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The well-known cumulant-summation formula is applied to the low-temperature calculation of
the quantum-mechanical partition functions for many-particle systems. The motivation for this
method is to be able to deal with many-particle states directly and avoid the usual starting point
of independent single-particle states. The test case chosen for this method was the calculation
of the canonical partition function and the grand-canonical partition function for the degenerate
free-electron gas. The result is that the expected equivalence of the canonical and grand-canonical
ensembles is not found at low temperatures. The role of few-particle fiuctuations in the grand-
canonical ensemble is shown to be extremely important to the thermal properties of the degenerate
free-electron gas and in the difference between the ensembles.

I. INTRODUCTION

This paper will present an application of the cumu-
lant formula for the exponentiation of a series, to the
calculation of the low-temperature quantum-mechanical
partition functions of degenerate many-electron systems.
The initial motivation behind this application was to pro-
vide a possible approximation for the partition function
in the grand-canonical ensemble that would not require
the usual starting assumption of independent single-
particle states. As a test for this methodology, it was de-
cided to calculate both the canonical and grand-canonical
partition functions of the degenerate free-electron gas,
for which the grand-canonical partition function is well

known. The apparent absence of canonical ensemble cal-
culations is quite natural, given the difficulty in counting
states and the well-known "proof" in the standard quan-
tum statistical mechanics literature2 on the equivalence
of the two partition functions.

The initial expectation of this study was that for large
particle number N, the canonical partition function Q~
should be the dominant term in the expression for the
grand-canonical partition function Z when the chemical
potential p has been set so that the average number of
particles is ¹ Furthermore, under these circumstances,
the heat capacity calculated using Q~ and Z should be
the same.

It was with great surprise that we found that the
heat capacity derived from the cumulant formula for the
canonical ensemble was not extensive, and did not agree
with the linear T temperature dependence found in the
grand-canonical ensemble and experiment.

This finding led to a number of inquiries about what
could be wrong with the method of evaluation. A first
question involved whether the evaluations were being
conducted in the thermodynamic limit. Accordingly, all
expressions were evaluated using a density of states per

particle p, so that all factors of the number of particles N
could be explicitly displayed. It will be seen below in the
evaluation of Z that cancellations between terms involv-

ing powers of N are essential for convergence of the cu-
mulant series to the grand-canonical partition function,

A second question arose about the convergence of the
cumulant series. The convergence for the grand-canonical
ensemble, exhibited below, insures that the cumulant se-

ries must converge for the canonical ensemble. Further,
discussion below will indicate that the curnulant series
can be more quickly convergent than the direct partition
function series itself.

A third question about the canonical ensemble results,
reported below, related to Fermi surface effects. All of
these effects mere proportional to N ~ and were negligi-
ble in the thermodynamic limit.

The discrepancy between Q~ and Z and the quick
convergence of the cumulant approximation to Z forces
a critical examination of the proofs in t;he statistical
literature that the two ensembles are the same.

As will be discussed below, these proofs are based on

an assumption, without demonstration, that the domi-

nant term in Z is best represented by Q~ and not by a
collection of terms for some small integer m,

exp(e ) = ) Q~+, exp[As(&+ r)j,

as is found in this study.
The essential difference, to be seen below, between

the canonical and grand-canonical ensembles is that, in

the canonical ensemble, the only allowed excitations are

equal numbers of particles and holes. Only excitations
with these restrictions maintain a fixed particle number.
The simplest excitation will thus be a single-particle-
hole pair, and these two independent excitations give
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rise to a T behavior at low temperatures. In contrast,
for the grand-canonical ensemble, excitations represent-
ing changes in the number of particles allow the simplest
excitations to be an additional particle above the filled
Fermi sea, or a single hole in the filled Fermi sea. Each
of these excitations, representing a single quasiparticle,
gives rise to the expected linear T dependence at low
temperatures. The additional technical details behind
this simple picture will be presented below.

Quite apart from the surprising discrepancy between
the ensembles, the success of the cumulant-summation
formula in recovering the grand-canonical ensemble of-
fers a potentially useful tool for the study of interacting
many-particle systems.

The paper will be organized in the following manner.
In Sec. II the cumulant method and the definitions of
the two partition functions will be reviewed. The free-
electron grand-canonical partition function will be calcu-
lated in two different fashions using the standard prod-
ucts of independent single-particle states as a starting
point. The elements of the standard "proof" of ensem-
ble equivalence will also be reviewed with an intent to
illustrate how it could be altered.

