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Elastic properties of semiconductors studied by extended Huckel theory
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For thirty diamond- and zinc-blende-structure semiconductors, the elastic shear constant
(c» —

c&z )/2, polarity a~, effective atomic charge Z*, transfer parameter P, and transverse charge er are
calculated from band-structure calculations based on the extended Hiickel tight-binding method. The
results are compared with previous theoretical calculations and experiment. It is found that improved
agreement with experiment is obtained for (c» —c»)/2 in comparison to a calculation based upon
universal tight-binding parameters, which was already in rather good accord. For the e8'ective charges,
inclusion of nonorthogonalities in the Hiickel theory increases their estimated values considerably and
brings them into good agreement with experiment.

I. INTRODUCTION

Theoretical studies for the elastic properties of semi-
conductors have been made by many researchers, using,
for example, a bond-orbital model (BOM), ' band-
structure calculations, and the "special-points" method,
a first-principles linear-combination-of-atomic-orbitals
method, pseudopotential methods within the local-
density approximation, the linear muffin-tin orbitals
method, ' and the extended Hiickel tight-binding
(XHTB) method.

Very recently, Kitamura and Harrison' studied the
elastic properties of semiconductors by calculating their
band structures on the basis of a universal tight-binding
parameters (UTBP) method. In this method, the effect of
nonorthogonality between atomic basis states is included
approximately in the energy calculations through the in-
clusion of the overlap repulsion. They found satisfactory
agreement between experiment and the calculated results
for the elastic stiffness constants and Kleinman internal
displacement parameter, but good agreement was not ob-
tained for the properties related to effective charges.
They suspected that some of the discrepancies may have
arisen from their failure to include nonorthogonality of
the atomic basis states in the analysis.

As far as we know, the only study of the elastic proper-
ties by the XHTB band-structure calculation was for dia-
mond by %atkins and Messmer. In the present paper,
we use the XHTB method, which was developed by Ki-
tamura and Muramatsu to calculate band structures of
complicated materials such as perovskite-type com-
pounds Kl)fF3 (M=Mn, Fe, Co, Ni, Cu, and Zn)" and
K2PdC16, ' to systematically study elastic properties for a
large number of semiconductors. In principle, this
XHTB method can be carried out if the crystal structure
and lattice constant for a given material are known. One
uses atomic calculations for obtaining numerical atomic
basis states.

The purpose of the present work is not only to check
the reliability of the XHTB method, but also to discuss
the effect of nonorthogonality between atomic basis states
in the XHTB method. In order to address the problem
which arose in the UTBP method, ' we could reformu-
late the UTBP method to include the effect of nonortho-
gonality between the atomic basis states. Here we use in-
stead the XHTB method in which nonorthogonality be-
tween the atomic states is already taken into account.

In the present paper, we calculate the elastic shear con-
stant (c» —c,2)/2, polarity a, effective atomic charge
Z', transfer parameter P, and transverse charge e T for
thirty diamond- and zinc-blende-structure semiconduc-
tors, and make a comparison of these calculations with
experiment for (c» —c,2)/2, transverse charge and the
value of polarity with the ionicity defined by Phillips. ' '
In the BOM proposed by Harrison, ' which describes the
electronic structures of semiconductors, there is a rela-
tion between the (c» —c,2 ) /2 and the bond length d, co-
valency a„and quantities A, and Vz defined in the BOM.
Starting from this relation, we express the bulk modulus
8 in terms of d, A, , and Vz, and also the ratio of c,2 lc» in
terms of a, alone. These parameters are evaluated within
the framework of the XHTB method. These semiempiri-
cal expressions prove reasonable; particularly for the bulk
modulus 8, good agreement between experiment and pre-
diction is found, and the expression for c,2/c» accounts
for its experimental trends with respect to a variation of
a, .

