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Ideal interband absorption spectra in an indirect-gap-semiconductor quantum well
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We have derived the expression for an absorption coefficient in a quantum well made of an indirect-
gap semiconductor, considering phonon-assisted and no-phonon (alloy-disorder) processes. The absorp-
tion coefficient varies as (#iw, — E, *#w), )’, where fiw, (#iw,) is the photon (phonon) energy and E, is the
band gap; s =0 for bound excitonic absorption and s =1 for band-to-band or continuum-state transi-
tions. For transitions to the excitonic continuum states, the absorption coefficient increases linearly for

high values of photon energy.

I. INTRODUCTION

Interband optical absorption and emission processes in
indirect-gap semiconductors like Si, Ge, and their alloys
were studied quite thoroughly in the early days of semi-
conductor research.! ~* However, attention was gradually
shifted to direct-gap semiconductors>® and later on, to
the heterojunctions and quantum wells (QW’s) made of
them,”® because of the suitability of these materials and
their microstructures in optoelectronic device applica-
tions. The situation has changed somewhat only recent-
ly, since strained Si/Si, Ge,_, systems have shown prom-
ise for use in photonic devices.’~!* The band gap in these
indirect-gap QW’s is compatible with the wavelengths for
present day fiber-optic communication. Interband and
intersubband absorption!? in Si-SiGe QW’s have already
been investigated.

In spite of the recent intensive efforts in elucidating
and exploiting the optical properties of indirect-gap
QW'’s, some simple basic problems still remain unad-
dressed. It is well known'® that the absorption
coefficient in bulk indirect-gap materials varies as
(fiw,— E; i, ), where #iw, (fiw,) is the photon (pho-
non) energy, E, is the band gap, and the values of the ex-
ponent s are 2 and 1, respectively, for simple band-to-
band transitions and for bound excitonic absorption. No
attempt has yet been made to examine how this exponent
s changes in indirect-gap QW’s. On the other hand, the
absorption spectra in Si/(Si,Ge) QW’s have been ana-
lyzed, on the assumption that the exponent s =2, in some
recent work.'*

The purpose of the present paper is to derive the ex-
pression for the absorption coefficient due to transitions
from the valence band to the lowest indirect conduction-
band subband in a QW. The transfer from the intermedi-
ate state to the final states occurs via phonon or alloy-
disorder (no-phonon) scattering. The theory is outlined
in Sec. II. The nature of the expected ideal (low-
temperature) absorption spectra is discussed in Sec. III.
Section IV gives the conclusion.

II. THEORY

The interband absorption in an indirect-gap semicon-
ductor is a two-step process and the transition rate from
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an initial state |i ) to the final state | f ) via the intermedi-
ate states |in) is given by the second-order perturbation
theory as'

(f|Hlin) (in|H|i) |?

2

W== 8(E,—E;), (1
#i % % E,—E;, ' d

where E is the energy, H=H, +H,,, H, is the perturba-

tion due to radiation field, and H,, is the electron-phonon
interaction potential. Using the above expression Rid-
ley!® has obtained the following for the transition rate:

VM%DZgU(mC*mU* )3/2
2
87 (E,
X [Ng(w, #iwy —E, +#w, )

+{Ng(w,)+1}(fiw,— E, —#iw,)*] . )

W (fiw, )=
* O—ﬁwk)2ﬁ6pa)p

The absorption coefficient is given by
alfiw,)=W(fiw,)n/c . (3)

In the above, V is the crystal volume, M, is the matrix
element for electron-photon interaction, D is the
deformation-potential constant for electron-phonon in-
teraction, g, is the number of equivalent valleys for the
final conduction-band state, m* and m," are the effective
masses for electron (assumed isotropic) and for hole, re-
spectively, E,, (E,;) is the direct (indirect) band gap, p is
the mass density, N, is the number of phonons with wave
vector Q, # is reduced Planck constant, 7 is the refractive
index of the material, and c is the velocity of light.

The QW is formed along the z direction. The transi-
tion is assumed to take place from an initial state |vk ) in
the valence subband of two-dimensional (2D) wave vector
k to an intermediate state |[k) in the direct (zone
center) conduction band and then to the final state |ck’)
in the lowest conduction subband. The wave functions
are given by

lvk ) =u,exp(ik-t)d,(z) ,
ITk )=urexplik-t)dp(z) , 4)
lck’) =u_ exp(ik’-t)d,,, () .

In the above, ¢’s are envelope functions. ¢, and ¢,
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denote confined states corresponding to subbands / and
m. |Tk) is a continuum state; however, the effective
mass mismatch between the well and barrier materials
gives rise to reflections at the boundaries of the well!® and
¢(z) is not as simple as exp(ik,z). In the present deriva-
tion the detailed nature of ¢’s is not important, since the
exact form is needed only when exact quantitative calcu-
lation is performed.

The matrix element for transition from the initial state
to the intermediate state due to photon absorption is

2

eAd
9 |Cvk|e,-pITk)|?, (5)

2
M=
mg

where m,, is the free-electron mass, €, is the polarization
vector of light wave, p is the momentum operator, and
A, is the amplitude of the vector potential given by!’

a=—h ®)
2egn Vo,

with €, as the free space permittivity.
In the QW the matrix element depends on the angle be-
tween the polarization vector and the z axis.'® Using Eq.

