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We calculate the accuracy of the single electron pump numerically and analytically. With a
biasing of the device that we describe as optimal, the accuracy is computed with finite temperature
cotunneling rates that systematically include all possible cotunneling processes. A simple graphical
representation of the operation of the pump illustrates when cotunneling processes become active.
We show that the accuracy is limited by cotunneling, thermal activation, and operating the device at
too high a frequency; simple approximation formulas are given for these errors. Metrological accuracy
is attainable for devices with five or more junctions and with parameters that are experimentally

attainable.

I. INTRODUCTION

The Coulomb blockade of tunneling in extremely small
junctions has made electronic circuits based on single
electrons! 3 possible. In recent years several practical
circuits have been demonstrated, including an electro-
meter with subelectron sensitivity? and three devices
that produce a standard of current by locking the transfer
of single electrons to a periodic signal.>™”

Practical metrological applications of a current stan-
dard require an accuracy from about one part per mil-
lion to one part per billion. The utilization of a current
standard is presently thought to be very difficult because
small currents are produced in these devices. However,
if the devices are used as a charge standard to transfer
a controlled number of electrons into a capacitor, then
a practical metrological experiment may be possible.? If
the capacitor is charged with a known number of elec-
trons and its voltage is measured by the Josephson effect
voltage standard, the capacitance is then defined through
the constant e2/h. This capacitor can then be used as
a primary reference or compared with the calculable ca-
pacitor to measure the fine structure constant.®

Accuracy predictions are needed to properly design de-
vices as well as to test their performance when built. Sim-
ple analytical expressions for the accuracy are desirable,
even if they are only approximate, because device param-
eters then can be easily chosen and any compromises of
performance can be readily understood.

At this time, we think the turnstile® and pump’ de-
vices show the greatest promise for an accurate current
or charge standard. Of these two devices, we think the
pump will make a better standard. Because signals are
applied to the gates between every junction in the pump,
we think each junction will be more optimally biased
than the turnstile device where only the center gate is
biased. Additionally, the pump is expected to have less
self-heating because the junctions switch closer to their
threshold voltages. Therefore, we concentrate in this pa-
per on predicting the accuracy of the pump device. The
numerical methods can be simply extended to the turn-
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stile if desired.

It has been suggested that single electrons might be
exploited in extremely dense logic circuits which use elec-
trons as the bits of information.® Such circuits would
probably require error rates much smaller than the rates
needed for metrological accuracy. Although the numeri-
cal methods we describe in this paper would have to be
extended to calculate the error rates in digital circuits, we
think that these calculations for the pump device clearly
show that several junctions are needed per logic element
to reduce the error rates.

A physical process that can significantly affect the
accuracy of single electron devices is cotunneling, also
called the macroscopic quantum tunneling of charge.® In
this process an electron is transferred through a Coulomb
barrier by virtual states. The first turnstile and pump
devices are thought to be limited in accuracy by this
effect. The main difficulty in calculating the accuracy
comes from cotunneling, and much of this paper is de-
voted to systematically including in the calculation all
possible cotunneling processes.

Pothier® has calculated the errors in a pump device at
zero voltage and zero temperature. These results give a
fairly good prediction of the necessary junction parame-
ters, the basic scaling properties of the cotunneling error
rates, and errors due to failure to tunnel. However, for
any realistic experiment the device must operate with
high accuracy in a small voltage range, and thus a pre-
diction is needed for finite voltages. This is especially
important because the accuracy of the electron pump is
strongly dependent on the bias voltage. Similarly, a cal-
culation valid for finite temperatures is also needed since
it is not presently possible to make the tunnel junctions
small enough that the temperature errors can simply be
ignored.

Other concerns with the analysis of Pothier are
whether it included all possible cotunnneling processes
and whether there are any additional error processes
which were not taken into account. Thus, for the pur-
poses of this paper, we require a very systematic deriva-
tion for the accuracy of the pump. This is accomplished
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in part with a computer program which predicts the
current-voltage characteristics of the pump by automat-
ically including all possible tunneling and cotunneling
processes. In our analytic approach, we calculate thresh-
olds and rates for all possible processes, and then sys-
tematically take into account only those that dominate
the errors. A comparison of the analytic results with the
computer program then checks the derivation.

The structure of the paper is as follows. In Sec. II
we begin with a short review of the Coulomb blockade.
We also review cotunneling and present an approxima-
tion that accounts for the electron-hole excitation ener-
gies. This approximation gives a better formula for the
cotunneling currents. In Sec. III we describe a computer
program for calculating the current-voltage characteris-
tics of the pump. The program takes into account all
possible cotunneling processes and is valid for finite tem-
peratures. We then derive in Secs. IV and V analytical
expressions for the accuracy by considering an ideal ar-
ray of small junctions. We derive the optimum biasing of
the device. We then systematically characterize the co-
tunneling processes and identify the regions in which the
various processes occur as a function of the bias param-
eters. Finally, in Sec. VI we analyze the error processes
in the region of smallest errors and derive both full and
simple analytical formulas for the accuracy. The simple
formulas are then used to choose device parameters for
target accuracies of one part per million and one part per
billion. In the appendixes we elaborate on several details
of the derivation.

II. COULOMB BLOCKADE IN
MULTIJUNCTION CIRCUITS

A. Single junction

We will first review the basic predictions of the
Coulomb blockade for an idealized model of a small ca-
pacitance tunnel junction connected to a charge bias Q,
as shown in Fig. 1(a). In the absence of tunneling, the
tunnel junction behaves simply as a capacitance C. In
Figs. 1(b) and 1(c) we show that the effect of a tunneling
event is to transfer a charge of te across the junction,
where e is the charge of an electron and the £ indicates
the direction of tunneling. Since the tunneling of an elec-
tron is equivalent to changing the total charge bias to
Q =+ e, the energies of the two final states are simply
the energy of the initial state Q2?/2C with Q replaced by
Q+e. Figure 1(d) plots the energy of the initial state and
the two final states as a function of the bias charge Q.
For a +e transition in this single junction the Coulomb
energy change

AFE; =U(gnat) — Uinitial)
€ €

-5(-9) )

is positive for Q < e/2, whereas for the —e transition
AEF; is positive for Q > —e/2.

An electron tunneling across the junction starts from
a filled state on one side of the junction and then oc-
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FIG. 1. The basic model of a small capacitance tunnel

junction with a charge bias. The box symbol represents the
tunnel junction. Figure (a) is the basic model, (b) the junc-
tion after tunneling of a charge e in the forward direction, (c)
the equivalent circuit after tunneling, and (d) the Coulomb
energy of the initial state and the two possible final states as
function of the charge bias. The energy difference AF asso-
ciated with a tunneling event is shown by the arrow.

cupies an empty state on the other side. The energy
of this electron-hole excitation and the Coulomb energy
change AE; must add to zero. The current in this direc-
tion is given by first-order perturbation theory to be the
tunneling matrix element summed over all the possible
transitions

T +00 p+o00
I, =2e% /_w /_oo |M|?p1(e1)pa(e2) f(e1) f (€2)

x6(e1 + €2 + AE))derdes
_ —-AE; 1 @
eRr 1—exp(AEy/kgT)’

where the factor of 2 is due to spin, p;2 is the elec-
tron density of states of the two sides of the junction
and is assumed constant for the metal electrodes making
up the junction, f is the Fermi function, and M is the
tunneling matrix element. In Eq. (2) we have defined
a phenomenological constant Ry = Ry /(87| M|?p1p2)
as the junction resistance. The resistance quantum is
Ry = h/e* ~ 25.8 kQ. This junction resistance is the
experimentally measurable parameter that describes the
total coupling strength of the tunnel junction. In our
notation, where AFE; is the change in Coulomb energy,
—AF; has positive magnitude for allowed transitions at
T = 0; hence the minus sign in Eq. (2).

Equations (1) and (2) predict that for kgT < e2/2C,
no current can flow through the junction when AE; is
positive, which corresponds to |Q| < e/2. This is the
Coulomb blockade of tunneling current.

B. Multijunction circuit

We now consider the Coulomb blockade for the gen-
eral series array of junctions shown in Fig. 2(a). In this
circuit, an array of tunnel junctions is connected to an
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FIG. 2. A general circuit for a series array of small tun-

nel junctions connected to voltage sources by impedances Z;.
Figure (a) is the circuit model, (b) the circuit after removing
the low impedance leads and representing the electrons on the
islands as charge sources, (c) the circuit as it would appear to
the junction labeled C, reduced from the Norton equivalence
theorem to be an external charge Q. and an external capaci-
tance Cy, and (d) the final reduction which can be compared
to Fig. 1(c).

array of voltage sources. The source impedances Z;(w)
model the effect of the electromagnetic environment of
the leads. The electrodes connecting junctions and ca-
pacitances are “islands” on which excess electrons may
be trapped.

The effect of the environment on the Coulomb block-
ade has been calculated for single!! and multijunction!?
circuits. For a single junction circuit with a real environ-
mental impedance Z < R, the tunneling rate with the
environmental impedance!? compared to the rate with
Z =0 is for voltage V S e/Ca

Ty ~ 1 re~YaV\®
Tloeo (A +a)T(1+a) ( e/C ) , (3)

where o = 2Z/Rg and v = 0.577... is the Euler constant.
The leads in a real experimental circuit have a complex
and frequency-dependent impedance at the appropriate
microwave frequencies but can be approximated reason-
ably well by a real impedance of Z; ~ 100 Q. The tun-
neling rate is thus approximately 5% less than the zero
impedance rate. A calculation for a multijunction circuit
gives a similarly small effect. Thus, we can safely set all
the impedances Z;(w) = 0.
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The excess electrons on the islands can be modeled by
charge sources from ground to the island with magnitude
of an integral number of unit charges. This allows us to
treat in the same manner the charge trapped on islands
and charge induced there by the gate voltage sources.
Thus, Fig. 2(a) reduces to Fig. 2(b).

