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Mesoscopic fluctuations in the shot-noise power of metals
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The sample-to-sample fluctuations in the shot-noise power of a quasi-one-dimensional, phase-
coherent, metallic, diffusive conductor are studied by extending the random-matrix theory of uni-
versal conductance fluctuations. The variance of the shot-noise power is shown to be independent of
the sample size and the degree of disorder. The precise numerical value is calculated. Purthermore,
a weak-localization effect in the average shot-noise power is found. The effect of inelastic scattering
for conductors longer than the phase-coherence length is discussed.

I. INTRODUCTION

Recently, the classical problem of shot noise has been
reinvestigated for quantum systems. ~ Shot noise is the
time-dependent fluctuation in the electrical current due
to the discreteness of the charge of the carriers. It
has been found that the shot-noise power P is sup-
pressed below the classical value of a Poisson process2
(Pp&»,«„——2eI, with I the time-averaged current) as a
consequence of noiseless open quantum channels. In par-
ticular, it was shown by Buttiker and one of the authorss
that the average noise power (P) in the diffusive trans-
port regime is one-third of the Poisson value. The "aver-
age" here refers to an average over an ensemble of im-
purity configurations. It is well known in mesoscopic
physics that transport properties may have large fluc-
tuations around the average from sample to sample. 4

Such "mesoscopic fluctuations" in the conductance were
showns s to have the root-mean-square value ez/h times
a coeEcient of order unity, independent of the size of
the sample and the degree of disorder. Hence the name
"universal conductance fluctuations" (UCF). In Ref. 3 it
was argued on general grounds that the shot-noise power
has mesoscopic fluctuations of order (e /h)e~V~, with V
the applied voltage. The purpose of the present paper
is to give an explicit calculation of the root-mean-square
value of the shot-noise power, rms P, of disordered con-
ductors, much longer than wide, but shorter than the
localization length. It will be shown that, in the case of
phase-coherent transport, these fluctuations are univer-
sal in the same sense as UCF and the precise numerical
value will be calculated.

The starting point is the shot-noise formula derived
by Buttiker. 7 It expresses the zero-temperature, zero-
frequency shot-noise power P of a spin-degenerate two-
probe conductor over which a small voltage V is applied,
entirely in terms of transmission matrices t at the Fermi
energy:

P = 2e~V~ Tr [t tt(1 —ttt)j
1V).+(1 +)
=1

where 'T„den toe asn eigenvalue of t tt and N is the num-
ber of channels. Equation (1) is the multichannel gener-
alization of the single-channel formulas found earlier. s M

Using the Landauer formula

for the conductance G = I/V, one finds from Eq. (1)
that P = Pp„„„if all transmission eigenvalues are small
(7„«1, for all n) In a pha. se-coherent conductor, how-
ever, the 1„'sare either exponentially small (closed chan-
nels) or of order unity (open channels). ~~ This leads to
sub-Poissonian shot noise when the ensemble average is
taken. 3

To determine the fluctuations in P around (P) one
can, in principle, use a diagrammatic Green's function
method, as in the original theories of UCF.s s In this pa-
per, however, the equivalent random-matrix method
will be used, as it makes contact naturally with Eq. (1),
where the shot-noise power is expressed as a function
of random transmission matrices. The central quantity
in the random-matrix theory of quantum transport is
the distribution w((Aq, A2, . . . , A~)) of eigenparameters
A„e [0, oo), related to the transmission eigenvalues by
1„=(1+A„) '. The so-called local approach, which
is based on the properties of small segments of the con-
ductor, leads to a diffusion equation for the evolution of
this distribution with length L ~s 's The diffusion equa-
tion depends on the symmetry properties of the random-
rnatrix ensemble. It can be written in a unified way using
the symmetry parameter P, where P = 1 in the presence
and P = 2 in the absence of time-reversal symmetry.
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For a sample with N channels, a length L and an elas-

tic mean free path E, with the definition s = L/f, the
diffusion equation is given byes ~s

—-P((A, &) =8 (p)
88

2

PN+ 2 —P
N

x ) A„(l + A„)Jp((A;))
n=1

a
BA„Jp((A, ))

(3)

where Jp((A, ))—:g„& IA„—A IP. The initial condi-
tion is that of perfect transmission,

(2eIVI2e /h) (P) = (T) —(T2},

(2eIVI2e /h) var P = (T ) —(T)
—2 ((TT2) —(T}(T2))
+ (T'}—(T.}'