(4) in Eq. (5), one obtains'® !’
2
er
Mﬁz <|Pru|2>A1rC1r ’ 7
0

2

Cir=| [ ¢rl)du2)dz ®

A is the polarization-dependent part and (|pr,|?) is
the average momentum matrix element.

The final state may be a simple electronic state or an
excitonic state and the transition from the intermediate
state to the final state may occur by phonon or alloy-
disorder scattering. These different cases are considered
below.

A. Interband transition: Nonexcitonic

The matrix element for transition from the intermedi-
ate state to the final state involving a phonon of energy
fio, may be written by extending Ridley’s treatment !> for
bulk materials to the QW case. The interaction potential
is assumed to be independent of the phonon wave vector

Q(=4q,q,),% and thus

[{ck’|H,,ITk)|*= 3 AD (No++F 1)
K.q, 2pVa,
X8yiqill (@), 9)
where
iq,z 2
[1(g,)*= ’fOLqu(z)e G em (2)dz (10)

is the overlap integral for electron-phonon interaction.?!

The Kronecker 8§ indicates momentum conservation in
the plane of the QW layer.
The expression for the transition probability becomes
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W (o) = 27 | £40 * 4rCirllpr,|®) | 42
i | mg, (Ego—ﬁwA)Z 2pVa,
X (Ng+1F DS(E, —E, Ftiw,)
k,k'.q,
X |I(g,)*. (11)

The summations over k, k', and g, are converted into in-
tegrals in the usual way. The summation over g, is writ-
ten as?!

L
2 =
> 1(q,) 3 F(T,c) . (12)

The form factor F has been worked out in the literature?!
for simple envelope functions. The summations over k
and k' may be converted into the following integral:

J= [8(Ey —E, Ffiw,k'dk'd0'k dk d6 . (13)

Using  parabolic  dispersion  relation, E.=E,
+#%k'?/2mp, the k' integration is easily done by using
the & function, yielding a constant energy-independent
factor. The integration over k is then converted to an in-
tegration over E,=#’k?/2m} with the limits O and
(fiw), — E, t#w,). Collecting all the constant factors, tak-
ing a factor 2 for spin degeneracy and a term g, for valley
degeneracy, one obtains

(o) =222 L v 1 = i — E i )
a@x“ﬁka QT3 T NN, T L THO),
X H(#iw, —E, t#,) , (14)
where

_e*4;;C(lpr, 1P)D*mEm g, F(T,c)
Bopn = 72 > — 3 . (15)
8m°m gegnpcw, i (Eyo—fiw; )

In the above H(x) is a step function, and E, is the
effective band gap, i.e., the actual band gap plus the sub-
band energies for an electron and a hole. The absorption
coefficient in the above denotes the intensity reduction of

light as it propagates through the QW layer plane.

B. Bound excitonic transition

The absorption due to transition from valence band to
the bound excitonic states was treated by Elliott' and dis-
cussed in detail by several workers.! "¢ Following the
treatment by McLean,? but changing the notations, we
may write the absorption coefficient as

_Bown & 2
alfio,) =" n§1|¢nkc_(o>1
ﬁsz Eex(kc)
X E,+———
K%Z €M (n—1)P
+ fiw, — fiw,
X(Ng+4iF4), (16
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2 2
Y (r)=|— —exp(—2r/ag) , (17)
c aB
1 2
=0)2=———|¢,(r =0)|?. (18)
llpnkc(r | (2n _1)3 I¢IS

In the above ¥ is the excitonic envelope function,?? r is
the separation of an electron and a hole in the plane, k_ is
the location of conduction-band minima in k space, M is
the total mass, and 7K is the center-of-mass momentum,
E,, is the exciton binding energy in the bulk material,
and aj is the bulk exciton Bohr radius. Converting sum-
mation into integration, one gets

Bbxph _1_ & 1

) e L 2 n—1p
€X

XH |, —E, + 1) iﬁwp
X(NQ+%$%) , (19)

where

| 16M#?
Bbxph_ _W Bbbph . (20)
[4 v

C. Transition to excitonic continuum states
For the unbound (continuum) states, one may use the
approximate (2D) Sommerfeld factor?

1
1+exp(—2mw/agk) ~

[¢ (r =0)|>= @1

The absorption coefficient may be written as

2
2
k dg; 1+exp(—2m/agk)

_Béxph 1 2
alhw,)= > - Jak [d

2p-2 27,2
Ak +——ﬁk F fiw

X8 2M 2u ’

E,+

Thus
a(fiw, ) =M1 (fiw,) (23)
with

_ VA 2kdk
Ii(hwk)—fo 1+exp(—2m/agk) 24

and
2u
A= ﬁ2 (ﬁwk—Egiﬁwp) .