We now consider the Coulomb energy change of the
system in Fig. 2(b) for an electron tunneling across the
junction labeled with a capacitance C. Since we are con-
sidering charge transfer only through this junction, all
other junctions behave as capacitors. In this case, we
can further simplify the circuit through the use of the
Norton equivalence theorem, which states that an arbi-
trary two-port circuit of capacitors, charge sources, and
voltage sources can be represented by a capacitor C,, and
a charge bias source Q.13 Thus, junction C in Fig. 2(b)
can be represented as Fig. 2(c), which can be further
simplified to Fig. 2(d). The Coulomb energy change for
Fig. 2(d) is exactly that depicted in Fig. 1(a), where the
Coulomb energy due to a * electron transition changes
by

AEE = Cjcx (5%Q:)- (4)

The difficulty in computing AE; is reduced with this
technique to finding the Norton equivalent circuit param-
eters C; and Q.. As we shall see, the symmetry of the
pump circuit allows us to calculate these quantities eas-
ily. The relation between the external charge and the
charge on the junction itself is simply

C
qunction = QO (5)

C. Dynamic equations

The electrical characteristics of a tunnel junction
circuit can be computed using a master equation
technique.? In this technique, all the possible states of the
circuit are given by a set of coordinates n = (ny,nao,...)
that defines the number of excess electrons on each island.
For a series array of N junctions, the system state is given
by the (N —1)-dimensional vector n = (n1, ng, ...,nN—1).
Each n; can in principle be an integer number from —oo
to co. The system dynamics can then be described in
terms of a vector P; the elements P, give the probability
that the system is in state n, where n is an index for
the state vector n. The change of a state with time is
calculated by knowing the rates I',,,,, for an initial state
n = (ny,n2,...) to go to a final state m = (my, ma,...).
Thus, the master equation is

dP,
7=Zrmnpm—zrnmpm (6)
m m

which may be cast into a simple matrix equation

d
ZP=T-P, (7)
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where (T'),; = ['j; and (T')i; = — 3, T';; is the tran-
sition rate matrix. Because there may be several ways
in which the system can go from a state n to a state m,
each of the I';,,,, is a sum of the rates for these individual
processes.

Lowest-order perturbation theory, valid to order 1/ Ry,
gives the result in Eq. (2), which predicts that an electron
can tunnel across only one junction at a time. Averin and
Odintsov® have extended perturbation theory to calcu-
late rates to higher order in 1/Ryp. This higher-order per-
turbation theory shows that electrons can tunnel across
several junctions at the same time in a process called co-
tunneling. Single junction tunneling is a special case in
this general treatment. We consider here only inelas-
tic cotunneling where different electron states partici-
pate in each of the single-junction tunneling processes
that makes up the cotunneling event. Elastic cotunnel-
ing rates'* are expected to be negligibly small for typical
metallic junctions that would be used initially.

J
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D. Cotunneling

We may understand cotunneling by considering an ar-
bitrary long sequence of single-junction tunneling events
(j1, 32y -+, Jn), where j; is a number +1, ..., =N that repre-
sents a junction and the direction of tunneling. Because
of the linearity of the capacitive circuit, the change in
Coulomb energy AFE) from the initial state to the state
after the kth event is given by AE; = ZLI 6E;. The
change in energy §E; associated with each of the tunnel
events in the sequence is calculated from Eq. (4) given
the equivalent circuit parameters Q. and C,. After each
tunneling event the system is in a new state, with a new
distribution of electrons on the islands, and a new de-
termination of @, is required to calculate the change in
energy for the nezxt tunneling event.

We may diagrammatically represent cotunneling, the
intermediate states, changes in energy due to tunneling,
and the total change in Coulomb energy as shown in

Eq. (8).

event : Ji J2 Js
L. state : m— 8§ — 8y, —8 n
sequence (J1, j2,73) ¢ SE, SE, SEs . (8)
energy: O AE, AFE, AF;3

For the initial state m we set the energy equal to zero.
The first tunneling event j; in the process takes the
system to the intermediate state s;, with an associated
change in energy of §E;. The following events j, and
ja take the system through intermediate state ss to the
final state n, with changes in energy of §F> and 6Ej3.
The Coulomb energy of the intermediate states are given
by the initial energy plus the change in energy associ-
ated with the tunneling event; hence, the final energy is
AE3 = §Ey + 6E3 + 6 E;3 for the sequence (j1, j2,73). The
final energies AE3 of the permutations of the sequence
(41,72, 73) are all the same.

At zero temperature Eq. (2) shows that, if AE; > 0,
the tunneling event j; cannot occur. However, cotun-
neling considers transition rates for the state s; being a
J

I
virtual state. In this way, cotunneling causes electrons
to tunnel simultaneously across many junctions through
these virtual states. Transitions from any state n to any
other state m are thus allowed as long as the final state
is lower in Coulomb energy than the initial state (at zero
temperature). The quantum mechanical amplitude for
cotunneling is obtained by summing contributions from
the n! possible sequences involving that set of junctions.
We can refer to a cotunneling event by a tunneling con-
figuration {j1,j2,...,Jn}: the set of single-junction tun-
neling events.

The prediction for the cotunneling rate for a process
corgnposed of n single-junction tunneling events is given
by

re = 27 (B ) [T g2 )6 | AE —i‘ : ﬁf( ;) dwi ©)
h 12];11(27'-)2RT11 0 K En " i=1wz i=1 Wz) ' ’

where 6 is the Dirac delta function and S is a factor of
the tunneling matrix element given by

n—1 1
S = —. 10
2. 12 (10)
perm{j1,...,jn} k=1
Each permutation of the tunneling configuration
perm{j1, ..., jn} gives rise to a tunneling sequence (path)
with the intermediate energies 5 given by
2k
er = AEx + ) wi, (11)
i=1
where A E}, is the change in Coulomb energy after the kth
event in the sequence and wog 1 +way is the electron-hole
excitation energy of that event. The expansion parame-

[
ter of the cotunneling theory is Rx/Rr, thus requiring
that Rt > Rk.

Because the integration involves the Fermi functions as
well as the energy denominators in Eq. (10), Eq. (9) can-
not be explicitly integrated except for the case of n = 2
at zero temperature.® For the two-junction case, the re-
sult gives a logarithmic divergence as AE; approaches
zero, which corresponds to the voltage approaching the
threshold of single-junction tunneling. The divergence
arises from a breakdown of perturbation theory and is
unphysical. At present, theories are being developed
to remove this logarithmic divergence and to calculate
the cotunneling current above the threshold voltage for
single-junction tunneling. In this paper, an approxima-
tion described below will remove this divergence.
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An approximation, introduced in Ref. 9, valid for final
energy AE, — 0 is obtained by setting the w terms in
the energy denominators to zero. In this approximation,

n—-1 1

S= —_
perm{j1,...,jn} k=1 AEk

(12)

and the integrals in Eq. (9) involve only the Fermi func-
tions. In this form the integrals can be calculated an-
alytically. A better approximation assumes that the
energy difference AE,, is, on the average, equally di-
vided over all the electron-hole excitation energies. Thus,
w; = —AE, /2n, and Eq. (11) becomes

Ex = AEk - %AE‘n. (13)
As when using Eq. (12), the integrals over w in Eq. (9)

can be solved and the result for arbitrary temperature
:.15
is

oo 2n 2n
Fa(AE,,T) = / 5 (AEn - Zwi) (H F(wi)duws )
-0 i=1 i=1

iy [(27rkBT i)+ (AEn)"’]

(2n —1)!
-AE,
. 14
1 —exp (AE, /kgT) (14)
For zero temperature the expression reduces to
_ (_AEn)2n—1 3
Fo(AE,,0) = 1] O(-AE,), (15)

where ©(z) is the step function, and states that a co-
tunneling process can proceed only if it is energetically
favorable. At finite temperature, it is possible for cotun-
neling to occur with positive energies of order kgT, as is
possible for single-junction transitions.

We further justify the approximation used in Eq. (13)
by comparing in Fig. 3 the ratio of the cotunneling rate
obtained using the approximation Eq. (13) (solid line)
and the rate obtained by setting the excitation energies
equal to zero (dashed line) to the full result for the co-
tunneling current for two junctions at zero temperature,
Eq. (32) in Ref. 9. We have defined V; as the voltage for
onset of single-junction tunneling. The expression using
Eq. (13) closely matches the full result for voltages be-
low 0.9V;, where the approximation differs from the full
result by less than a factor of 2. When the electron-hole
energies are set to zero in the energy denominator, as in
Eq. (12), a much less accurate approximation is obtained.

Because the cotunneling theory is based on the as-
sumption that the intermediate states are energetically
forbidden, we will consider only cotunneling sequences
with intermediate states that cannot be reached by lower-
order tunneling. A lower-order process in this context is
meant to be a subsequence of the tunneling sequence con-
sidered. At zero temperature this implies that sequences
are not included when the Coulomb energy of an interme-
diate state AF; < 0. Similarly, at finite temperatures,
we want to exclude sequences with a nonzero rate from
the final state to an intermediate state. We approximate
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FIG. 3. The voltage dependence of the ratio of two ap-
proximations for cotunneling to the full rate given by Eq.
(32) in Ref. 9 through two junctions. The threshold voltage
for single-junction tunneling is V;. The approximation ob-
tained by setting the excitation energies equal to zero is the
dashed line. The approximation we use distributes the final
energy equally among the excitation energies and is the solid
line. The ratios are computed at zero temperature.

this condition by requiring all intermediate states to also
have higher energies than the final state.

Hence, in this paper we use the following expression
for the transition rate for a cotunneling event of order n:

2r (v1 Rk 2
) — = (Hl m) S°Fn(AE,,T),  (16)
=

where we have defined

s= %

|
—k
perm{ji1,...,jn} \k=1 AE nAEn
x©(AE), — max(0, AE,.))).

17

An a posteriori justification for this approximation
is that detailed balance is exactly satisfied; that is,
Fpmon = exp[-AE, /kgT]T'ym for all possible tran-
sitions. Thus, we think that the energy denominator
adopted in Eq. (13) and the energy cutoff defined by the
© function in Eq. (17) are good approximations.