The brackets denote the ensemble average,

(7)

(8)

(F) = f dA f dA f digs w(d~(P;)) F((A;)) . (9)
0 0 0

From the diffusion equation (3) one can derive the evolu-
tion of the different moments. For example, the evolution
equation for (T") is given by~a

tu()P ((A;)) = b(A])b(Az) b(AN) . (4) (PN + 2 —P) (T"}—= ( —PpT"+
Bs

II. AVERAGE AND VARIANCE
OF THE SHOT-NOISE POWER

The regime of interest is the metallic, dHFusive regime:
The sample must be much longer than the mean free
path, but much shorter than the one-dimensional 1(D)
localization length ( ~ NE, requiring

1«s«N. (5)

With the definition of the moment

(N ) 1v

n —1 n —1

and the convention T" =—Tz, T~ = T, and T = Tz, one
finds from Eq. (1) for the average and the variance of the
shot-noise power the expressions

The diffusion equation (3) is based on (a) the difference
in symmetry properties of the ensemble of scattering ma-

trices in the presence or absence of time-reversal symme-

try; (b) an isotropy assumption, which implies that flux
incident in one channel is, on average, equally distributed
among all outgoing channels; and (c) a maximum en-

tropy assumption for the distribution u)s, ({A;)) for a
small segment of the conductor. Assumption (b) requires
a conductor much longer than wide, i.e., the quasi-one-
dirnensiona/ limit. Assumption (c) has been justified by
a "central-limit theorem". ~s Calculations for the conduc-
tance starting from Eq. (3) (Refs. 14 and 15) have indeed
produced the same Ohmic conductance and quantum-
interference effects (weak localization and UCF) as ob-
tained earlier by Green's function techniques in the quasi-
one-dimensional limit.

The outline of this paper is as follows. In Sec. II the
diffusion equation (3) is used to determine the meso-
scopic fluctuations in the shot-noise power. Furthermore,
a weak-localization effect and the earlier found suppres-
sion by one-third are obtained for the ensemble-averaged
shot-noise power. The calculation is straightforward, but
lengthy. The key intermediate steps are given in the Ap-
pendix. Finally, the effect of inelastic scattering on the
shot-noise power of conductors longer than the phase-
coherence length is discussed in Sec. III.

—(2 —p)pT" 'T2

+ 2p(p —1)T" (Tg —Ts)) .
(1o)

Obviously, this single evolution equation is not solvable
because of the appearance of additionat moments. In
Refs. 14 and 15 it is shown that the hierarchy of evolu-
tion equations can be closed by an expansion in powers
of N . The resulting set of coupled differential equa-
tions needed for the evaluation of Eqs. (7) and (8), and
their solutions, are given in the Appendix. Here, only
the results are presented.

For the average shot-noise power we find

(G.}
2e' NE 6p~ +& I( L )
h L 3 (M)

one can write

(12)

(P) = sR'oisson + bP(VL ~ (13)

where Pp„„,„=2elVI(G) and 6Pwr. —= (2elVI2es/h)
x(46pq/45). The suppression by a factor one-third of
the ensemble-averaged Poisson noise is in agreement with
Ref. 3, where the alternative global approach to random-
matrix theory was used. In the second term of Eq.
(11) one recognizes a weak-localization correction for
the shot noise, analogous to that in Eq. (12) for the
conductance. As it is caused by the interference be-
tween time-reversed pairs of trajectories, it disappears
when time-reversal symmetry is broken (P = 2), i.e., in
the presence of a magnetic field. The decrease in the con-
ductance due to weak localization can be incorporated in
the Poisson value. The remaining correction bP()vr, is
positive, indicating that weak localization suppresses the
conductance more than the shot noise.

Next the variance of the shot-noise power is deter-
mined. We find that the first two terms in the expansion
of the right-hand-side of Eq. (8) —of order N and N
respectively —vanish exactly. The remaining term is

(P}=2 IVI
h L

— +&I2e N/ bpq f L )
(,N/)

Combining this with the result for the average conduc-
tance from Ref. 15,
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1 46 fLlvar(T —T2) = — + C7
~P 2835 iN/) (14)

Thus, the root-mean-square fluctuations in the shot-noise
power are given by

izing reservoirs. s Quasi-one-dimensionality now requires
that the width of the conductor be much smaller than ty.
Furthermore, phase-coherent diffusive transport requires
8 && ly. In Ref. 3 the following sum rule was derived:

2/2
rms P = 2e]V] Cp, (15)

My

RP=) R, P, , (16)

independent of the length L, the number of channels N,
and the elastic mean free path /. By analogy with the
conductance, one could speak of "universal noise fluctu-
ations. " The numerical coefficient is Ci = /46/2835
0.127 in the presence of time-reversal symmetry and

C2 = /23/2835 0.090 in its absence.

