis of scaling dimensions. ' The
chemical potential H has the same scaling dimension as
the temperature, hence the scaling dimension of the con-
centration is —[I] d= 1/v——d. Therefore the segre-
gated concentration scales like

6
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FIG. 8. 8'z vs L)~ for different temperatures as indicated in
the figure. Straight lines are fits of the function a ln(L /s) to the
data points corresponding to the three larger system sizes.

FIG. 9. (a) Bulk correlation length at H/I Vt I
=4. (b) a and s

vs temperature (explanation in the text). The data for s extract-
ed from the size dependence of 8'M and 8', are similar.
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with g=(1/v —d )( —v) =1—a. In the Landau theory we
recover /=1, while in the three-dimensional Ising model
we get (=0.89. Figure 12 demonstrates that our simula-
tion data scale very well with /=0. 89 and a bit worse
with g= l.

At the end of this section we consider the scaling prop-
erties of excess quantities. Let y be the critical exponent
and d„=—y/v the scaling dimension of the density of
an extensive quantity A. The excess of A, defined as

1.-

O
I

0.1 .-

0037 ~ITc T) tI V] I )

L„symbol
60 o
40 x
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I I
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(34)

has the scaling dimension d „+1 and thus the critical ex-

ponent 6=y —v. The excess of the order parameter, e.g. ,
should scale with the exponent co=P—v= —0.31, for the
excess of the concentration one gets co=(—v=0. 26, and
the interface free energy' follows the power law

f ~ (T, —.T)" with p=(d —1)v=1.26 (35)

(see also Ref. 14 for similar considerations). The compar-
ison with Figs. 13—15 shows that this concept describes
the simulation data in a satisfactory way.

FIG. 12. Finite size scaling plot of the segregated concentra-
tion c„g, with (a) (=0.89, (b) (= 1 (see Ref. 16 for the theory of
finite size scaling).
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ing spins at the interface c,„„compared with the bulk value cb„lk
as function of temperature.

FIG. 13. Finite size scaling plot of the excess of the order pa-
rameter, scaled with co= —0.31.
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V. SUMMARY AND OUTLOOK

In this paper we have presented simulation results for
interfaces in a complex system. As we worked with
periodic boundary conditions, we had no border effects
and could deal with rather small systems even close to
T, . However, since we had imposed translational invari-
ance to the system, the evaluation of averaged profiles re-
quired a special analysis procedure. We have developed
such a procedure, analyzed corresponding finite size
effects, and shown that it offers a suitable way of handling
the simulation data.

Our interface turned out to be rough over nearly the
whole range of temperatures. We have seen that at tem-
peratures not too close to the roughening temperature
T„ /~ V, ~

=2.7 (the results connected with the roughening
transition will be presented in Ref. 15) the data are well
described by the capillary wave approximation, except
for a small systematic deviation of -3%.

By extracting the different lengths associated to the
width of the interface and comparing them with the bulk
correlation length, we have shown that near T, the inter-
face does not introduce a new length scale into the sys-
tem. Thus we confirm the result of an earlier investiga-
tion in an Ising system, where, however, the interface
roughness and therefore the dependence of the interface
width on the system size has not been taken into ac-
count. ' We found that particularly the degree of rough-
ness of the interface is determined only by the correlation
length. As a consequence one expects all quantities to ex-
hibit standard finite size scaling behavior. Our data
reproduced this nicely.

As another important result we have shown that inter-
facial segregation occurs even in a lattice model, despite
the lack of mechanical strains and forces. The
phenomenon of segregation is connected to the fact that
the stoichiometry of the bulk deviates from the
stoichiometry in the ideally ordered phase (in the B2
phase 1:1):The deviation is amplified at the interface.