Because the contribution of a tunneling sequence is cut
off abruptly by the © function when an intermediate en-
ergy crosses the threshold, our prediction for the rate is
a poor approximation near threshold. We return to this
point later in the paper and show that this approxima-
tion does not significantly affect our final results for the
accuracy of the pump.

The rate for single-junction tunneling, Eq. (2), is ob-
tained by setting S = 1 and n = 1 in Eq. (16). Hence
we may describe all tunnel processes under one formal-
ism, the only difference being the order of perturbation
theory. This allows a universal approach in the calcula-
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tion of tunneling thresholds, rates, and currents, both in
theoretical predictions and in simulations.

III. COMPUTER CALCULATION

‘We have developed a computer program using the mas-
ter equation to calculate the current in an electron pump
circuit. To proceed with a practical calculation, we must
limit the number of states considered as well as the num-
ber of transitions. We must limit the state space to a
finite number of number of electrons per island, say M_
to M, which reduces the number of states considered to
(N —1)(M+—M_+1) states. We show in Appendix A that
it is possible to verify that the size of the state space is
sufficient.

The numerical problem is further reduced by limiting
the number of tunneling configurations for the transi-
tions between states. To do this, we will limit the order of
perturbation theory by not considering second-order pro-
cesses in a single junction, that is, processes that transfer
two electrons simultaneously through the same junction.
We can eliminate these types of processes because they
are energetically favorable only at bias conditions very
far from those to be considered for the pump circuit.
This limits the order of perturbation theory to N and
the number of tunneling configurations to 3%V — 1.

A further reduction, which may be adequate for some
applications, is obtained by considering only tunneling
configurations in which all electrons tunnel in the same
d}\t;ection. This reduces the number of configurations to
oN+L,

To integrate the master equation, Eq. (6), we must cal-
culate the transition rate matrix. This is done system-
atically by considering all possible tunneling sequences
from all possible initial states in the chosen state space.
The number of such sequences is determined by the num-
ber of tunneling configurations, multiplied by the num-
ber of possible permutations for each configuration. The
number of tunneling configurations is determined by the
number of combinations of participating junctions and
directions of tunneling.

From an initial state n; we calculate all the pos-
sible tunneling sequences. Given a tunneling se-
quence (Ji,j2,...) we then calculate the Coulomb ener-
gies for each of the intermediate states in the sequence
(AE,AE,,...) as described in Sec. IID. If one of these
energies, say AFEy, becomes less than zero the sequence
is broken off, because the rates for all higher-order tun-
neling processes vanish in the approximation used here.
Hence, AE) becomes the final energy for the process of
order k. We may then determine the final state ny from
the new distribution of electrons and calculate the ma-
trix element for this sequence s(j1, j2, ..., jkx) from the in-
termediate energies €1, ...,€x—1, Eq. (13). We then add
s(j1, 2, -, Jk) to S for the configuration {ji,j2, ..., jx}-
When all possible sequences have been calculated, we
have then summed over all possible permutations of the
configuration. The rate is then calculated from the
square of S, the order k of the process, and the total
change in energy AEy. We then compute [y, , from the
sum of the rates over all configurations that take state n;
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to state ny.

The currents through the junctions are calculated from
the transition rates by keeping track of the transitions,
their direction, and which junctions they use. Consider,
for example, the configuration {1,—2,4} corresponding
to a third-order cotunneling event. The rate IV of this
process depends on the initial state n. Given that the
system is initially in state m, there is a current el in
junctions 1 and 4, and a current —el” in junction 2.
We can thus keep track of the currents in N vectors
~1s---, YN, one for each junction, with the components
of each vector indexed by the initial states. These vec-
tors are calculated from the sum of the tunneling rates
by the accounting described above. The total current is
found by weighing the currents through the junctions by
the probabilities of each of the initial states being occu-
pied. The instantaneous current through junction ¢ then
becomes

Ii(t) = e vi(t) - P(2).

Details about algorithms and numerical techniques
used in the program are given in Appendix A.

(18)

IV. ANALYTICAL PREDICTIONS

A. Array without charge biases

Although a computer program is able to calculate co-
tunneling currents for specific situations, we find it in-
sightful to predict currents by analytical means. These
predictions indicate in a general way what the optimal bi-
asing conditions for a device should be. We consider the
ideal pump circuit, Fig. 4, in which all junction capaci-
tances are equal and the capacitance from the islands to
ground are neglible, so the gate sources reduce to charge
bias sources. Although this is a mathematical idealiza-
tion of an experimental circuit, this symmetric circuit is
useful because it allows a simple prediction for the accu-
racy. In a final design step, we can then use the computer
program to predict the characteristics of a real junction
circuit including all of the stray capacitance elements.

We first consider a linear array of N tunnel junctions
with zero bias charge applied to each of the junction is-
lands, as shown in Fig. 5(a). We are interested first in

FIG. 4. Equivalent circuit of an idealized array of tunnel
junctions with Cg; — 0. The gate charge sources represent
the induced charge Cy;U,; and the excess electrons n; on the
islands between the junctions. Also shown is the sign conven-
tion for charges and voltages.
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FIG. 5. The equivalent circuit reduction of a voltage bi-
ased array that already contains a tunneling event. Figure (a)
is the circuit model of N tunnel junctions with capacitance
C connected in series with a voltage source U, (b) the equiv-
alent circuit for the junction labeled 7 in the case of junction
j having already tunneled in the forward direction, (c) the
circuit after using the Norton equivalent of a junction j as
well as the series combination of the capacitances from the
other junctions, and (d) the final Thevenin equivalent circuit
which has an external charge Q; = (UC +¢€)/(N —1) and an
external capacitance Cz; = C/(N —1).

finding an expression for the current-voltage character-
istic. The cotunneling expression Eq. (16) requires the
Coulomb energy after n junctions have tunneled. Here,
as in the preceding section, we assume that a given junc-
tion tunnels only once in a cotunneling sequence. We
first consider the Coulomb energy change when junction
% tunnels, assuming that junction j has already tunneled,
as shown in Fig. 5(b). The equivalent circuit in Fig. 5(c)
is obtained by noting that an electron tunneling across
the jth junction has as its Thevenin equivalent a volt-
age source e/C connected in series with that junction,
which is then equivalent to a voltage across the entire
array of U 4+ e/C. Figure 5(c) also shows that the N — 1
capacitors external to the ith junction are equivalent to a
capacitance C; = C/(N —1). Figure 5(c) has its Norton
equivalent to Fig. 5(d), from which the Coulomb energy
change for a tunneling event in junction i can be calcu-
lated using Eq. (4) to be

e e e C
e (5-v+ox=)
e N-1
—'NE(CT—UC—C). (19)

From the linearity of the circuit, we can also calculate
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the external charge of junction ¢ when m other junctions
have tunneled. The change in energy when junction %
tunnels after m other junctions have already tunneled is

N-1
2

6Ems1 = — (e

NG —UC’—me). (20)

Thus, the total Coulomb energy change after n junctions
have tunneled is

AE, = ij SE;

=1
e N-—-n

The total energy change AFE, is independent of the
order or index of which junctions have tunneled because
of the symmetry of the circuit. This greatly simplifies
the analytical predictions.

Equation (21) can the be used along with Eq. (16)
to predict the cotunneling current. We calculate the
transition rate from the state no = (0,0,...). The N-
cotunneling of one electron tunneling through every junc-
tion gives a final state equal to the initial state. The total
energy change, Eq. (21), becomes

AENn=—eU, (22)

and the intermediate energies using the approximation of
Eq. (13) are

Ek = AEk - %AEN

=%k G# —UC) +%—ffg
€2

~2NC

Since there are N factorial tunneling sequences for a

configuration of N junctions, and all give rise to the same

intermediate energies, we can readily calculate S from
Eq. (10)

k(N — k). (23)

1
N-1

_ 2NC N 1
(N-1Y(N-1)!
_(2NC\¥' N
- (N -1
Because the state ng is the only occupied state in
this calculation, the current from this transition is I, =

elngne With I'ngpn, calculated from Eq. (16). The current
is then given by

N2N+1 RK N
L= w2(N=D[(N — 1)]]2(2N — 1)IN (Tz;)

2N-1
y (_UE) AN, (25)

(24)

[

where we have defined the normalized version of F,, by
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F.(AE,,T)
(—AE,)2n-1

with ¢t = kgT/AE,. At zero temperature, F, reduces to
the step function ©(—AEy,), cf. Eq. (15).

Equation (26) is equal to Eq. (28) in Ref. 9, because
in the approximation used here, Eq. (13), the interme-
diate energies become independent of the bias voltage,
and hence equivalent to using the low voltage limit in
the quoted equation. Our expression for the intermedi-
ate energies is hence a justification for the use of Eq. (28)
in Ref. 9 also for finite voltages.

However, cotunneling of orders less than N can occur
at large enough finite voltages. From Eq. (14), a cotun-
neling process of order m occurs when the energy AE,, is
less than or equal to zero at zero temperature. Equation
(21) shows that AE,, < 0 when

UC _N-m
2
e 2

Thus, as the voltage increases, lower-order cotunneling
processes are allowed. Within our approximation, the
higher-order cotunneling simultanously vanishes. When
cotunneling with order m < N occurs, the system makes
transitions to final states different from the initial state
ng = (0,0,...). We find from computer solutions of
the full master equation that after the m-order cotun-
neling events, the system makes a series of complicated
secondary transitions to many other states through 1-
junction to (N —m)-junction cotunneling transitions, but
eventually makes a transition to the state mg. In this
case, the secondary transitions bring the system back to
the initial state by electrons tunneling in the same direc-
tion as in the initial m-order cotunneling process. The
rates of the secondary processes, weighted by the occu-
pation probability of their initial states, are much faster
than the initial process. Therefore, the initial m-order
cotunneling rate predicts the total current through the
device. Since there are (N) possible configurations of
m junctions tunneling out of the (0,0, ...) state and all
configurations give rise to the same rate, the current for
these transitions is

—_ (N pm
I+ =€ (m) T y (28)

Falt) = (2n —1)! (26)

: (27)

where I'™) is the m-order cotunneling rate

rim) — min (Rxc/Rr)™
- 772(m—1)[(m -DI22m -1)IN RgC
2m-—1
< (UTC SpL ”‘) Flt) (29)

In Fig. 6 we plot the zero-temperature prediction of
Eq. (28) for a pump with five junctions along with the
results of the computer program for parameters Ry =
20Rk and Cy = 10~3C. The calculated values and the
result of Eq. (28) are in excellent agreement, with the
worst agreement occurring for the lowest-order processes.
The difference is due to the time spent in relaxing af-
ter low-order cotunneling processes, as well as the effect
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FIG. 6. Current-voltage characteristic of the voltage bi-

ased array without gate charge biases. The solid lines are
the predictions from Eq. (28) and the points are from the
full computer simulation. The parameters are R = 20Rk,
Cy =1075C and T = 0.

of the finite gate capacitances. The discontinuities arise
from the © function approximation in Eq. (17).