III. EFFECT OF INELASTIC SCATTERING

where A, and P, are the resistance and the shot-noise
power of an individual segment, and R—:P, ~i R, and P
are the resistance and the shot-noise power of the whole
conductor. Using Eqs. (1) and (2), R, and P, can be
expressed in terms of the moments T(i) and T2(i) of the
transmission eigenvalues of the ith segment. Since a frac-
tion R, /R of the total applied voltage V drops over the
ith segment, one has from Eq. (16)

The theory presented is valid at zero temperature,
when shot noise is the only source of current fluctuations
and when all scattering is elastic. At finite temperatures
the theory should be modified to include thermal noise
(important when kT ) eV), the effects of thermal aver-
aging [important when L ) l~ =—(hD/kT)i~2, with D
the difFusion constant], and inelastic scattering (impor-
tant when L is greater than the phase-coherence length
ly). If kT « eV and l4, « l~ the effect of inelastic
scattering dominates. Its effect on the shot noise can be
estimated by considering a model in which the conduc-
tor is divided into My - L/ly phase-coherent segments
of length ly, separated by phase and momentum random-

(17)

Each moment in Eq. (17) can be written as the en-
semble average plus a deviation, T(i)—:(T)~ + bT(i)
and T2(i)—:(T2)y + bT2(i). The brackets ( )y de-
note the ensemble average for a phase-coherent conduc-
tor of length l~. (All segments are assumed to have the
same average properties. ) Now Eq. (17) is expanded in
powers of bT(i) and bT2(i), and the fact that moments
of different segments are statistically independent [e.g. ,

(bT(i)bT(j)) = (b'T(i))(b'T(j)), if i g j ] is used.
The ensemble-averaged shot-noise power becomes

(P) =2elVI
g

M4
'

(T)4 —(T2)4+ 3
2e My —1 f(bTbT2)y ((bT)')~(T )~~

(T)~'
(18)

To determine the ensemble averages over a phase-
coherent segment the results of Sec. II can be used (with
L substituted by ly) One has (T. )y, (T2)y = G(NE/ly),
while ((bT)2)4„(STbT2)y = G(1). It follows that the
terms (T)y and (T2)~ in Eq. (18) are two orders of mag-
nitude in (M/ly) higher than the terms containing the
fluctuations 6T and bT2, so that it is consistent to neglect
these latter terms while retaining the weak-localization
corrections to (T)~ and (T2)~. Equation (11) then im-

plies

2

Comparison with Eq. (11) shows that, while the lead-
ing term in the average shot-noise power is reduced by a
factor (ly/L) because of inelastic scattering 2 the weak-
localization correction is suppressed more strongly, by a
factor (l~/L)2.

Now for the effect of inelastic scattering on the meso-
scopic fluctuations of the shot-noise power. The variance
(P2) —(P)2 is determined by substitution of the expres-

sion for P given in Eq. (17), then an expansion in powers
of bT and bT2, and finally taking the ensemble average.
The result is

+((bT )') + "
] .

(20)

The three terms between square brackets are, in fact,
equal to the variance, var (T —T2), of a phase-coherent
segment of length l~ With Eqs. (1.4) and (15) one finds

rmsP = 2e/V/ Cp
/

—
/

(21)

The root-mean-square value of the mesoscopic fluctua-
tions of the shot-noise power is suppressed by a factor
(ly/L) ~ due to inelastic scattering. Hence, at the break-
down of phase-coherent transport the mesoscopic fluctu-
ations cease being universal and become dependent on
the length of the conductor.

The division of the conductor in phase-coherent seg-
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ments separated by phase-randomizing reservoirs is a
simplified model of inelastic scattering, which occurs
throughout the conductor. A more realistic treatment
is expected to leave the parametric dependence on the
ratio (lq, /L) unafFected. It is interesting to compare
the above results with the corresponding results for the
conductance,

One notes for the shot-noise power that the value of
the exponent of (l~/L) occurring in the expressions for
the average, for the weak-localization effect and for the
root-mean-square value of the mesoscopic fluctuations, is
equal to the exponent in the corresponding expressions
for the conductance p/u8 one.