Before proceeding to Sec. II, we note two differences
between the BOM, XHTB, and UTBP methods. One is
the basis state chosen. In the BOM, sp orbitals for cat-
ion and anion are selected as the basis states, while in the
XHTB and UTBP methods atomic orbitals are used as
the basis states. A second is that the BOM and UTBP
methods include only the first nearest-neighbor interac-
tion for which universal parameters are optimized,
whereas in the XHTB method interactions are taken into
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account up to a sufficiently large distance that the in-
teractions become negligibly small. "'

II. CALCULATIONAL PROCEDURE

Theoretical details for the band-structure calculations
based on the method are given in our previous paper. "
The point to be emphasized in our band-structure calcu-
lation based on this method is that no empirical atomic
data are used; our calculations are entirely from first
principles. Atomic states are obtained from a self-
consistent-field (SCF) calculation based on the Herman
and Skillman prescription' and the Schwarz exchange-
correlation parameters. ' Hamiltonian matrix elements
are evaluated in the Wolfsberg-Helmholtz approxima-
tion' as follows:

&Q~L, (r)III&I, (r r)&=—(G/2)( "sI+ EL)

x & Q~L (r)i/1. (r —r, }&,

where G is an adjustable parameter and P~z (r —r„) is the
atomic orbital with a quantum state denoted by the col-
lective index L =(I,m) for the pth atom located at r„.
The atomic energy a~i is for the L state of the pth atom
and 6 is taken to be 1.75 (Ref. 1). The overlap integral

&(t",(r)l(t," (r —r, ) &,

which is necessary to evaluate the Hamiltonian matrix
elements, can be transformed into basic overlap integrals

using the direction cosines (g, g, g) of r, as shown in the
table of Slater and Koster. ' These basic overlap in-
tegrals are numerically calculated using the atomic states
obtained from the SCF calculations and elliptic coordi-
nates. ' For example, the Hamiltonian matrix element

&p~ (r)lHlp" (r —r, ) &
Py

is given by ggVi'" gr—)V"'", where Vf'I" is the basic
Hamiltonian matrix element between the I (s or p) orbital
of the pth atom located at (0,0,0) and the I' (s or p) orbit-
al of the vth atom located at (0,0, r„) for m (cr or m)

states.
The essential steps in the calculation of strain energy

are described in Ref. 10. Bands are calculated and aver-
aged over a grid of points within the first Brillouin zone
(BZ). A total of 6912 points are used for a tetragonal
phase generated by a [001] uniaxial strain. The band en-
ergy defined by Eq. (3) in Ref. 10 is directly calculated by
averaging the energy eigenvalues over the grid points in
the irreducible segment of the first BZ following the same
procedures as in Ref. 10.

The transverse charge e T is given as Z'+4P/3, using
the effective atomic charge Z* and transfer parameter
P, which are defined by Z' =4a~ —b,Z and
P=(d/4)BZ" /Bd, respectively. ' Here, d is the bond
length, the value of hZ is 1, 2, and 3 for III-V, II-VI, and
I-VII semiconductor compounds, respectively. The po-
larity a is calculated as follows:

a~ = g g (k)a~(k)/ g g(k),
k k

k n F

,(k) =(-,') y [I &+',.Iq', .&
—&+',.I+',.&) /&q, .Iq, .&],

(2a)

(2b)

where Ez is the Fermi level of semiconductors. The wave
function %'i, „(r) is a solution of the Schrodinger equation

H%z „(r)=E„„V„„(r).

with the coefficient ug(k, n). The coefficient ug(k, n) is
determined from the secular equation

H(k)u(k) =EI,S(k)u(k),

It is written as a linear combination of basis functions where S(k} is not a unit matrix in the XHTB band-

TABLE I. The number of g(k) of k vectors in the stars for the wave number k defined within the
volume surrounded by symmetry points I, X, W, K, Z, Wl, W&, and U& shown in Fig. 1 of Ref. 10.

g(k)

x
Points

z Wl U, otherwise

Lines
rx xw use vcr zw, w, U, U, z WlX I Z Wl W2 EUI

g(k) 4 4 16
3

16
3

g(k)

rxwz ZW2 Ul

Surfaces
xww, rzw;w, x rscU, Z WKU) W2 Wl
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structure calculation because of the nonorthogonality be-
tween the basis functions. Moreover, the %k „(r) can be
expressed as the sum of the wave function at cation
[%f, „(r)] and anion [4'1', „(r)]sites. The wave number k
specifying the %z „(r) is defined within the irreducible
segment 0' surrounded by symmetry points I, X, 8', K,
Z, W„8'z, and U, of the first BZ shown in Fig. 1 of Ref.
10, and n is the index for the branch of bands. g(k)
denotes the number of the so-called "star of k" and is
tabulated in Table I.