This comparison shows that it is possible to calculate
the current by simply considering errors from ideal be-
havior; that is, only the current due to the unwanted
processes. This approximation works because the details
about how the system relaxes from excited states induced
by cotunneling is unimportant. We therefore use this ap-
proach to calculate the current in the full pump circuit.
The results from the full calculation in the computer pro-
gram can then be used to validate this approach by com-
parison.

B. Array with gate sources

The circuit we consider is shown in Fig. 2. A series
array of N small junctions is connected to a bias volt-
age source U. Each island between two junctions has
a gate voltage source which is connected through a gate
capacitor. We simplify the circuit by considering gate ca-
pacitances much smaller than the junction capacitances;
hence, each gate source reduces to a charge source of mag-
nitude Cy;Uy;. Furthermore, we assume that all junction
capacitances and resistances are equal and given by C
and Rp. The resulting circuit is shown in Fig. 4, as well
as the sign conventions for charges and voltages. We call
the direction of tunneling “forward” toward the grounded
side of the circuit and “reverse” toward the bias source,
and we symbolize the event of junction j tunneling in
the forward or reverse direction by +j. Furthermore, we
perform the calculations using positive units of charge.

We derive the equivalent external charge for a junc-
tion by first calculating the contribution from island
1, which from Fig. 4 has a total charge bias of Q; =
nie + Q;. Here Q; = UyiCy; is the gate charge bias
and n; is the number of electrons on island i. From
the reduction shown in Figs. 7(a)-7(c) we calculate that
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FIG. 7. Equivalent circuit used to calculate the contribu-
tion of a gate charge @ to the external charge on junction k.
Figure (a) is the circuit, (b) the circuit after using the Norton
equivalent of the charge source in parallel with a capacitance,
and (c) the final reduction to a circuit equivalent to Fig. 1(c).

the charge Q; contributes Q; i/(N — 1) to the external
charge Qg of junction k for k > i4; for k < 4, we find
Qi i—N)/ (N —1). Similarly, we find that the blas volt-
age contributes UC/(N — 1) to the external charge of all
junctions. The external capacitance for all junctions is
given by C; = C/(N —1). Hence, the full expression for
the external charge of junction j is

1 (&
Qqzj = ﬁ(Zi(Qi+em)
e —

i=1

i>1

N-1
+ Z (1 — N)(Qi +eny) +UC'> . (30)

i=j

]

i<N
The underbraces indicate that the first sum does not ap-
ply to junction 1 and the second sum does not apply to
junction N.
The external capacitance and charge is then used with

Eq. (4) to calculate the change in energy due to a tunnel-
ing event in junction j in the forward or reverse direction

2 _ .
%VN—CB (1 ¥ 2%‘1) . (31)

An important special case is illustrated in Fig. 8. An
antisymmetric bias charge is applied to the island around
junction j, with +@Q on island 7 — 1 and —@Q on island
j. This bias configuration is equivalent to a charge bias
around junction j, also shown in Fig. 8. The contribution
to external charges is then easily shown to be

§E* =
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FIG. 8. The equivalence of an antisymmetric charge bias
to a charge bias directly across a junction.

Qzi = N=-1' i # J, (32a)

Q:L‘j = Q~,

where the contributions are independent of the position
in the array of both 7 and j. Hence, biasing junction j will
also bias all the other junctions, but with a magnitude
reduced by a factor of —1/(N —1).

A junction tunneling event is equivalent to a charge
bias of magnitude e around that junction. Therefore,
the effect of tunneling is given by Egs. (32a) and (32b)
with Q replaced by —e for a forward transition and by +e
for a reverse transition. Because the tunneling of a junc-
tion changes the external charge in the other junctions
independently of their position in the array, the calcu-
lation of Coulomb energies for an arbitrary cotunneling
sequence is not difficult.

(32b)

V. THE ELECTRON PUMP

Figure 2 shows an equivalent circuit of the electron
pump. As illustrated in Fig. 9, the pump is biased so
that a series of pulses to the island gates cause single
electrons to sequentially tunnel through the junctions.
We will first discuss some of the conditions for optimal
bias and argue that the pulsed biasing scheme shown in
Fig. 9 meets these conditions. We will derive the optimal
bias for the voltage across the pump U equal to zero and
assume that the optimal biasing changes little for finite
U.

Quof _\/
o

t
I S ; >
+ t >

0 2/(Nf) 4/(Nf) 1/t

FIG. 9. Time dependence of gate voltages for the elec-
tron pump. The operating frequency is f. The gate voltages
satisfy the optimal gate biasing Q; + Q;+1 +e = 0.
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We break the gate sequence into N parts. The jth part
of the sequence will transfer an electron through junction
j, from island j — 1 to island j. We call junction j the
biased junction and all the other junctions unbiased.

A. Optimal biasing

At the beginning and end of a part of the gate se-
quence, we want the electron to be optimally stable on
islands j — 1 and j. The most stable bias configura-
tion is obtained when AEli is maximum, or Q,; = 0
for all junctions. At the beginning, this bias configura-
tion is obtained by setting the gate charge Q;—; = —e
and Q; = 0 for ¢ # j. At gate 7 — 1 the total charge
is Qtot = Qj-1 + e = 0, as is the charge on all other
islands, thus satisfying Q;; = 0 for all 7. At the end of
this part of the gate sequence, the electron is on island
j. If Q; = —e and all other gate charges are equal zero,
we again have the maximally stable state. The question
of optimal bias now reduces to how the bias charges are
changed from the beginning to the end of this part of the
sequence.

Equation (32a) predicts that when a cotunneling event
occurs, the external charge on all the unbiased junctions
changes by e¢/(N — 1). Because the tunneling event is
stochastic, we cannot obtain Q,; = 0 for the unbiased
junctions both before and after the tunneling. The most
stable situation is to have the external charges of the
unbiased junctions change from Qz; = —e/(N — 1) to
-é-e /(N — 1) when the biased junction tunnels, which will
occur near Qg ; = e/2. This situation can be accom-
plished by setting Q;—1 = Q(t) — e and Q; = —Q(¢),
where Q(t) varies from 0 to e from the beginning to
end of the part of the gate sequence, and all other gate
charges equal zero. This biasing gives Q;—1 + Q; = —e.
If Q;—1 + Q) is different from —e, say —e+ Q’, there will
be an additional shift of @, of the unbiased junctions
coming from @', which moves the system away from best
biasing [see Eq. (30)].

The operation of the pump is thus equivalent to the an-
tisymmetric biasing depicted in Fig. 8. When Q) is varied
from O to e, a tunneling event occurs in the biased junc-
tion and an electron is transferred from island 7 — 1 to
island j. This tunneling event is equivalent to a change
in the charge bias Q(t) — Q(t) — e. Because only anti-
symmetric bias configurations need be considered, only
Egs. (32a) and (32b) are needed to compute Q.

The derivation above is independent of which part of
the gate sequence we considered. We need only to cal-
culate the error current for one part of the sequence and
then multiply by N to get the total error.

The sequence of triangular wave pulses shown in Fig. 9
is experimentally easy to implement and near optimal.
We think that other waveforms which satisfy the condi-
tion Q;-1+Q; +e = 0 can further improve the operation
of the pump.

B. Single-junction tunneling

The biasing scheme derived above has simplified the
gate biasing so that only the single variable @ need be
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considered. The junction bias voltage U then maps the
complete biasing of the device to the two-dimensional
space of @ and U. We now compute thresholds and rates
for all processes similar to what was done in Sec. IV A.
However, since @Q contributes differently to the biased and
the unbiased junctions, we must consider the tunneling
in each of these two junction types separately.

With a charge bias @ placed across the biased junction
7 and a voltage U applied to the entire array, the external
charges are

- ucC
Qu="22"C, g (332)
e

We compute the region in the Q-U plane for which
the system is stable with respect to single-junction tran-
sitions; stable means in this context that single-junction
tunneling events are energetically unfavorable. This is
found by requiring that —e/2 < Q, < e/2 for all Q.
Hence from Egs. (33a) and (32b) we obtain the condi-
tions for @Q and U in which no tunneling can occur for
the biased and unbiased junctions respectively

N-1 N -1

Q—e <UC<Q+e 7 (34a)
(1—N)Q—eN2_1 <UC<(1—N)Q+eN2_1.
(34b)

These equations give the conditions before the biased
junction has tunneled. After tunneling, the conditions
are found by replacing @ with @ — e in Egs. (34a) and
(34b), as explained in Sec. V A.

Because the tunneling of the biased junction can be de-
scribed by a shift in Q of —e, we think that the conditions
for tunneling are best described graphically as shown in
Fig. 10, where we have solved Egs. (34a) and (34b) for
values of Q) between —e and e. Before the biased junction
tunnels, the right origin of the @ axis is used. After the
biased junction tunnels, @ is shifted by —e and the left
origin of the @ axis is used. The lines labeled +; rep-
resent the threshold for an electron tunneling through
the biased junction, one line for each direction. The lines
labeled +i similarly give the thresholds for any of the un-
biased junctions. The solid lines indicate threshold lines
before the biased junction has tunneled, the dashed lines
after tunneling. The shaded area represents the stability
region where it is energetically unfavorable for an elec-
tron to tunnel through any single junction.