In Sec. III, the calculation of the simplest approxirna-
tion for the canonical partition function is carried out us-
ing the low-temperature cumulant formula. It will be ad-
equate here to demonstrate that the derived exponential
power in the canonical partition function is not extensive,
and the temperature dependence at low temperatures of
this simplest approximation is not in agreement with the
grand-canonical partition function calculated in Sec. II.
This discrepancy will be enough to make the first point
of the paper and a complete calculation will not be given
here.

In Sec. IV the cumulant method will be carried out to
generate an approximation to the grand-canonical par-
tition function for a system with a thermal expectation
value of N electrons. In this calculation, for simplicity,
it will be assumed that the one electron density of states
per particle is constant. This assumption is not essential
and could be lifted with significant additional labor.

The final section will briefly review some of the conse-
quences of these results. Details of the cumulant calcu-
lations are included in the Appendix.

sum which closely resembles the expansion of an expo-
nential, except that the terms t„are not products of the
argument of the exponential. Let us consider a series of
the form

exp(O) = 1 + )
n=l

(2.1)

where the terms t„are not simple powers of some vari-
able to the nth power. In our application ti is extensive
(thermodynamically) and each other term t„has domi-
nant terms of order N". The rearrangement of this se-
ries to find 0, which is the variable whose powers give
the usual series expansion for the exponential, yields the
following cumulant sum:

(2 2)

where the ~„are given by

]Cl ——t1) (2 3)

]C2 —t2 —tl,2 (2 4)

zz = tz —3tztr + 2ti (2.5)

Z4 ——t4 —4t3t]. + 12t2t1 —St2 —6tl) (2.6)

~s ——ts —5t4ti —10tzts+ 20tits+ 30tit2 —60t, tz + 24t, .

(2 7)

Determination of the rth cumulant uses all the t„up to
r in the original series. A. listing of the first few cumulants
can be found in several handbooksi and a formula for the
general cumulant is given by Mattis. s

If the series of e's are quickly converging, finite sums
have the potential of providing good approximations for
the partition functions of interacting systems. In those
systems the t„will correspond roughly to the sum of
terms with n excitations present.

The partition function qN for the canonical ensemble
for a Hamiltonian H in contact with an energy reservoir
with temperature P i is defined as

II. THE CUMULANT FORMULA QN =T~(e p"), (2 8)

There have been a large number of applications of the
concept of the cumulant. 4 Its major use has been in the
field of statistics, but there have also been a number of
applications in statistical mechanics. Most of the appli-
cations have been made in classical statistical mechanics
and in the study of the interacting gas. Kubo has writ-
ten a classic paper showing a number of applications of
the cumulant formula. Most previous applications of the
cumulant formula led to expansions that were valid in
the high-temperature regime. In this paper, the cumu-
lant formula is used for low temperatures.

For the application of this paper the cumulant expan-
sion can be regarded as a rearrangement theorem for a

)~ q PpN

N=1
(2.9)

where the trace is taken over states with N particles.
The grand partition function Z is defined for a system

that is in contact with a particle reservoir at chemical
potential p, which allows the exchange of particles and
energy with the system. For systems described by the
grand-canonical ensemble the number of particles for the
system is not definite, but may fiuctuate. The average
number of particles (N) in the system is determined by
the chemical potential. The grand partition function is
defined as
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From the definition of the grand-canonical partition
function it is straightforward to derive the following use-
ful formulas for the average energy U = (E) and the
average number of particles (N):

(2.10)

excitations (e —
)M) & 0, one obtains integrals of g(e) mul-

tiplied by ln(1+ X), where X = exp[+P(e —
)M)] which

is small in either regime. A useful asymptotic expansion
can be obtained from these integrals by first expanding
the logarithms in a series expansion for small X and then
also expanding the density of states in a Taylor series in
(e —p) and carrying out the resulting integrals of powers
of (e —)(I) and exponentials. The resulting expression for
the grand partition function is

~(N) =
~ (2.11)

where the subscripts indicate the variable held constant
in the partial derivative.