We note that this polarity [Eq. (2)] reduces to that of
bond orbital theory when S is taken as the unit matrix
(orthogonality is assumed). From Eq. (2) we may also see
the eda corresponds to the bond dipole moment.

III. RESULTS AND DISCUSSION

The calculated results for the elastic shear constant
(c» —c,2)/2 in 10" (ergs/cm ), polarity a~, effective
charge Z', transfer parameter P and transverse charge
e T* for diamond-structure semiconductors C, Si, Ge, and

Sn and zinc-blende-structure semiconductors BeS, BeSe,
BeTe, BN, BP, BAs, A1P, A1As, A1Sb, SiC, CuF, CuC1,
CuBr, CuI, ZnS, ZnSe, ZnTe, GaP, GaAs, GaSb, AgI,
CdS, CdTe, InP, InAs, and InSb are tabulated in Table
II, together with the experimental values' of the bond
length d in A, (c» —c|2)/2 and e T' and with a polarity a~
deduced from the ionicity f; of Phillips as f / . From
Table II, we see that the calculated a corresponds well

with the square root of Phillips's ionicity. A comparison
of the calculated values for (c» —c,2)/2 and er with the
experimental ones indicates that the values obtained from
the XHTB method are closer to experiment than those
obtained from the UTBP method. ' The significant im-

provement for the e T may be related to the fact that the
calculated polarity is larger, as is the Phillips's polarity
for all the semiconductors investigated.

In order to see the role of nonorthogonality between
the atomic basis states, we have recalculated the polarity
in the so-called "Huckel approximation, " in which the
same secular equation

H(k)u(k) =E|,S(k)u(k)

TABLE II. Results for the shear constant (c» —c&2)/2 in 10» (ergs/cm'), polarity a~, effective atomic charge Z*, transfer param-
eter P, and transverse charge er obtained for diamond- and zinc-blende-structure semiconductors from XHTB band-structure calcu-
lations. Bond length d and the experimental values of (c& —c» )/2 and e T* were taken from Ref. 1 and the polarity of Phillips was de-
duced from Phillips's ionicity fi (Ref. 14) as a~ =f i . The results of the (el| —c|2 )/2 and er* taken from Ref. 10, which are calculat-
ed from UTBP method, are also given for comparison.

(~» ~12 )/2

Crystal d (A) XHTB UTBP Expt.

polarity a~

XHTB Phillips Z* XHTB UTBP Expt.

BeS
BeSe
BeTe
BN
BP
BAs
C
Alp
AlAs
Alsb
SiC
Si
CuF
CuCl
CuBr
CuI
ZnS
ZnSe
ZnTe
GaP
GaAs
GaSb
Ge
AgI
Cds
CdTe
InP
InAs
InSb
Sn

2.10
2.20
2.40
1.57
1.97
2.07
1.54
2.36
2.43
2.66
1.88
2.35
1.84
2.34
2.49
2.62
2.34
2.45
2.64
2.36
2.45
2.65
2.44
2.80
2.53
2.81
2.54
2.61
2.81
2.80

4.58
4.93
4.83

16.5
14.2
11.6
35.0
3.55
3.77
3.36
9.60
7.14
0.695
0.645
0.781
1.20
1.41
1.56
1.80
3.55
3.25
3.28
5.49
0.700
0.707
1.12
2.01
2.16
2.14
3.43

34.2

3.56

1.675
1.36
0.97
2.635
2.05
1.485
2.70

0.665
1.675
1.435
1.07

10.8

47.55

2.255

5.09

0.455

1.950
1.610
1.530
3.935
3.245
2.405
4.030

0.835
2.230
1.900
1.510

0.792
0.741
0.611
0.689
0.211
0.117
0.0
0.629
0.574
0.425
0.522
0.0
0.993
0.934
0.903
0.854
0.856
0.819
0.734
0.589
0.529
0.382
0.0
0.877
0.873
0.772
0.659
0.612
0.485
0.0