2ez (l4, )
l)Gwr. = const x

h )L)'

rms G = const x
h ),L)

(22)
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APPENDIX: MOMENT EXPANSION AND SOLUTION

Consider a compound moment
e f ] e N

1

~; (1+A„)q

N

(] +p )q~
(A1)

where q, P qp if i g j. From Eqs. (4) and (9) the initial condition of the ensemble average is

lim T"; =N", v—= ) r;.
i=1

(A2)

The evolution of a compound moment can be derived from the difFusion equation (3). This leads to the general

evolution equation

.... ~qa
kyi, ~

qi 2 q, —1

(PN+ 2 —P)— Tq' ——P) q, r;Tq, ' ,

' ) T T qqq q) T rqTq, Tq')

+(2 P}) q'(2' 1)r Tq q r T'q' '. Tq rq T''). '

+) 22; r;(r, —1)T" (Tqq, —Tqq, +q) T"').
jvki

+) 4 l2% "2' Tq; Tq, (Tq'+q, Tq'+q, +. &)

i&j
(A3)

where Q„=0 if a ) b. Equation (10) is a special case of Eq. (A3). The moments required for the average and
the variance of the shot-noise power are (T), (Tz), (T ), (TTz), and (T2), as can be seen from Eqs. (7) and (8).
However, their evolution equations are not exactly solvable, because these cannot be written in a closed form. Mello
and Stone~4 ~s have developed a method of solution by expanding the moments in descending powers of N. Here,
their general method is applied to the moments listed above. For this purpose the following expansions are necessary:

(T")= N"f„,p(s) + N" f„,) (s) + N" f„,z(s) +
(T"Tz) = N"+'g„+g p(s) + N"g~+g, g(s) + ¹ 'gr+g z(s) +
(T"Ts) = N"+ h„~y,p(s) + N"hr2+), y (s) +
(T"T4) = N~'&u+i, p(s) + "
(T"Ts) = N"+ j„+y,p(s) +

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)
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(T"T2)
(T"T2T3)

(T"T2T4)

(T"T3)

(TPT2)
(T"T2)

(T"T2T3)

N +
lp+2 p(s) + N tpy2 1(s) + N /&y2 2(s) +

N +
m&+2 p(s) + N +

m&+2 1(s) +
¹ n„+2 p(s) +.p+2

N" o„+2 p(s) + .p+2

N + t~+3 p(s) + N +
tp+3 \ (s) +¹+u„+40(s) +

N" v„s p(s) +p+3

(A4f)

(A4g)

(A4h)

(A4i)

(A4j)

{A4k)

(A41)

The dependence of the coefficients of the powers of N on the symmetry parameter P is not explicitly mentioned. In
this notation the expressions for the average (7) and the variance (8) of the shot noise can be obtained from

(T T2) [fl,o(s) gl,p(s)]N + [fl,l(s) gl, l(s)] + [f1,2(s) g1,2(s)]N + ' ' ' (A5a)

(T ) —(T) = [f2,o(s) —fl p(s) ]N + [f2,1(s) —2f1,o(s)fl, l(s)]N
+ [f2,2(s) —2f1,o(s)f1,2(s) —fl, 1(s)'] + " (A5b)

(TT2) —(T) (T2) = [g2 0(s) —fl 0(s)gl 0(s)]N + [g2 1(s) —fl 0(s)gl 1(s) —fl 1(s)gl 0(s)]N

+ [g2,2(s) —fl, o(s)g1,2(s) —fl, l(s)gl, l(s) —f1,2(s)gl, o(S)] + '''
(T2) —(T2) = [t2,p(s) —gl p(s) ]N + [t2,1(s) —2gl, p(s)gl 1(s)]N

+ [12,2(s) 2gl, p(s)g1,2(s) gl, l(s) ] + ' ' '

(A5c)

(A5d)