Because the pump is used with a constant voltage U,
the operation of the device is then described by a trajec-
tory in the Q-U plane of a line parallel to the Q axis. The
trajectory starts at Q@ = 0 on the U axis and moves to the
right. When the biased junction tunnels, the trajectory
jumps by the amount e to the left. The trajectory ends
at Q = e, which is again on the U axis.

We see that at U = 0, the threshold for tunneling
for the biased junction is Q = +e/2. The value of this
threshold changes with U. The threshold lines of +j and
—j are displaced from each other in Q by e, as expected.
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\\ Before tunneling =exp _N -1 1 AQ_ . (38)
N\ 0 L 2N? RrCf \ e
\ [
G e/2 e Q We consider here that an error occurs if junction j has not
\ tunneled when Q reaches the final value e; Appendix B
\ discusses this situation in more detail. As will be shown
Y in the next section, cotunneling contributes to the er-
After tunneling AN i rors before @ reaches e. The probability of not having
[ \1 switched when reaching Q = e is
e e Q

FIG. 10. Threshold lines for single-junction tunneling
with gate bias Q and voltage bias U. The origin of the Q axis
shifts by —e when the biased junction tunnels; the thresh-
old lines are correspondingly solid and dashed. The threshold
lines for the biased junction are labeled +j, and for the un-
biased junctions +i. The stability region for single-junction
tunneling is shaded.

Errors in the pump cycle occur when the trajectory enters
a region where unbiased junction transitions are possible.
This happens when |U| > U, = (¢/C)(2N% — 3N +
2)/2N.

C. Decay of initial state

Because the biased junction does not switch immedi-
ately upon crossing its threshold, errors in the pumping
of electrons may arise from operating the device at too
high a frequency. We calculate this error for the triangu-
lar gate voltages which are depicted in Fig. 9.

At zero temperature, the biased junction j tunnels af-
ter it reaches its threshold. The change of energy and
the rate for tunneling are

e(N -1) e ucC
NC (Q 2+N—1>’ (35)
_AE N-1 e UC
W _ _e, Vo
T =28, “eNmrC (Q 3TN 1) » (36)

where Q varies from the threshold value e/2—UC/(N —1)
to e. The probability of remaining in the initial state
satisfies the rate equation

AE =

dP
S = —T)P(),
The pump cycle of Fig. 9 gives dQ/dt = eN f, where f
is the pumping frequency. We introduce AQ = Q —e/2+
UC/(N —1) as the distance in Q from the threshold line,
and integrate Eq. (37) to obtain

P(0)=1. (37)

N-1 (1 ve \*
P=exw [_2N2RTCf (5 T - 1)) ] (39)

which for U = 0 is equal to the result in Sec. 5.2.3.2 of
Ref. 10. The error rate of the pump increases exponen-
tially with frequency.

D. Cotunneling

The cotunneling calculation is simplified because all
the unbiased junctions behave equivalently. Thus, the N
junctions of the array can be grouped into two classes,
the biased junction and the unbiased junctions. We then
can group cotunneling processes by class and direction.

We will not consider processes where more than one
electron tunnels simultaneously through the same junc-
tion. Nor will we include processes involving n unbi-
ased junctions tunneling in one direction together with
m unbiased junctions in the opposite direction. The
biasing conditions of these processes are found to oc-
cur only at extreme values of the biasing parameters
|Q —UC| > (N —1)e. Thus, they are not important.

First we compute when cotunneling of order n can
occur. The final energy, which depends only on which
junctions are tunneling, must thus be less than zero. We
can break the types of processes into six distinct groups:
{+1 +(n_1)}1 {_1 +(n_1)}7 {+$ _(nﬁl)}v {_7 _(n_l)}’
{0, +(n)}, and {0, —(n)}. Here we have labeled the direc-
tion of the processes by the sign of the tunneling event.
The first entry represents the biased junction, the sec-
ond represents the number of unbiased junctions, and
zero symbolizes that the junction does not participate.

We first consider the four types of processes in which
all junctions tunnel in the same direction. We calculate
the change in energy 6Fj for the kth tunneling event
+7 after the sequence (j1, j2, ..., jk—1). Since a tunneling
event in any junction, biased or unbiased, results in a
change in the external charge of magnitude e/(N — 1)
in all other junctions, the contribution to the external
charge after kK — 1 tunneling events is e(k — 1) /(N — 1) to
the kth junction. Using Egs. (31), (33a), and (33b), we
find

s € B -Q+UC , ,,
SE; —ZNC[N 1;2(——-——6 +(k-1))],

(40a)

unbiased junction,
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. 2 —

2NC e

b

+(k — 1))

biased junction. (40b)

Because the final Coulomb energy is independent of
the sequence of tunneling events, the final energy AE,, is
the sum of the individual changes given in Egs. (40a) and
(40b). For example, in the case of a tunneling configu-
ration of n unbiased junctions tunneling in the forward
direction, the {0, +n} process, we find

n
AE, =) 6B}
k=1

_€én (Q-UC N-n
——N—C;( . + 5 ) (41)

This process occurs when AE, < 0, which gives

o Q N-n
U;> |:-;+———-2 ] (42)

This defines a threshold line for the {0, +(n)} cotunnnel-
ing process, similar to those found in Sec. VB for the
single-junction tunneling events. Similar results are
found in this manner for the other three cotunneling pro-
cesses, {0,—(n)}, {+,+(n—1)}, and {—,—(n — 1)}

In the case of mixed-direction processes, {4+, —(n—1)}
and {—, +(n — 1)}, we obtain

; 2 N-1 vucC
SEEN =§'§F5 [N—lqﬂ(g—__)?i——)]’

j1 = biased, (43)

. 2 —
SETI* = — [N—li2(—Q:—U-gfcl:F(k—2)>],

2NC

Jk # biased. (44)

The change in Coulomb energy for n-order tunneling be-
comes
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AE, = =%
n-m 4 (n—1)+n(N—n)

e

:F((N+n—2)Q—(n—2)UC)

(45)

We find from Eq. (45) that these processes occur far from
the bias region that is used when normally operating the
electron pump. Thus these processes will not be consid-
ered further in this paper. In this way we have reduced
the number of tunneling configurations that need to be
considered to only 2V+1.

Hence, for each order of cotunneling, only four thresh-
old lines are important. These results are summarized in
Table I.

Figure 11 shows the threshold lines in the Q-U plane
for an N array. The labeling of the lines is placed on the
side where the process is possible. The calculation above
assumes an initial state where junction j is biased and the
electron is on island j — 1. However, the threshold lines
are easily calculated for when the electron has tunneled
by simply replacing Q with @ — e in Eqgs. (40a)—-(45) and
in Table I. As is shown in Fig. 10, we can therefore depict
the @ biasing after tunneling with a shift in the origin of
the Q axis.

There are regions in the biasing plane where several
distinct types of processes are possible. For example, at
the point labeled A in Fig. 11, tunneling through junc-
tion j and 2-cotunneling are both allowed, and hence
compete. This possibility is important as it produces
errors, and it will be explored below.

The graphical description of the biasing in Fig. 11 is
extremely useful for predicting what voltages U give low
error rates. Because error rates are lower for higher-order
cotunneling processes, we want to operate in regions of
the Q-U plane with the highest-order processes. As de-
scribed in Sec. VB, the operation of the pump is given
by the trajectory of a line parallel to the Q axis. The
biased junction tunnels very close to the threshold line
{1,0} for small pump frequencies. Point P in Fig. 11
shows that at small positive voltages, there is only co-
tunneling of order N before the biased junction switches.
However, after the biased junction switches, the bias is
at point P’ and cotunneling of order N —1 is possible. In
contrast, at small negative voltages cotunneling of order
N — 1 occurs before the switching. Thus, it is not pos-
sible to avoid cotunneling of order N — 1. If we require
that at most cotunneling of order N — 1 is allowed, the
bias voltage is restricted to |U| < (e/2C)(N —1)/N.

TABLE 1. Regions in the Q-U plane for the four dominant types of cotunneling errors. The
number of junctions is N, the order of cotunneling is n, and the range of Q is 0 to e.

Process allowed Type

U > [(1=N/n)(Q/e) + (N —n)/2](e/C) {+,+(n-1)}
U > [(Q/e) + (N —n)/2](e/C) {0,+(n)}
U < [(1-N/n)(Q/e) — (N —n)/2](e/C) {=—(n-1)}
U <[(Q/e) — (N —n)/2](e/C) {0,—(n)}
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FIG. 11. Threshold lines for cotunneling, drawn similarly
to Fig. 10. The lines are labeled with the type of process and
are placed on the side of the threshold line where the process
is allowed.