0.534
0.511
0.411
0.507
0.241
0.161
0.0
0.623
0.657
0.658
0.421
0.0
0.875
0.864
0.857
0.832
0.789
0.789
0.774
0.573
0.557
0.510
0.0
0.879
0.824
0.822
0.649
0.599
0.572
0.0

1.17
0.964
0.444
1.75

—0.158
—0.533

0.0
1.51
1.30
0.702
2.09
0.0
0.974
0.736
0.613
0.417
1.42
1.28
0.936
1.35
1.12
0.529
0.0
0.510
1.49
1.09
1.64
1.45
0.940
0.0

0.253
0.241
0.128
0.122

—0.219
—0.272

0.355
0.353
0.219
0.370

0.119
0.248
0.301
0.385
0.393
0.432
0.445
0.368
0.365
0.236

0.353
0.353
0.438
0.417
0.426
0.344

1.507
1.285
0.615
1.913

—0.450
—0.896

1.983
1.771
0.994
2.583

1.133
1.067
1.014
0.930
1.944
1.856
1.529
1.841
1.607
0.844

0.981
1.961
1.674
2.196
2.018
1.399

1.251
1.150
0.980
0.886
0.710
0.398

1.240
1.261
1.071
0.746

2.47

2.28
2.3
1.93
2.57

1.12
1.49
2.40
2.15
2.03
2.00
2.04
2.16
2.15

1.40
2.77
2.35
2.55
2.53
2.42
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TABLE III. Results for polarity o.~ obtained from the band-structure calculations based on the
UTBP, Hiickel tight-binding (HTB), and XHTB methods. Those values are denoted as a~(UTBP),
a~(HTB), and a~(XHTB), respectively. The values of the a~(UTBP) were deduced from those of Z*
listed in Table II of Ref. 10. For comparison, the values of Phillips s polarity a~{Phillips) tabulated in
Table II in the present paper and of polarity a~(BOM), obtained from the bond-orbital model are also
listed. The a~(BOM) is calculated from V3(BOM)/[ V2(BOM) + V,"(BOM)']'~ using the values of hy-
brid covalent energy Vz{BOM) tabulated in Table IV in the present paper and of hybrid polar energy
V3 (BOM) given by hybrid energies c& and cIt of cation and anion as ( alt

—
c& ) /2. The parameters,

which were necessary in order to evaluate the V2(BOM) and V3(BOM), were taken from Ref. 20.

Crystal

GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
Zn Te
CdTe

a, (UTBP)

0.351
0.331
0.274
0.427
0.403
0.347
0.611
0.597
0.565
0.625

ap(HTB)

0.415
0.368
0.262
0.457
0.421
0.329
0.617
0.582
0.509
0.535

ap(XHTB)

0.589
0.529
0.382
0.659
0.612
0.485
0.856
0.819
0.734
0.772

a~(Phillips)

0.573
0.557
0.510
0.649
0.599
0.572
0.789
0.789
0.774
0.822

ap(BOM)

0.480
0.467
0.392
0.578
0.562
0.497
0.734
0.729
0.702
0.754

as in XHTB is solved, but with S(k) = 1; that is,
nonorthogonality is neglected. The results are tabulated
in Table III, together with those for the UTBP method
[a~(UTBP)] and for the XHTB method [a~(XHTB)].
The value of az(HTB) for the Hiickel approximation is
close to that of a (UTBP). From a cotnparison of
a~(HTB) and a~(XHTB), we see that the effect of
nonorthogonality is to enhance the value of polarity, and
thus bond dipoles. Therefore, we can say that at least
within the framework of the XHTB method, nonortho-
gonality between the atomic basis states plays an impor-
tant role in determining any physical quantity which is
calculated by use of the wave functions %|,„(r). We may
expect that if the UTBP method is reformulated to in-

(c» —c,2 )/2=&3AVza, /2d (3)

where covalency a, is defined by (1—a )'~, A, is a di-

mensionless parameter, and V2 is a hybrid covalent ener-

gy. Let us apply Eq. (3) using a„A,, and Vz obtained
from the XHTB band-structure calculations. The dimen-
sionless parameter A, and the hybrid covalent energy V2
are defined in direct analogy with Ref. 1 as follows:

elude the effect of nonorthogonality between the atomic
basis states, it will give a good value to a and, therefore,
also to e~.