From the early literature, the grand-canonical parti-
tion function for the free-electron gas has been calculated
by using the product theorem of statistical mechanics,
which states that the partition function representing two
independent subsystems is the product of the partition
functions of the systems. For the grand partition func-
tion of a free-electron gas with one-electron energies of
Ekg we may write

oo
( 1)(+1

)7„—)
l=l

and where

(2.17)

(2.16)

where gl"l(p) is the nth derivative of the density of states
evaluated at the chemical potential and r}„ is defined as

Z = (1+exp[—P(ei„—p)]).
k, s

Applying Eqs. (2.10) and (2.11) to this product yields
the standard definition for the energy and average parti-
cle number:

(2.13)

(2.18)

(2.19)

Here eo is the energy at the bottom of the band.
Using Eqs. (2.10) and (2.11) it is easy to derive the

following expression for the energy:

(&) = ) &(~~ ) = J ~(~)&(~)«
k, a

(2.14) (2.20)

where f(e) is the Fermi function and g(e) is the one-
electron density of states for both spin states.

The standard. procedures is to take these two equations
and carry out an integration by parts yielding an integral
of g(e) against the derivative of the Fermi function. At
low temperatures this derivative is so sharply peaked at
the chemical potential p that the density of states can
be expanded in a Taylor series about p. The resulting
integrals of powers of the energy with the sharply peaked
factor lead to a (usually) asymptotic power series in tem-
perature.

Using these series and calculating the heat capacity at
constant particle number and constant volume gives

where k~ is the Boltzmann constant. This calculation is
complicated, but straightforward.

A simpler calculation can be obtained by first calculat-
ing the grand-canonical partition function directly from
Eq. (2.12). The first step is to seek the logarithm of
Z, converting the products to sums and integrals over
the density of states g(e). By separating the integrals
into two types, particle excitations (e —p) ) 0 and hole

and for the average number of particles,

(N) = N(p) + 2) - g"" "(v)n.
t'=0

(2.21)

For use in our later discussion it is appropriate to note
that the heat capacity at constant chemical potential can
be obtained easily from Eq. (2.20),

(2.22)

The heat capacity at constant particle number, Eq.
(2.15), and corrections may be obtained easily from these
equations by first determining the temperature derivative
of the chemical potential so that (N) is constant in tem-
perature.

It is currently standard practice to use C{~~ for inter-
preting experiments instead of C„. This practice is based
on the standard argument in statistical mechanics that
the canonical partition function is essentially the same as
the grand-canonical partition function for large systems
and that experiment must necessarily correspond most
closely to the condition represented by the canonical en-
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exp(VP) & Z & aVexp(VQ). (2.23)

Taking the logarithm and dividing by V gives

P & ln(Z)/V & P+ ln(aU)/V. (2.24)

As the volume becomes very large, the second term on
the right side of the equality goes to zero and Z is ap-
proximated well by exp(VP).

The possibility that is ignored in this general argu-
ment is that there are systems where the dominant term
in Z is represented by combinations of terms involving
small fluctuations in particle number and that this sum
dominates the simple Q~ contribution.

In the case for the grand-canonical partition function of
the free-electron gas we will find below that the dominant
collection of terms for small m

semble where N is fixed and equal to (N).
Let us now reexamine this argument. The key step in

the argument is the unverified assumption that the dom-
inant term in the grand-canonical partition function is
Q& exp(PpN), where for simplicity we write N = (N) for
the average particle number. Because the Helmholtz free
energy is extensive, this dominant term can be written in
the form exp[Up(P, ~)] where P is intensive with respect
to the volume V and/or particle number N. Two rather
weak inequalities are applied at this point to bound Z.
The first inequality simply states that the whole series
must be larger than the single dominant term. The sec-
ond inequality is chosen to dominate Z. It is argued that
for some large number of particles No in the volume V
the interactions raise the energy so much that Q~, +„ is
as small as desired. In this case one can argue that Z
must be smaller than No times the dominant term. It
is further argued that No must be proportional to the
volume, No ——aV. These arguments can be combined to
yield

determined by the cumulant series can be more strongly
convergent to the partition function if Z is large.

For the low temperatures of interest here, the temper-
ature dependence of the first cumulant xi dominates the
partition function. Higher-order x„give either correc-
tions to the coefficient of the temperature dependence of
~i or contribute higher powers of temperature. When we
examine the canonical ensemble below, we will explicitly
evaluate only zq and )cd.