Thus we have seen that the Monte Carlo study of inter-
faces, especially of profiles of diverse quantities in the
neighborhood of interfaces, is feasible even in such a
complex system, and yields a variety of interesting phe-
nomena. Of course, there still remain many interesting
questions that could be tackled now. One could investi-
gate the behavior of the interface near a first-order transi-
tion, hence comparing the present model with the model
of a fcc crystal discussed in Ref. 5. Furthermore, it
would be interesting to see how things change in the
neighborhood of a multicritical point. We have not seen
an oscillatory concentration profile as it has, e.g., been
measured recently in an internal interface in Pt(Ni). But
perhaps other interfaces in the system exhibit such a be-
havior. As another step in order to improve the model
one could include vacancies. Then the modeling of inter-
faces becomes much more realistic, because vacancies
play a crucial role especially in connection with segrega-
tion.

We conclude that internal interfaces in crystals still
represent a challenging research field with many prob-
lems waiting to be solved. We hope that our work will
stimulate theoretical effort to understand why the capil-
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lary wave theory is not entirely successful in describing
the simulation data, as well as similar numerical studies
on other interfaces. Furthermore it would of course be
most revealing if experimental investigations of the
temperature-dependent structure of antiphase boundaries
in iron-aluminum were available that could be compared
directly with our simulation data.

ACKNOWLEDGMENTS

One of us (F.S.) received support from the
Landesgraduierten-Forderungsgesetz Rheinland-Pfalz.
F.S. wishes to thank J. Baschnagel for fruitful discus-
sions. This work was carried out using extensive comput-
er time at the Siemens-Fujitsu VP100 computer at the
Regionales Hochschulrechenzentrum Kaiserslautern
(RHRK) and at the Cray YMP at the
Hochstleistungsrechenzentrum Jiilich (HLRZ).

with

a„,c 2 Im(c„c,), b„,c, =2 Re(c,c)

If one takes into consideration these fluctuations the
reference point h, b =h, b+6h, I, will shift in the follow-
ing way.

(a) 5h, is defined by

L~ l2

f Mc;(x +h, +5h, )dx =0 . (A5)
j.

Since

Li/2f dx —f dy dz M;„„[x—h, (o) ]=0,

Eqs. (Al) and (A3) lead to
L~/2+bh

dx —f dy dz M;„„[x—h, (y, z) ]

APPENDIX A

We start from the order parameter profile of a
configuration C,

0 1
Mc.(x+h, „)=—dy dz M,„„[x—h. b(y, z)]+2)c(x),

(A1)

where

h, ,(y, z) =h (y, z) h,'b—

a)( l)(n —i)/2 i
c p

~n "~
n

Let finite size effects be so small that they can be disre-
garded to second order. Expanding the above equation
linearly in 5h„one gets

1 L~—f dy dz M;„„—h, (y, z) 5h,

l )(n —i)/2 c„=pLq

~n

and

2)c(x ) =—dy dz 2l&(x +h, b,y, z) .
1 0

For large enough L j the integral far away from the inter-
face position simply yields the bulk value of the order pa-
rameter,

h, b are reference points for a system without fluctua-
tions, as they have been introduced in the text. Note that
the fluctuations are averaged over the cross-section area
A, hence the effect they produce will be smaller, the
larger A ~L~~ is:

(g2), (2)') .
1

(A2)

where

Like Mc, 2)&(x) is periodic with the period 2Li. There-
fore it can be expanded into a Fourier series:

i ( n. /L
&

jnx

q,.(x)= ye ' c„,

1 L~
dy dz M;„„—h, (y, z) =Mp bintr 2 a, u

hence one has

l)(n+i)/21 L~

0, b011( 0 0, pdd ~n

(b) 5h„ is determined by

L~f Mc(x +h,'+5h, )dx =max .
0

As

L~I:= f dx —f d 'o M;„„[x hb(o)] =max—

(A7)

(AS)

(A9)

c, @
=c * „@ ( g is real ),

(c„,),=o ((q) =o),
c„&=0 for even n [ii@(x)= —i)@(x+Li)] .

This leads to a Fourier series in sine/cosine functions

7T
q@(x ) = g a„&sin nx b+„&c s onx

L~ L~

(A4)

is already fulfilled, (Al) and (A3) lead to

6hbI —2 f dx —f dy dz M,„„[x—hb(o)]

i(~/L, jn6hb LL
+2+e ' c„@ =max .