According to the BOM proposed by Harrison, ' the
elastic shear constant (c» —c &2 )/2 is given as

TABLE IV. Values of A. defined by Eq. (4a) and of V~ in eV defined by Eq. (4b) obtained for
diamond- and zinc-blende-structure semiconductors by using the XHTB method. The value of V2 ob-

tained for BOM using universal tight-binding parameters taken from Ref. 20 is also tabulated as

V2(BOM) for comparison. It is noted that the value of A, in the BOM is 0.854 for all the diamond- and

zinc-blende-structure semiconductors (Ref. 10).

Crystal d {A) Vh V2(BOM) Crystal d (A) 2h V2h{BOM)

BeS
BeSe
BeTe
BN
BP
BAs
C
Alp
AlAs
Alsb
SiC
Si
CuF
Cucl
CuBr

2.10
2.20
2.40
1.57
1.97
2.07
1 ~ 54
2.36
2.43
2.66
1.88
2.35
1.84
2.34
2.49

0.757
0.765
0.785
0.728
0.771
0.773
0.741
0.779
0.784
0.802
0.754
0.792
0.615
0.709
0.731

9.16
9.11
8.58

11.5
10.2
9.87

12.1
8.49
8.46
7.94

10.2
8.91
7.55
7.75
7.76

5.57
5.07
4.26
9.96
6.33
5.73

10.36
4.41
4.16
3.47
6.95
4.45
7.25
4.49
3.96

CUI
ZnS
ZnSe
ZnTe
GaP
GaAs
GaSb
Ge
AgI
Cds
CdTe
InP
InAs
InSb
Sn

2.62
2.34
2.45
2.64
2.36
2.45
2.65
2.44
2.80
2.53
2.81
2.54
2.61
2.81
2.80

0.757 7.61
0.737 7.96
0.753 7.95
0.779 7.66
0.779 8.59
0.786 8.47
0.803 8.02
0.795 8.71
0.751 7.00
0.735 7.33
0.776 7.18
0.781 7.97
0.786 7.96
0.804 7.59
0.815 7.74

3.58
4.49
4.09
3.52
4.41
4.09
3.50
4.13
3.13
3.84
3.11
3.81
3.61
3.11
3.13



ELASTIC PROPERTIES OF SEMICONDUCTORS STUDIED BY. . . 1355

v 3 I &pp'. I
+

I
v Jp.

'
I
+2 )/3( I ~pp'. I

+
I ~pp'. I )

ill=
Iv;;:I+~&(l v;,'I+ I ~;,.'I)+3I ~,"p'. I

'

and

V" = (h, lHlh, )

(4a)

=-,' [I v;;:I+~3( I v;,'. I+ I v;,.' I )+3I v;,'. I ], (4b)

which characterizes a bond constructed from sp hybrid
orbitals lh, } and lh, ) on the cation and anion. In the
BOM, A, takes a constant value of 0.854 (Ref. 10). The
values of the dimensionless parameter A, and hybrid co-
valent energy Vz, which were obtained by calculating the
basic Hamiltonian matrix elements in the XHTB method,
are tabulated in Table IV, together with the values of V2

&= [(cii —ci2)/2]d /A, Vz =0.75a, . (5)

We note that within the framework of the BOM, the
value of a is equal to (~3/2)a, .

obtained from the BOM denoted as V2(BOM). Here, it
should be noted that the values of A, calculated from the
XHTB method are almost the same for all the crystals
and somewhat smaller than the value of the BOM (0.854
for all the diamond- and zinc-blende-structure semicon-
ductors). Using these values listed in Table IV, we have
checked the covalency dependence of the value of
[(c» —cia)/2]d /A, Vz, which we will hereafter denote by