In the above M stands for “multiplying factor” and u is
the reduced mass. The above integral is evaluated nu-
merically. However, when the upper limit is large, i.e.,
photon energy is large, it is easy to verify that the value
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of the integral approaches (fiw) — E, tfiw,). The final ex-
pression is

B
alfio,)= ﬁ;": %(NQ +LF DI, (fiwy) (25)
and
M#
Booh= | v ¥ ]Bbbph . (26)
c mU

D. No-phonon (alloy-disorder) process

The transition from the intermediate states to the final
states near k=k, may occur via scattering by alloy-
disorder potential.>* The method to treat this case
would be to replace the matrix element for phonon
scattering given by Eq. (9) by the corresponding one for
alloy-disorder scattering. We shall assume, following the
theory for mobility in QW’s due to alloy disorder,?* that
the scattering potential is a spherically symmetric square
well of height AE and radius r, randomly distributed
among the alloy sites in the alloy material 4, B,_,. The
matrix element for transition considering all the alloy
sites is given by

2
%’Tr?) AE2x(1—x)N,

[(Tk|H . |ck')|*=

alloy

X [l¢r(2)Plg (2)%dz ,  @7)

where N, is the total number of cation sites per unit
volume. It is now straightforward to repeat the earlier
calculation and quote the result for transition to exciton
continuum as follows:

B cxal 1

alfiw, )= o, f(ﬁa’x_Eg) ) (28)

where

B - 6473 x (1—x)Nopw, L*AE?r{I(T,c)

cxal 9 #D2F(T,c) boph
(29)

and

Io(T,0)= [ 16p(2) ¢ (2)%dz . (30)

III. RESULTS AND DISCUSSIONS

The expressions derived in Sec. II can in principle be
used to calculate the absorption coefficient in an
indirect-gap QW, made of, e.g., Si, Ge,_, or Si. Howev-
er, the calculation is rather involved since most of the pa-
rameters are unknown even for bulk materials. The pa-
rameters in the strained system must be known as a func-
tion of composition x also. We shall therefore discuss
some qualitative features of the absorption coefficient and
restrict our attention to the ideal 0-K situation, with no
broadening of the lines at all.

We present in Fig. 1 the variation of the function
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FIG. 1. Variation of the value of the integral defined by Eq.
(24) in the text with photon energy. The value increases linearly
(indicated by the dashed line) as the photon energy increases.

I (#iw,) given by Eq. (24) as a function of photon energy
fiw,. For numerical calculation, the parameters for
Sip sGey s are used:>?*?* m*=0.19m,, m}*=0.49m,,
E,=1.02 eV, fiv,=60 meV, E,, =10 meV. The curve
indicates that near the threshold, i.e., hw;L:Eg iﬁwp, the
function is superlinear; however, as expected, the curve is
linear for larger values of #iw,. This trend has been pre-
dicted in Sec. II and agrees with the relation
(ﬁmA—Egiﬁwp)l obtained from Eq. (14). It should be
noted that a similar trend is also found in bulk materials,
where the absorption for transition to continuum states is
given by (fiw, —E, tHo, )? for large photon energy and
agrees with the expression obtained for simple band-to-
band transitions.

The expressions derived in Sec. II also give us the idea
how a should vary in a QW. We display the expected
variation for phonon-assisted processes in Fig. 2. The
magnitude of the absorption, the locations of the steps
and the breaks, and slopes of the curves are completely
arbitrary. The curve is included only for illustration. We
assume that only one type of phonon is involved and that
its energy is in between the energies for second and third
subbands.

At the threshold, there is a sharp rise of absorption due
to transition to the 1s bound excitonic state attached to
the first subband. There are a few more steps for higher
bound states. The absorption then rises due to the in-
volvement of the continuum states, and shows a linear in-
crease given by (fiw, —E, +#iw,). When transition to the
bound exciton states attached to the second subband
occurs, new steps come in, but the previous linear rise is
also present. The absorption curve changes its slope, as
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FIG. 2. Qualitative variation of the absorption coefficient
with photon energy in the presence of a single intervalley pho-
non. The height of steps and the slopes of the curves are com-
pletely arbitrary. The locations of the steps are obtained from
the Heaviside step function in Eq. (19) and n denotes excitonic
state.

the continuum states belonging to the second subbands
are scanned. Finally a break occurs as the phonon emis-
sion process sets in. Additional structures are introduced
when the photon energy is increased further so that the
final states are in the third subband. The absorption
curve becomes more complex due to the involvement of
additional phonons and alloy-disorder scattering. The
actual curve at finite temperatures should involve a con-
volution of the basic spectra with a line-shape function
arising from fluctuation in well width, scattering process-
es, and finite temperature effects. The actual variation of
absorption coefficient is difficult to predict. In some re-
cent analyses'* the experimental data on QW’s are made
to fit a (fiw, — E, )? law valid for bulk Si, Ge, .

IV. CONCLUSIONS

The spectral dependence of the absorption in indirect-
gap QW'’s is found from theoretical grounds to obey a law
(fiw, — E, +Hiw, )%, where s takes a value O for bound exci-
tonic transitions and a value 1 for band-to-band or con-
tinuum state transitions. The values of the exponent s
are, respectively, % and 2 in bulk materials.
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