In the canonical ensemble, because of the restriction
that the particle number is fixed, the lowest-energy ex-
citations must be pairs of particle excitations and hole
excitations. It is not possible in the canonical ensem-
ble to have excitations with only a single particle and
the filled Fermi sea or a single hole with the filled Fermi
sea, since these would represent a change in the number
of particles. Yet single-particle or hole excitations will
always give low-temperature contributions to the parti-
tion function that are larger than the particle-hole pairs.
In the calculations to follow this will manifest itself in
a temperature dependence of P for the single-particle
or hole excitations and a temperature dependence of P
for the particle-hole pairs. It is the fact that the canoni-
cal ensemble only allows low-lying excitations made up of
particle-hole pairs and the grand-canonical ensemble con-
tains single-particle or hole excitations which have come
from the reservoir that causes the essential difFerence be-
tween the two ensembles.

As will be shown in the section on the grand-canonical
ensemble below, the contributions to the partition func-
tion due to up to five additional holes or electrons from
the ground state with N particles give a sizable fraction
of the coefficient of n /3 which is characteristic of the
degenerate free-electron gas.

III. CANONICAL PARTITION FUNCTION

exp(8 ) = ) Q~+„exp[Pp(N + i')] (2.25)

gives rise to an extensive O~ which converges to a 0 as
m -+ oo, and which dominates the Helmholtz Free energy
for N particles obtained from the canonical ensemble.

In Sec. IV we will see that the cumulant formula ap-
plied to m = 5 recovers the grand-canonical result to
within about 2% at low temperatures.

The "standard" proof reviewed above used an inequal-
ity to show the equahty of ln(Z) and its dominant terms
in the thermodynamic limit. The cumulant formulas used
in this study represent series for which each term t„(or
z„) is already evaluated in the thermodynamic limit. The
question of convergence then becomes the usual criterion
for the limit of partial sums of the series. A consider-
ation of these limits indicates that the cumulant series
tc„can be more quickly convergent than the sum of the
t„. If T~ is the partial sum of the series of the t„ terms
and if Z is the sum, then the series converges if for large
enough N we have ~T~ Z~ & s. If K~ is the—correspond-
ing partial sum of the cumulant series we also have that
~Kiv —In(Z)~ & s/Z. This means that approximations

In this section we will outline the evaluation of
the canonical partition function using the cumulant-
summation formula written out above. The first step
is to begin with the standard formula for the partition
function for N free electrons with single-particle energies
eg, for momentum k and spin s,

(
Qm =

N~ ). exp P).~i... — (3 I)
;=i "')'

where the prime on the sum indicates that terms where
any two particles have the same momentum and spin are
excluded from the sum. To simplify the counting factors
we have included the prefactor of N!. Such an overall
factor cannot change the thermodynamics. In order to
simplify the writing of the equations the spin variables
have been left off the summation variables in Eq. (3.1),
but the reader should consider them to be included in the
summation implicitly. Below, the presence of the spin
variables will be explicitly indicated, where needed. At
this stage the prime on the summation symbol is the only
manifestation of the Pauli exclusion principle beyond the
fact that the ground state is constructed using it.
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Since we are interested in the low-temperature prop-
erties of the free-electron-gas partition function, we start
with a ground state which is the filled Fermi sea: all
states with momentum below the Fermi momentum ~kF

~

are occupied and all st, ates with larger momentum are un-

occupied. For later simplicity of notation we designate
the set of occupied momenta by the set T.

In the following paragraphs we set a convention that
momentum variables representing states not in the Fermi
sea will be represented by p and momentum variables
representing states inside the Fermi sea will be repre-
sented by q.

We rearrange the terms in Eq. (3.1) so they are col-
lected together by the number of particle-hole excitations
out of the Fermi sea. We label each set of terms by t„/n!,
where n is the number of particle-hole excitations. In
such a rearrangement the first term corresponds to no
particles excited out of the Fermi sea and can be written
as

1 )
q&)q&~p&)p&

e e e-Pbg -PLg -PEp (3.8)

where 6; = ep,. —eq,, and the prime on the sum implies
the Pauli exclusion principle where no two particles (or
holes) can have the same momentum and spin. Using the
diagrammatic notation we can write the following for tq

factor between to and t1.
The two particle-hole contributions to the partition

function can be derived in much the same fashion as
above. This begins by recognizing that each N —2 par-
ticle Fermi sea is best represented by the two holes q1
and q2, and that if the pair of holes is interchanged, the
system remains the same. Therefore it is necessary to
divide the summation over all possible q1 and q2 by 2!'in
order to avoid overcounting, This same factor also exists
for sums over pr and p2. These arguments lead to