&n

After having differentiated with respect to 6hb and

neglecting higher orders of g and 5hb, one gets
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—f dy dz M;„,„[5hb —hb(o) ]+g c„c=0 .
n

Finally one expands the intrinsic profile in powers of 5hb.

—f dy dz M;„„[5hb—
hb (o ) ]

1

f dy dz[M;„„[—h„(o)]+5h„M„„[—hb(o)]j .

In a system without fluctuations 5hb should give zero,
therefore one has

The averaged order parameter profile is given by

M(x)=(—Jdy dzM, „„[x—h. z(y z)+hh, z])

+(g@(x+5h, b)& . (A13)

The right-hand side of this equation can be expanded in
powers of 5h, b. As b„& does not depend on the concrete
structure of the interface [h (y, z) j, the first term gives

—jdy dzM;„„(x h. , (y—*)+hh, .z]),
—f dy dz M;„„[—hb(o) ]=0 (A 10) =M (x)+—,

'M" (x)(5h, b )+

and

5hb= —, g bc .1

Mo(0) . o odd

(Al 1)

Mo(0) is defined as (d/dx)Mo(x) I.=o.
Let us now assume that the Fourier components of the

fluctuations do not couple to each other.

(a„cb c & =0, (a„ca c &=(b„cb c)=5„ f„.

with

'2

&5h2) =
MO, bulk

g&b' &
~ (g')

M() (0)

(A14)

(A15)

(A12) and the second term [see Eq. (A4)]

7T nn nm
(rjc(x +5h, b)) =g cos nx a„ 5h, „ —sin nx b„ 5h, b +

j.
n L a,

g sin nx (b„) '

n ~0,odd

( 1 )(n —) )/2

MO, bulk

1 nm

M(')(0) Li

(A16a)

(A16b)

At this point we have to put in the Ornstein-Zernicke
behavior:

&a„'c)=(b„'c &= C 1 1
for odd n

L L (nn/L ) +(1/g)

(5h, )=,g
—— tanh

C 1 2 1 g L

M bulk g 4L)

(5h )=, tanh
C 1 g L)

L~~ M()(0) 4L)
(A19)

(A17)
This finally leads to Eqs. (10) and (11).

with the correlation length g and some amplitude C. Be-
cause of

gg„=—a tanhn 4 20

where

APPENDIX B

In the continuum limit, the width extracted from the
excess of the order parameter is given by

L~
[M(x) —

Mb„)k ]dx
bulk

1
for odd ng„= n +a

0 for even n,
one has

M X +Mbulk dX
Mbulk i

L~ l2

f [M(x) Mb )k]dx (Bl)



13 564 F. SCHMID AND K. BINDER 46

M(x)=Mb„,„f dh 0(x —h)f(h) .

Because of If ( h )dh = 1 this leads to

WM= f dx f dh f(h)s(x, h)

(B2)

Let L~ go to infinity and the order parameter profile
M (x) satisfy the boundary conditions M( —~ ) = —

Mb„&k
and M(+ ~)=+Mb„&k. M(x) then depends on the in-
terface distribution function f (h) via

1 L~
W, = [c (x)—cb„&k]dxc (0) cbUII 0

1 L~ /2f [c(x)—cb„)k]dx .
C bulk

(B5)

cbulk COf (x) (B6)

As the concentration profile c (x ) is connected with f (h )

through

( h ) 2 +g( h ) g( h ) (B3) ( Co is some proportionality factor), this yields

One easily checks s(x, h)=2 for 0&x & ~h~ and
s(x, h) =0 for x & ~h~. Thus one gets

WM=2f dh f(h) f dx =2(~h~)/ . (B4)

The width extracted from the excess of the concentra-
tion is

(B7)

In the capillary wave theory the distribution function
is given by Eq. (21): f (0)= 1/(&2m. w) and
( ~h~ )/=w/2/~. Thus one gets W, /W~=n. /2.
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