E. Cotunneling rates

We can calculate the cotunneling rates from the total
change in energy and the intermediate energies. We first
consider the cotunneling processes that involve only un-
biased junctions, that is, processes of type {0,£n}. We
define |AQ| = |Q — Qr|, where Qr is the threshold value
for the charge bias and AQ is positive above threshold.
The total change in energy for the cotunneling event is

e
AE{O,:tn} = ——ﬁEnAQ (46)
The intermediate energies

k
ek =AEB0,1k} = ~AE{0,4n)

k k
= NC (AQ e— +e—)+

k(n k) (47)

e

NanQ

2N 2NC
do not depend on AQ and are the same as Eq. (23).
These energies are used in Eq. (17), and noting that all

permutations give rise to the same intermediate energies,
we find

S = (2]6\20)71—1 (nfl)!. )

The rate for the process as predicted from Eq. (16) is

13419

n2n+1
72n=D[(n — 1)2(2n — 1)IN

n 2n—-1
B (L) m. @

In a similar fashion we derive the cotunneling rates for
processes which involve the biased junction. However,
now the intermediate energies will depend on the permu-
tation of the tunneling configuration. A process of order
n has sequences with n possible positions of the biased
junction. The total change in energy is

AE, = AE{4 +(n-1)}

T{o,4n} =

N N-n
If we again define AQ as the distance in Q above the
threshold, we find

AE, = —-Fec-(N —n)AQ. (51)

The Coulomb energy of the kth intermediate state de-
pends on whether the biased junction has tunneled. For
the two cases we find

AE(+ +(e-1)) = TRgk{(l - FlQ -UC

AEy = +§(N - k)},
AEq +r) = £55k[Q —UC £ §(N — k)],
(52)
and the intermediate energies are
ok (25t + NQ),
ek = (53)
wok (22 +NQ (1 - 1))

We calculate the contribution to S for a process of or-
der n and for the biased junction in the ith position. We
sum over all the permutations of the unbiased junctions
and find

NC n—1 fi—1 1
5= (%) (I e
Mmrer) @

k=i

We must also sum over i, but only the terms that have
positive Coulomb energy of the intermediate states [Eq.
(52)]. Hence the expression for S becomes

i 8S. (55)

= AE; >0
The expression for the rate is

. 2 nn+l
F{:f:,:i:(n—l)} = [S(Q/e)] m2(n—1) [(n _ 1)']2(271 — 1)'N
2n-1
BB (2D w9

with
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~ n—1)! 1
sw="2 S | s

i:AE; >0 é:l 2Nq

v

i>1

X H k+(l—~,;)2Nq

-~
i<n

(57)
F. Leakage and switching errors

We name cotunneling processes that occur inside the
stability region (the shaded region in Fig. 11) “leakage
errors,” and those that occur outside “switching errors.”
The distinction is important because relaxation processes
can cancel the switching errors, and the sign of the error
current depends on the type of process.

The state of the pump is stable with respect to single-
junction transitions inside the stability region. However,
cotunneling causes transitions out of that state, which
then lead to other transitions that eventually return the
system back to the initial state. We will name these error
processes “leakage errors.” The net result of this error
process is to transfer an electron through the entire array.

The biasing must eventually move @ outside the sta-
bility region so that the biased junction can tunnel. How-
ever, a competition then exists between the desired pro-
cess and cotunneling, both of which result in an elec-
tron being transferred to the next island. Cotunneling
most often causes an extra electron to transfer through
the entire array, so an error is produced. These paths
which switch to the new state through cotunneling and
not through the tunneling of the biased junction will be
named “switching errors.”

Leakage errors cause the system to relax to the initial
state by a combination of normal tunneling and cotun-
neling events. The direction of the relaxation is the same
as the initial leak due to energy considerations. As in
Sec. IV A, relaxation is fast compared to the initial co-
tunneling, so the current is given by the rate of the ini-
tial cotunneling. The error current is +Nchel'eax(@, U),
where the number of channels N, is the number of possi-
ble combinations of unbiased junctions that participate.
Hence, No, = (N; ‘) for processes {0,+n}, and Ng, =
(N-1) for processes {£,£(n — 1)}. A charge error of
+ Ngheljeak dt will occur in a time dt, where the sign is
given by the direction of the cotunneling.

Switching errors must also consider how the system
relaxes to the new state with the electron on the next is-
land. Two types of cotunneling errors can compete with
the wanted transition {1,0} of Fig. 11. One type {0, —n}
involves only unbiased junctions and transfers electrons
in the opposite direction with respect to the wanted tran-
sition. The second type {1,n — 1} involves the biased
junction and gives the desired transition, but also brings
extra electrons partly through the array. We derive in
Appendix C that the relaxation may reset the partial er-
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ror caused by the cotunneling. In a first approximation
we will not consider the resetting processes, but assume
for this type that it always produces an error.

VI. OPERATION OF AN N-JUNCTION PUMP

A. Cotunneling errors

We show in Fig. 12 the threshold lines of the N-
junction pump for small U. We examine the operation of
the pump in the voltage interval —(N—2)/2N < UC/e <
(N — 2)/2N where at most cotunneling of order N — 1
occurs. We again assume a triangular waveform for the
gate voltages as shown in Fig. 9. The calculations car-
ried out below can easily be generalized for an arbitrary
waveform.

We first consider a positive voltage. The intersections
of the trajectory of the charge bias with the threshold
lines are labeled in Fig. 12. We list the main cotunneling
errors.

A-B: Leakage of order N in the forward direction.

B-C: Leakage of order N in the forward direction
weighted by the probability P(t) that the electron has
not switched.

C-: Switching error of order N —1 in the reverse direc-
tion weighted by the probability P(t) that the electron
has not switched.

B’-C’: Leakage of order N —1 in the forward direction
weighted by the probability 1 — P(t) that the electron has
switched.

C’'-A: Leakage of order N in the forward direction

again weighted by the probability 1 — P(t) that the elec-
tron has switched.
The total error charge can be calculated by summing the
error currents from the five error regions and multiplying
by a factor of N to account for the total error for the N
cycles

UCre

By

,
YO

N N
v

5 :
S
EROE!
>

{-1,-(N-3)] %

FIG. 12. The threshold lines of Fig. 11 around U = 0.
Bias trajectories for the operation of the pump are lines par-
allel to the Q axis and are shown for positive and negative
voltages.
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B c
Qv =N6(/A F{I,N—l}dt+/; L, nv-1)P(t)dt
1
—L F{o,_(N_l)}P(t)dt
C/
+ /B Doyt - P(H)]dt

A
+/C' Fav-nll - P(t)]dt>- (58)

We take P(t) from Eq. (38), which uses only the domi-
nant rate I'{1,0} for the decay of the initial state.

Similarly for negative voltages, we calculate the error
charge

E F
Qu =N€<—/D 1‘{—1,—(N—1>}dt—/E Lto,-(v-1))dt

1
— /F P{o’_(N_l)}P(t)dt

D
—/F, T1,-v-131 —P(t)]dt)- (59)

We first calculate the error charge for the dominant co-
tunneling processes of order N —1. We will show that the
contribution from the terms of order N can be neglected.

The cotunneling rate of order N — 1 is from Eq. (49)

N-1 2N-3
RKC [
where AQ is the distance from the threshold line and
_ (N _ 1)2N—1
T m2N-4[(N - 2)!]2(2N - 3)IN"’

Cion-13 = Kn-1

Ky

(61)

Table II numerically lists K _; for several values of N.
The fourth term in Eq. (58) contributes to the error
charge by

Ne | Ton-n(@- ol - PO, (62)

where @& = uN/(N — 1), u = UCJe, ¢ = {Q/e — [1/2 —
u/(N —1)]} is the normalized distance from the threshold
of process {1,0}, and P(q) is the probability that the
electron has not tunneled. The integral can be expressed
in terms of the error function, but in order to derive a
simple expression, we will use for P(q) a step function
given by

TABLE II. Values of an and Kn—-1 used for calculating
error rates.
N KN_1 anN
4 1.169 x10~2 1x10°%
5 3.006 x10~* 1x 1077
6 4.103 x107° 1x10°
7 3.466 x10~8 5x 10712

13 421

ro- {5 1500 ®

where (g) is an average switching distance defined by

0o 2
@= [ PosE =i (64)

The third and fourth terms in Eq. (58) for cotunneling
of order N —1 are mutually exclusive when using the step
function for the probability function. We find the same
magnitude for the error charge in the two cases, given by

. Kn-1 (Rx/Rp)N!
3N(N—-1) RxCf

N (@—(g)*™ 2. (65)
The sign of the error, whether the error charge is trans-
ferred in the forward or the reverse direction, is given by
the sign of (@ — (g)).

For negative voltages we can evaluate the two integrals
for processes of order N —1 in Eq. (59) exactly; the result
is a polynomial in U of order (N —1)2. In fact, this is also
a good approximation of the error charge at positive volt-
ages. However, the coefficients of the polynomial cannot
be put in a simple form and must be evaluated for each
N separately, and thus are not very useful. We again use
the step function approximation for the probability P(q)
to find the error charge

N /Iﬁ|+(q)r dg
e —(N=1)}——) 66
A {0.-(N-1} 5 (66)

which is evaluated to give the expression in Eq. (65).
Hence in the approximation used here, we find the total
error due to cotunneling of order (N — 1) is

lQ | _ N2N—2 (RK/RT)N—I
817 9mN=-I(N —2)22N - 3)  RxCf
x (u—qo)*" 2, (67)

where g9 = /(m/2)(N — 1)RrCf and the sign of Q¢
equals the sign of u — qg.
The cotunneling rate for cotunneling of order N is

N-1 1 2 Ule\ V-1
Liarev-1) (kl:[l [k2—(2Q/e)2]> (| e| ) '

(68)

We approximate the rate by taking only the lowest power
of @ into account, thus

[Rx/Rr]N ([UIC\*"!
Citr,av-1) = an

RgC e
x G - (Q/e)2) - (69)

where ap is found numerically and is given in Table II.
The approximation is accurate within a factor of 2 over
the range of Q. The maximum rate for cotunneling of
order N occurs at the threshold for single-junction tun-
neling {1,0}, and gives Qmax = €/2 — [U|C/e(N — 1).
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The maximum rate for UC/e $ 0.3 is

F{]-:N"l} Imax Ra

RKC e

(70)

We calculate a rough bound of the error charge from
the process of order N by using the expression for the
maximum rate times the period of the cycle. Hence the
ratio of the error charge from cotunneling of order N,
given by NeI'(y n—1} ‘max, to the error from cotunneling
of order N — 1, from Eq. (67), is approximately

QeN o an(N —1)2NH Rk,
Qen-1” Kn_1N2N-2 Rp ™

We can neglect the cotunneling processes of order N from
the total error estimate, because its contribution to the
total error is in general lower than the contribution from
cotunneling of order N — 1.