In order to determine the functions of s listed above, the evolution equations of the moments of interest are set
up from the generalized evolution equation (A3). One then finds that indeed all the moments of Eqs. (A4a) —(A41)
appear. Filling in the expansions and equating the coefficients of the same powers of N leads to a closed hierarchy of
recurrent difFerential equations:

f„',o(s) +&fr+1,0(s) = o

g& 0(s) + (p+ 3)g&+1,0(s) = 2f&yl, p(s),
f„',(s) +pf„~l, l(s) = —

baal [fz,o(s) + pg„,p(s)],
l& 0(s) + (p + 6)l&+1 0(s) = 4g~+1,0(s),

tl& o(s) + (P+ 5)h&+1 0(s) = Ggs, +1,0(s) —3ts,+1 0(s),
g„',(s) + (p+ 3)go+11(s) 2f~+11(s) + S'il[ g~ 0(s) + 2g~0(s) 4h„p(s) (p 1)l~ 0(s)]

fp2(s) + S fr+12(s) = 41{foal(s) —+ &g~ 1 (3)] + (~~1 + I)p(p —I) [g~-10(s) —h~-10(s)]

t„'0(s) + (P+ 9)tv+1 0(s) = Gts,+1,0(s),
mp, p(s) + (P + 8)mp+1, 0(s) 2tlp+1, 0(s) + @@+1,0(s) 3tp+1,0(s) ~

&„', ( )+(m+ 6)t +, ( ) = 4g +, ( )+ ~p [-t,',o( ) + 41,o(s) —8,o( ) —(~ 2)t,o(s)], —

u,',o(s) + (p+ 12)ul+1,0(s) = 84+1,0(s) ~

i&,0(s) + (p+ 7)i@+1,0(s) = 8&p+1,0(s) + 4~@+1,0(s) 8m@+1,p(s)

v& 0(s) + (p + 11)v&+1 p(s) = 4m~pl, p(s) + Gt~+1 0(s) —3u~yl p(s),
n'„0(s) + (p+ 10)n„+l,p(s) = 2i~+1 p(s) + 8m„+1 p(s) + 4t„+1p(s) —8v„+10(s),
0& p (s) + (p + 10)o„+1p(s) = 12m„+1 p(s) —Gv~+1 p (a)

j„' 0(s) + (p + 9)j„+10(s) = 10i„+10(s) + 10m&+1 0(s) —10n&+1 p(s) —50&+1 p(S),

t„'1(s) + (p+ 9)t„+11(s)= 6t„+11(s)+ bpl [ t'„0(s) + 6t„p(—s) —12v„p(s) —(p —3)u„p(s)],
h„' 1(s) + (p + 5)h„+1 1(s) = 6g„+1 1(s) —3l„+11(s) + 6@1[

—h' 0(s) + Gh„p(s) —9i„,p(s) —(p —1)m„p(s)],
m„' 1(s) + (p+ 8)m„+1,1(s) = 2h„+1,1(s) + 6t„+11(s)—3t„+11(s)

+~ [— „'o( ) +8,o( ) —4o,o( ) —9,o( ) —(& —2),o( )1

(A6a)

(A6b)

(A6c)

(AGd)

(AGe)

(A6f)

(AGR)

(A6h)

(A6i)

(A6j)

(AGk)

(A61)

(A6m)

(A6n)

(A6o)

(A6p)

(A6q)

(AGr)

{A6s)
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g„' 2(8) + (p+ 3)gp+1,2(8) —2fp+1,2(8) + ~pl [ gp 1(8) + 2gp, l(8) 4hp, l(8) (p 1)~p,l(8)]
+(hpl + 1)(4(p —1)[hp l,p(8) —ip 1 p(s)]+(p —1)(p —2)[lp—1 p(s) —mp 1 p(s)]),

tp, 2(8) + (p+ 6)tp+1,2(8) = 4gp+1, 2(8) + ~Pl [
—

&p, l(8) + 4~p, l(8) 8 p, l(8) (p ) p, l( )]

+(Dpi + 1)(8[i„ 1 p(a) —jp l,p(s)] + 8(p —2) [mp 1 p(s) —Ap l,p(8)]

+(P —2)(P —3)[tp 1 p(s) —vp 1 p(s)]) .