The result is tabulated in Table V, and its a, depen-
dence is shown in Fig. 1. In Fig. 1, the straight-line 6t to
the calculated points is

TABLE V. Results for the value of a defined by [{c»—c,2)/2]d3/XV&", covalency a, defined by
(1—a~)', and the value of A. Vz/d in 10"ergs/cm obtained for diamond- and zinc-blende-structure
semiconductors using the XHTB method. For comparison, the values of A, V2/d' obtained from BOM
and the experimental bulk modulus B,„p, are also tabulated in units of 10" ergs/cm together with
boa™{1gof; ) [N—eumann's relation (Ref. 21) for evaluating the bulk modulus], where 60=1.102,
m=3.56, and go=0.27; a is a lattice constant in nm and f, is Phillips's lonicity. Note that A, Vz" /d'
gives the bulk modulus in the XHTB and 2A. V2/d does so in the BOM.

Crystal

BeS
BeSe
BeTe
BN
BP
BAs
C
Alp
AlAs
Alsb
SiC
Si
CUF
CUC1

CuBr
CuI
ZnS
ZnSe
ZnTe
GaP
GaAs
GaSb
Ge
AgI
Cds
CdTe
InP
InAs
InSb
Sn

d (A)

2.10
2.20
2.40
1.57
1.97
2.07
1.54
2.36
2.43
2.66
1.88
2.35
1.84
2.34
2.49
2.62
2.34
2.45
2.64
2.36
2.45
2.65
2.44
2.80
2.53
2.81
2.54
2.61
2.81
2.80

0.382
0.470
0.618
0.476
0.865
0.841
0.893
0.441
0.509
0.620
0.519
0.819
0.0581
0.0938
0.133
0.234
0.192
0.239
0.346
0.435
0.448
0.592
0.718
0.182
0.133
0.278
0.330
0.383
0.486
0.744

a,
0.611
0.672
0.792
0.725
0.977
0.993
1.0
0.777
0.819
0.905
0.853
1.0
0.118
0.357
0.430
0.520
0.517
0.574
0.679
0.808
0.849
0.924
1.0
0.480
0.488
0.636
0.752
0.791
0.875
1.0

A, V" /d
XHTB

12.0
10.5
7.80

34.6
16.5
13.8
39.3

8.05
7.40
5.41

18.5
8.70

11.9
6.86
5.88
5.13
7.33
6.51
5.19
8.15
7.24
5.54
7.63
3.83
5.32
4.02
6.08
5.63
4.40
4.60

BOM

8.22
6.51
4.21

35.2
11.3
8.83

38.8
4.58
3.96
2.52

14.3
4.69

15.9
4.79
3.50
2.72
4.79
3.80
2.61
4.58
3.80
2.57
3.88
1.95
3.24
1.92
3 ~ 18
2.77
1.92
1.95

Bexpt

36.9'
17.2

44.2'
8.60'
773d
5 93'

22.8'
9.78'

3 93'

7.80'
5 95'
5 09'
8.87'
7.48'
5.63'
7.52'

6.44
4.24'
7.25'
5.80'
4.66'
531

Neumann

13.4
11.4
8.59

37.9
17.9
15.1
43.7

8.56
7.61
5.51

20.4
9.70

18.4
7.87
6.33
5.36
8.20
6.96
5.38
8.72
7.66
5.88
8.50
4.12
6.10
4.20
6.52
6.03
4.68
5.20

'Reference 22.
Reference 23.

'Reference 1.
Reference 24.

'Reference 25.
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0.5
Cava I ency a|..

FIG. 2. Curve of Eq. (6c) for the ratio c,2/c„as a function
of covalency a„ together with the experimental values of
c»/c». The experimental values indicated by a circle (0 ) and
a square (0) are, respectively, plotted against the values of the
covalency calculated from the band-structure calculations and
from Phillips's ionicities.