This estimate is also useful for understanding the effect
of our approximation on the cotunneling rates at thresh-
old, as discussed in Sec. IID. We expect an exact theory
for cotunneling to have rates at threshold given approxi-
mately by Eq. (70) and to decay smoothly to zero above
threshold. The region of @ in which we have to approx-
imate the cotunneling rates has a length much smaller
than e. Thus, Eq. (71) can be used to bound the er-
ror due to this approximation, and thus can be neglected
when compared to errors of order (N —1). Only because
the bias point is changed continuously and the rates are
averaged is the exact rate at threshold unimportant.

The integrals for cotunneling of order (N — 1) in Egs.
(58) and (59) can be expressed for the exact expression of
P(q) in terms of confluent hypergeometric functions and
the error function. We plot in Fig. 13 that result, our es-
timate above from Eq. (67), and the output of our master
equation-based simulation program for some reasonable

(71)

PV RPN ST I AU N

8
@
o 10°F
2 ]
= H
[5} E|
T e [ \ / N=4 %
E N\ [ R,=20R, ;
1010 f=4x10 RC 1
r L |
Tzl . . L . . ]
-06 0.4 02 0 02 04 06
UCl/e
FIG. 13. The magnitude of the relative error from ideal

pump operation versus bias voltage. Plotted are results from
the computer simulation (dots), integration of the N —1 order
terms in Egs. (58) and (59) (solid line), and the simple formula
of Eq. (67) (dashed line). System parameters are N = 4,
Rr =20Rgk, f =4 x 107%/RrC, and T = 0.

B/ Brl” (.U_C_)ZN_S (N=1)2.

H. DALSGAARD JENSEN AND JOHN M. MARTINIS 46

system parameters. Equations (58) and (59) match the
master equation very well, and cotunneling from order
(N — 1) indeed predicts the errors well. The power law
expression of Eq. (67), although simple, is a fair approx-
imation especially for values of |u — go| 2 0.1.

B. Thermal errors

We now calculate the effect of thermal fluctuations on
the accuracy. First, we calculate the exponential factor
which is the dominant factor of the error rate. Then we
calculate the prefactor which gives the magnitude of the
error.

We assume the thermal error rate is low so that we
can calculate the transition rates away from ideal pump
behavior, as was done for cotunneling. We make the ap-
proximation here that the temperature is high enough
that the thermal error rate is higher than cotunneling
rates, so we only need to consider single-junction tunnel-
ing. The expressions we derive are thus not necessarily
valid in the region of crossover between thermal errors
and cotunneling errors. However, the computer program
can be used in this region to calculate the error rates.

Since thermally induced transitions of a single junction
can reset themselves, a sequence of single-junction tran-
sitions must be considered. In fact, these sequences are
exactly those described for cotunneling. The probability
that a state in such a sequence is thermally occupied is
exp (—AE/kT), where AE is the energy difference be-
tween that state and the state corresponding to the ideal
pump state. When more than one single-junction transi-
tion is needed to go to this state, AF is found by sum-
ming the energy differences of the single-junction transi-
tions as was done in Eq. (8) for the cotunneling matrix el-
ement. The thermal error rate can be calculated from the
process of thermal escape from a potential well, only here
states that give the potential are discrete and given by the
tunneling sequence. The thermal error rate for a particu-
lar sequence of single-junction tunneling events will thus
be proportional to the Boltzmann factor exp(—AE’/kT),
where AE’ is the maximum AFE of that sequence. The
total transition rate will be dominated by the sequence
or sequences with the smallest AE’, which we will denote
as AE,,.

The expressions for the intermediate Coulomb energies
are known from Sec. VD, where we calculate the inter-
mediate energies for cotunneling. The lowest energy bar-
riers AE,, occur for sequences that are the same as the
cotunneling sequences of order N — 1. If we assume for
simplicity here that the biased-junction transition occurs
at its threshold, the minimum AE,, will occur at points
B’ and F in Fig. 12. Equation (41) is used to calculate
AE, with ¢ = —1/2 — u/(N — 1) for the bias at B’. The
maximum value of AE occurs for n junctions having tun-
neled with n = (N — 1)/2 for N odd, and n = N/2 -1
for N even. Equation (41) is used to find

(N —-1)?
7 N odd 72
AEm—EC< N lul ), odd, (72)
N -2 N -2
- — v 3
AE,, Ec< ) |u|N 1), N even, (73)
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where E, = 62/20. For N = 4, 5, 6, and 7 we compute

JE.(1-4l), N=4,
Ap 3B (=g, N=5 70

"] E.(1-%u), N=s,

2E.(1-Fu), N=T.

Larger junction arrays will produce smaller thermal er-
rors at a fixed value of E;/kT. The energy barrier AE,,
does not decrease much at finite voltages as long as
lu| S 0.2.

We calculate the prefactor to the thermal error rate
by assuming that the temperature is low enough so that
the occupation probability is exp(—AE /kT) for all states
except the state corresponding to AE,, at the top of the
energy barrier. The occupation of this state is depleted
because escape events over the top of the energy well
never return. If I'y and I'_ are, respectively, the escape
rates from the top state out of the well and back into the
well, then the net escape from the well is

S VS o

=TT exp(—AE,/kT). (75)

Because there is only one state near maximum energy for
N odd, but two states for N even, we must calculate the
single-junction transition rates I' = 6E/e? Ry separately
for these two cases. The change in energy § E between the
nth state and the (n + 1)th state is —E;/N for N odd
and —2F.|u|/(N — 1) for N even. We have calculated
this term to lowest order in u and at the threshold for
the biased junction.

For N odd, the total error is given by summing the
errors from C’ to B’

|Qe| = eNchN; 1 1 (=6E) _Ap./kr

2 e2Rr
qa N-1 dq
b /(; exp [—Ech/kT] N (76)
where Nen = ((y'},,) and accounts for the Nen possible

configurations of states with AE,,, (N — 1)/2 accounts
for the number of possible junction transitions out of this
state, and the remaining N factor accounts for the N cy-
cles for the pump. The exponential factor in the integral
allows us to set the threshold charge ¢; to infinity. We
find

N-1 )kT ! exp [-AE,,/kT).

€
IQel =5 ((N ~1)/2) B, RrOF
(77)

For N even, we find with a similar calculation and for
u X (KT/E2)/2(N - 1),

e N-1 N? kT 1
@l = 5 (ws—1) v B e
x|u|exp ([~AEn,/kT). (78)

In Fig. 14 we have plotted the error versus 1/T for
both a 4 pump and 5 pump together with the predictions
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FIG. 14. Relative error versus inverse temperature for the
computer simulation (points) and the predictions of Egs. (77)
and (78) (lines). Parameters are N = 4 (circles), 5 (squares),
Rr=20 Rk, f =4x 107*/RrC, and u = —0.15.

of Egs. (77) and (78). We see good agreement at high T'
between the errors found by our computer simulation and
the simple formulas derived above. At low temperatures,
cotunneling errors dominate.

C. Frequency errors

We found in Sec. VI A that the effect of frequency is
to shift the voltage of minimum error to positive volt-
ages. However, at high enough frequencies cotunneling of
lower order can occur which then produces errors. Figure
11 shows that for negative voltages, (N — 2)-order pro-
cesses of type {0, —(IN —2)} can occur, while at positive
voltages, the second-order process {1,1} can occur. We
expect a significant increase in the error rates if these pro-
cesses become active. We assume as a first approximation
that an error occurs if the bias point crosses the thresh-
old lines for one of these low-order processes. The error
charge is thus given approximately by eN P(t), where P’
is the probability that the electron has not switched when
reaching the threshold line for the lower-order process.
For small voltages we therefore expect P’ to be given by
Eq. (38) with AQ =~ ¢/2.

We have in Fig. 15 plotted the error charge for a 4
pump versus inverse frequency at u = 0,£0.1. The fig-
ure shows a clear onset of the lower-order processes as
an exponential increase in the error rate at higher fre-
quencies. From the simulations we find an effective value
of AQ that can be used in Eq. (38) to estimate the lim-
itation on frequency. We find a value of AQ.g =~ 0.8e
for |U|C < 0.le. As a conservative estimate we will use
AQes = 0.5e for subsequent calculations. We recom-
mend using the computer simulation for larger voltage
ranges or to estimate the maximum frequency to better
than a factor of 2.

D. Summary of error processes

We have predicted the accuracy of the N-junction elec-
tron pump through three error sources: cotunneling [Eq.
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FIG. 15. Relative error versus inverse frequency obtained

from the computer simulation. An increased error rate is
seen at high frequencies. The slopes of the curves at high
frequencies are used to calculate an effective AQ in Eq. (38).
Parameters are N =4, 5, Rr = 20Rg, and T = 0.

(67)], thermal [Egs. (77) and (78)], and frequency (Sec.
VIC). We summarize the results in this section in a way
that allows the basic junction parameters to be deter-
mined given a desired accuracy.

Since we are typically interested in operating the pump
as fast as possible, the constraints from £; can be used
to eliminate the variable f from the prefactors of the

TABLE III.
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expressions for & and &y;. The dominant functional
dependence of the errors can then be written as

a
gf =exp [—m] y (79)
et =b(Ri/Rr)N=2|u — qo|2N 2, (80)
E,
Ein = c exp [—d ﬁ] , (81)

where each of the parameters a, b, ¢, and d depend on
N, |ul, and the parameters themselves. We emphasize
that these simple formulas are approximate and valid
only when 0.1 S |u — go| S 0.4. More exact expressions
are found from the full formulas given in the previous
sections.

We use Eq. (79) for £ to determine R7C f. We choose
the desired voltage range |u|, and from & we find the
necessary Ryr. We then use &), to determine E./kT.
From the experimental temperature and the value found
for E./kT, we determine the necessary junction capaci-
tance C. This value and Ry give the maximum frequency

f.

Since we typically operate the pump at the maximum
possible frequency, go will in general be about 0.07. Since
the exact value of g is not known, a range of ju—go| = 0.1
is a reasonable minimum operating voltage range. We
keep comfortably away from cotunneling of order N —2 by
choosing a maximum range of |u—go| = 0.3. Finally, self-

Parameters needed to achieve error levels below 107° and 107°. We use AQ.s = 0.5 for the frequency error.