(A6t)

(A6u)

The equations are written in such order that each one
can be solved with the solutions of the preceding ones.
From Eq. (A2) the initial conditions are

xp, p(0) = 1, zp, l(0) = 0, zp 2(0) = 0, (A7)

where x stands for each of the functions f, g, h, . . . , v.
The first seven recurrent difFerential equations (A6a)—

(A6g) were solved by Mello and Stonels to determine the
variance of the conductance. Guided by their results, the
following ansatz for the solutions is made

(A8)

where ~(s), cr(s), and p(s) are functions in s not depen-
dent on p. The ansatz (A8) is then verified by substi-
tution. In this way the recurrent difFerential equations
(A6a) —(A6u) reduce, after an appropriate value for q is
chosen, to ordinary differential equations in s for the
functions s(s), o'(8), and p(s) which are easily solved.
The functions are found to be polynomials in s. Here,
only the solutions needed for substitution in Eqs. (A5a)—
(A5d) are presented:

1
fp, o(8) = (1+,)„ (A9$)

-bpyys3
fp, l ( ) 3(1 + )p+2 (A9b)

s2
f„,2(s)=,(baal [(8p —4)a'+ (18p+ 6)8'+ (45p+ 15)s'+ (60p —60)s+ 45p —45]

+ [(3p —5)s + (18p —30)a + (45p —75)s2+ (60p —90)a+ 45p —45]),

2sa + 6s~ + 6s+ 3
g,o( ) = (1,)„~3

83
gp, l(8) = „(,+',)„+,[(1op+ 4)8'+ (30p+ 24)a'+ (30p+ 60)s+ 15p+ 15],

s2
gp, 2(s) = ~r (apl [(112p + 40p —32)a + (588p + 612p —120)ss

+ (1722p + 2574p+ 24)s + (3654p + 4326p+ 924)s4

+ (5418p + 2394p + 2772)83 + (5355p2 + 315p + 5670)82

+ (3150p —630p —2520)8 + 945p i 945p —1890]

+ [(42p —30p —72)a + (378p —270p —648)ss

+ (1512p —1080p —2592)s + (3549p2 —2457p —5964)s4

+ (5418p —3402p —8568)s + (5355p —2835p —8190)82

+ (3150p —1260p —5670)s + 945p2 + 945p —1890]),
1

lp, p(s) = +s(4s +248 +608 + 84a +728 +368+9),9 1+8 p+s

s3
l„1(8) = ~s [(20p+ 16)a + (120p+ 144)s + (300p+ 576)s4+ (420p+ 1332)ss

+(360p+ 1764)s + (180p+ 1260)a+ 45p+ 450],

(A9c)

(A9d)

(A9e)

(A9f)

(AQg)

(AQh)
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g2
~q, 2(s) =

2 +M(Sly[(1120p + 1360p+ 4)s + (9240p + 17160p+ 3408)s928350 1 + s &+I

+ (38220p +91860p+ 33864)s + (107520p +273840p+ 152480)s
+ (224280p + 497880p+ 413820)s + (351540p + 596340p+ 780120)s
+ (409500p + 506520p + 917280)s + (345870p + 334530p + 517860)s
+ (203175p + 212625p+ 66150)s + (75600p + 113400p —151200)s
+ 14175p + 42525p —28350]

+ [(420p + 100p —1020)s + (5040p + 1200p —12240)ss
+ (27720p + 6600p —67320)s + (92820p + 22260p —223840)s
+ (211680p + 51840p —499860)s + (345240p + 88560p —795240)s
+ (407925p + 114345p —943110)s + (345870p + 134190p —842940)s
+ (203175p + 146475p —538650)s + (75600p + 103950p —245700)s
+ 14175p + 42525p —28350]) . (A9i)

The solutions (A9a) —(A9e) and (A9g) have already been found by Mello and Stone. ~s We have checked by computer
algebra that the complete set of solutions indeed satisfies the set of recurrent differential equations (A6a) —(A6u) and
the initial conditions (A7).

Using the solutions (A9a)—(A9f) one then obtains for Eq. (A5a)

s(s + 3s + 3) byes (s —9s + ' )
3(1 + s) 4 45(1 + s) s

(26pg —l)ss(3ss + 27ss + )
315(1+s)s (A10)

Equation (11) follows from Eq. (A10) by omitting terms of order Ns, s, and sN, while retaining terms of
order Ns ~ and 1. This is a consistent approximation if N~~ (( s (( N, which is a stronger condition than Eq. (5).
As discussed in Ref. 15 this condition implies the quasi-one-dimensionality (length » width) of the conductor. The
variance can be calculated by filling in the solutions (A9a) —(A9i) in Eqs. (A5b) —(A5d). The terms of order N and
N vanish and the remaining term is

(1 + bye) s (23s o + 276s + 1518s + )
2835(1+s)»

Taking the limit of a long system (s » 1) results in Eq. (14).
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