0.0 I

O. I 0.2 0.3 0.4 0.5 I.O

Neumann's relation; very good agreement is found.
Finally, from Eq. (5) and

Cova I en cy o&

FIG. 1. Plot of [(c» —c»)/2]d'/A, V," ( =s) vs covalency a,
for diamond- and zinc-blende-structure semiconductors listed in

Table V. The values of the a and a, were obtained from the
XHTB band-structure calculations. The line represents
K=0.75a, .

Equation (5) leads us to a very interesting result if we

use the empirical relation given by Martin that the ratio
of the bond-bending force constant [ & (c„—c,2)d ] rela-
tive to the bond-stretching force constant [ ~ Bd ] varies
linearly with ionicity f; (=1—a, ) for diamond- and
zinc-blende-structure semiconductors. Figure 5 of Ref.
26 or Fig. 3 on p. 266 of Ref. 14 indicates, in fact, that
the ratio is proportional to 1 f; =a, . Since —we see from
Eq. (5) that the bond-bending force is proportional to a2„
we expect the bond-stretching force to be independent of
polarity and the bulk modulus 8 to be proportional to
A, Vz/d . We see that, in fact, the experimental bulk
modulus is very nearly equal to A, Vz /d . In the BOM the
values of V2 are generally smaller by a factor of 2 and the
bulk modulus is more nearly given by

2A. V~(BOM)/d =6.712X10' /d [A]s,

which may be useful because it is so simple to evaluate.
Also listed in Table V are values obtained from

Neumann's empirical relation. ' Table V indicates that
the AVz/d obtained by using the XHTB method is in

excellent agreement with the experimental bulk modulus.
For the compounds for which there are no available ex-
perirnental data of elastic stiffness constants, our results
can be compared with the results obtained from

B =A, Vz/d =(ct&+2ct2)/3,

we can write the expressions for c», c&2 and c,2/c» as
follows:

c» =B(1+a,),
c,z=B [1—(a, /2)],

c,2/c» =[1—(a, /2)]/(1+a, ) .

(6a)

(6b)

(6c)

The curve of c&z/c» obtained from Eq. (6c) is shown in

Fig. 2, together with the experimental values as a func-
tion of the covalency a, . We see that there is a consider-
able deviation from the curve, although it describes ap-
proximately the experimental trend. We strongly hope
that elastic stiffness constants will be measured for crys-
tals for which there are no available experimental data
and compared with our predictions. A particular interest
is the dependence of c,2/c» on a, in the region of the
low covalency (a, 50.5).

IV. SUMMARY

We have calculated the elastic shear constant
(c» —c,~ ) /2, polarity a~, effective atomic charge Z *,
transfer parameter P, and transverse charge e T' for thirty
diamond- and zinc-blende-structure semiconductors from
band-structure calculations based on the XHTB method.
This explicitly includes the effect of nonorthogonality be-
tween atomic basis states. We found that (1) polarity a
calculated by the XHTB method is close to the counter-
part obtained from Phillips's ionicity, and (2) the values
of (c&&

—c,2)/2 and eT obtained from the XHTB band-
structure calculations are improved as compared with
those obtained from the band-structure calculations
based on the universal tight-binding parameters
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method. '

From an expression for the elastic shear constant
(c» —c,z)/2 in the BOM and the empirical fact that the
ratio of a bond-bending force constant to a bond-
stretching one is proportional to the square of covalency
a„we deduced forms for the bulk modulus B and elastic
stiffness constants c» and c,2 with a single empirical ad-

justment. We found that the expression for the bulk
modulus B gives the values quite close to the experimen-
tal ones and for the elastic stiffness constants predicts
fairly well the experimental trends of c,2/c».

In the present paper, we have not treated the BOM,
but performed the band-structure calculations based on
the XHTB method. Although both the BOM and XHTB
methods are based on the tight-binding approximation,
their practical treatments are different from each other in

detail. Therefore, it is difBcult to discuss these two
methods on the same footing. However, some features
should be common to these two methods. We think that
A. may be one such feature. In the BOM, the value of A, is
a constant value of 0.854 for all the diamond- and zinc-
blende-structure semiconductors, while its value in the
XHTB method varies from 0.615 to 0.815 for the crystals
investigated in the present work, for an average value of
0.764.
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