The parameters b, c, and d are given for the calculated value of RrC f, and cis a self-consistent value of E./kT. An experimental
temperature of 100 mK is used to compute the values of C and f

N 4 5 6 7
|u — gol 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3
Error level 1076
a 0.015 0.0128 0.0111 0.0098
RrCf 1.70x1073 1.45%1073 1.26x1073 1.11x1073
9o 0.0894 0.0954 0.0993 0.0102
b 25.8 0.773 1.21x1072 1.16x107*
c 6.5 13 21 16 38 89 143 119
d 0.43 0.30 0.70 0.50 0.92 0.76 1.19 0.99
Rr/Rk 5.1 137 0.20 3.7 0.03 0.52 0.01 0.14
E./kT 36 55 24 33 19 24 16 19
C [fF) 0.26 0.17 0.39 0.28 0.49 0.39 0.59 0.49
f [MHz] 50 2.8 736 54.0 2990 244 7100 605
Error level 10~°
RrCf 1.13x1078 9.65%x1074 8.38x1074 7.39x107*
q 0.0730 0.0779 0.0811 0.0834
b 38.7 1.16 1.82%1072 1.74x10™4
c 6.8 14 23 16 41 97 156 130
Rr/Rk 196 5310 2.26 42 0.21 3.2 0.04 0.62
E./kT 52 78 34 47 27 33 22 26
C [fF) 0.18 0.12 0.27 0.20 0.35 0.28 0.43 0.36
f [MHz] 1.25 0.069 61 4.7 450 36 1500 130
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heating in the junctions!® causes us not to expect device
temperatures below 50-100 mK. We choose 100 mK as a
conservative estimate. In Table III we have tabulated the
parameters for two values of error £ = 10—, 10~9, and
the two values for the normalized voltage range |u—go| =
0.1, 0.3. We conclude from the table that for N > 5,
devices with metrological accuracy are attainable with
reasonable parameters.

Cotunneling errors can be easily suppressed by using
large enough arrays of junctions. However, to reduce
thermal errors, small state-of-the-art junctions (~0.2 fF)
need to be made. The constraint on the maximum fre-
quency will limit currents from the tens to possibly hun-
dreds of picoamperes.

VII. SUMMARY

We calculate the accuracy of the pump analytically
and with computer simulations for gate biasing that
we think is optimal. Cotunneling arises from consid-
ering higher-order perturbation theory and is system-
atically calculated so that all possible cotunneling pro-
cesses are included. Cotunneling rates are calculated
using an approximation for the electron-hole excitation
energies which evenly distributes the energies of the ex-
citations. This is a better approximation than was pre-
viously made by disregarding the excitation energies al-
together. Although the approximation is not valid at
tunneling thresholds, the final accuracy formulas are not
significantly affected.

We derive the thresholds for all tunneling processes.
These results yield a simple graphical representation of
cotunneling versus the bias parameters. The smallest
errors occur in a bias region of |U|C/e S 0.4, where, at
most, cotunneling of order N — 1 occurs. We calculate
analytical expressions for the rates of cotunneling. Both
full and simple expressions of the errors are found.

We consider the effect of thermal activation of electrons
over the Coulomb barrier, and derive expressions for the
errors due to finite temperature. We consider the effect
of operating the pump at too high a frequency and show
that these errors occur from cotunneling processes of low
order.

Our analytical predictions are in good agreement with
computer calculations based on the master equation.

VIII. CONCLUSIONS

The accuracy of the pump can be calculated by con-
sidering the error sources of cotunneling, temperature,
and frequency. The cotunneling errors can easily be
made sufficiently small by making pump devices with
five or more junctions. Small thermal errors require
E./kgT Z 30. The maximum operating frequency is
approximately 5 x 1074 /(RrC). This limits the maxi-
mum pump current from the tens to possibly hundreds
of picoamperes.

We think pump devices with metrological accuracy can
be built.
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APPENDIX A: PROGRAM ALGORITHMS

A computer program has been written to calculate the
current in the pump with nonzero gate capacitances and
unequal values for the junction capacitance and resis-
tances. The program uses the master equation and con-
siders a subset of the system configuration when calculat-
ing the rates of all possible tunneling processes for each
of these configurations. The dynamics of the system are
determined by the master equation

%’; =T, {U,() )P ),

(A1)
where P is the probability vector, and I' is the matrix of
the transition rates which depend on the bias and gate
voltages.

If we consider only piecewise constant functions for the
gate voltages Uy (t), the rate matrix is constant in each
of these intervals, and we may readily solve the master
equation for each such interval. We may write the solu-
tion as

P(t + At) = P(t) exp(TAt), (A2)

where the exponential of the rate matrix is defined by the
corresponding series expansion for a scalar argument. In
the program we calculate the exponential of a matrix
by using the eighth diagonal Padé table approximation!®
for the exponential function. This approximation gives
an absolute error for exp(A) less than 10719 for ||A|| < 1.
We use for At a value less than the inverse of the maxi-
mum rate occurring in the rate matrix. The calculation
of the time evolution of the probability density vector P
is then simply a series of vector-matrix multiplications
and hence very fast.

The charge transferred through the device is calculated
by keeping track of the rates of tunneling in each direction
for each junction and for each state of the system, and
then using

L)y =e > (vi;—7L,) B(),

i=states

(A3)

where 7}, ; are the accumulated rate out of state i through
junction j in each of the directions. The charge trans-
ferred through each junction can be calculated by inte-
grating Eq. (A3), using Eq. (A1), and the initial and final
values of P(t).

One may then check for self-consistency by comparing
the currents flowing in each junction; vastly different cur-
rents correspond to charge flowing out of the state space
from where it cannot return.
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APPENDIX B: EXTENSION OF
SINGLE-JUNCTION EVENTS

We may extend the picture of the stability region a bit
further by considering the threshold lines for tunneling
when junction j+1 is biased and the electron is on island
j — 1. This corresponds to the situation where the elec-
tron has not tunneled through junction j but junction j
is being biased. This state is equivalent to a charge bias
of @ around junction j + 1 and a charge bias of e around
junction j. We therefore need the expressions

-Q+UC
Q_-,,-j =e+ '—N.—_T, (Bla.)
—-e+UC
Qzii+1=Q + ~N_-1 (B1b)
_—Q-e+UC L,
Qui=—TF—7 — i#5hi+l (Blc)

for the external charge of the three types of junctions.
From these we can again derive the threshold lines for
tunneling in each direction and for each of the three junc-
tion types.

APPENDIX C: RESETTING OF SWITCHING
ERRORS

In the case of switching errors, we must also consider
the processes through which the system relaxes to the
new stable state. It is again straightforward to calcu-
late the types and regions of the relaxations in the same
manner as is calculated above for cotunneling.

As an example, assume junction j is biased and we
have crossed the threshold for tunneling through junc-
tion j, but the electron has not yet tunneled. Let us as-
sume the cotunneling process {+,+(n — 1)}. The initial
configuration is then described by the external charges of
the junctions. Denoting the biased junction J, the unbi-
ased junctions involved in the cotunneling process A, and
the rest of the junctions B, we easily derive the external
charges

QzJ—_-Nl_1[(N—1)(Q+e)+UC—(n——1)e],
(C1a)

QzA=Nl_l[—Q+UC+(N——1)e—(n—1)e],
(Clb)

Qep = (~Q + UC — ne). (Cle)

N-1
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The system may now relax to the new stable state
by two paths. In the first, the remaining junctions B
may tunnel by cotunneling and/or by a cascade of single-
junction events in the same direction as the initial cotun-
neling event; thus an extra electron is brought through
the circuit. In the second, the unbiased junctions A may
tunnel again but in the opposite direction thereby reset-
ting the potential error. The biased junction will not
tunnel again due to energy considerations.

In the first case, the ith single-junction tunneling event
in k-order cotunneling in the forward direction will be
given by

e N-1 .
6E1—NE(6—2 —Q+UC—ne—(z—1)e),

(C2)

and the total change in energy of such a continuation
process is

k
cont __ - __e__ _ _ N-k
AES ~.§6E,_ ch(Q UC + ne 5 e>.
(C3)
This process is possible when AE), < 0 which occurs for
U9—<[g+n—N—_k]. (C4)
e e 2

In the other case we similarly find for junctions belonging
to set B and tunneling in the reverse direction
e N+k
AELeset — ~oF (Q —UC +ne — T‘Le) . (C5)

There are two sets of threshold lines in the Q-U plane,
one set for each direction. Within each set, the lines
are separated by AU = e/2C. One set is for tunneling
in the same direction as the initial cotunneling process
and shows where an extra electron is transferred through
the circuit. The other set is for tunneling in the opposite
direction and shows where the partial error process begun
by the initial cotunnel process is reset. In general, the
two processes are both possible and hence competing.

The other type of switching error does not relax in the
same way. A switching error process involving only unbi-
ased junctions tunneling in the reverse direction always
relaxes by subsequently tunneling in the same direction.
Switching errors involving the biased junction may relax
in the two ways described above. Which type of process
occurs depends, as is seen from Fig. 11, mainly on the
bias voltage and the time dependence of Q.

*Permanent address: Danish Institute of Fundamental
Metrology, DK-2800 Lyngby, Denmark.
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FIG. 10. Threshold lines for single-junction tunneling
with gate bias @ and voltage bias U. The origin of the Q axis
shifts by —e when the biased junction tunnels; the thresh-
old lines are correspondingly solid and dashed. The threshold
lines for the biased junction are labeled +j, and for the un-
biased junctions +i. The stability region for single-junction
tunneling is shaded.
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FIG. 11. Threshold lines for cotunneling, drawn similarly
to Fig. 10. The lines are labeled with the type of process and
are placed on the side of the threshold line where the process

is allowed.
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FIG. 12. The threshold lines of Fig. 11 around U = 0.
Bias trajectories for the operation of the pump are lines par-
allel to the Q axis and are shown for positive and negative

voltages.