1
'- () exp —P)

q, . .., q '=1
(3 &)

pEO =
q&)q& rp»p&

~ 0 00 (3.9)

(3.3)

The single-particle —hole pair excitations contribute the
term tr which will have a sum over N —1 q's and one p,

There are exactly N'. ways the q; can be assigned the
N specific values contained in &. For each of these ¹!
assignments the argument of the exponential is Eo, and
the value of to becomes

—PEo ~ 0 00 = OO 00 (3.10)

By a similar argument it can be shown that the general
term can be written as

Since the holes and particles do not have the same range
of momenta, we may neglect the Pauli exclusion principle
between them and write

ql ) ~ ~ ~ )qN-1 ~p

( N 1-
exp -P ) e~„exp(-Pep, ).

=i )

t„n!ePE' =
ql qn pl )' ~ ~ &pn

exp ~

—P)
)

(3.11)

N-1

) eq, z = Eo —eg. (3.5)

Remember that there are N! ways to distribute N elec-
trons in a system with certain momentum configuration,
so we have

) e ' exp( —Pep&) exp(+Pe&, i).
p, s,q, s I

(3.6)

For later purposes it is useful to introduce a diagram-
matic representation for the sums in Eq. (3.6). We rep-
resent the momentum (and spin) sums over the initially
unoccupied particle states by (~) and the sum over hole
momenta (and spins) by (o). Since the particle and hole
sums are independent we will be able to write t1 as either

t " '=(-) =(~)( ) (3.7)

where we have factored out both the common exponential

(3.4)

Each term in this series can be represented much more
simply by noting that it represents a single hole in the
Fermi sea. Therefore the argument of the first exponen-
tial in Eq. (3.4) can be written as

or symbolically
I

t„n!e~~' = (~ o ~ o), (3.12)

where the number of (Io) pairs in the parentheses is n
Using this symbolic notation we And that the canonical

partition function for N free electrons can be written as

1 (~ ooo) 1 (~ o ~ oeo)
Ne =1+ oo+ — +-

pl 2! 3l 3I

1 (~ o ~ o)'
+ ~ ~ ~ + + ~ ~ ~

n! n! (3.13)

where the last term has n (Io) pairs.
This is the series that we will attempt to sum using

the cumulant-summation formula from which we seek a
formula for QN of the form

QN = e ~ ' exp[0(T, N)]. (3.14)

Now each of the terms has a prime indicating that the
summations must be carried out with the Pauli exclusion
in efFect. The cumulants will enable the systematic treat-
ment of the Pauli exclusion. However, it is instructive
and heuristically useful first to derive an approximation
that will give the dominant low-temperature approxima-
tion. This approximation is simply to consider 0 to be
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equal to the first cumulant zi, t&
—

—,'(16z' —8z'+ z'), (3.21)

0 = Kl —(Io). (3.15)

Another way to think about this approximation is to ne-

glect the primes on the diagrams in Eq. (3.13) and to fac-
tor each diagram into independent pairs of (Io). Equiv-
alently, keeping only the first cumulant ignores the Pauli
exclusion principle except insofar as it was used to con-
struct the Fermi sea.

The evaluation of (Io) is very easy:

(oo) = ) exp( —PE'p p)) exp(Ptq p). (3.16)
Pi& q, a

If we assume a constant density of states per electron of
2p and a band from D to —D, we can write the sums as
simple integrals

D 0

(Io) = N (2p) e P'd~ eP'd~,
0 -D

so that at low temperatures we have that

2 N

(3.17)

(3.18)

Inserting Eq. (3.18) into the heuristic approximation for

Q& gives a heat capacity of

Q —12N2p~ps P2 (3.19)

I I—(IO) (OO)2t (3.20)

In the Appendix it is shown that the Pauli exclusion prin-
ciple summation restrictions in the sum represented by
(Io)' can be carried out by adding in and subtracting
out the excluded terms. Using these results from the
Appendix we see that

where k~ is the Boltzmann constant.
The fact that the simplest approximation for Q~ does

not yield an extensive exponential power, and does not
recover the expected linear T heat capacity, is not due to
our neglect of the Pauli exlcusion principle in this approx-
imation. The contributions from the higher cumulants
do not include linear particle number and temperature
dependences. The Pauli exclusion principle can be taken
into account exactly as will be illustrated in the following
paragraphs and the Appendix. The canonical ensemble
with its severely restricted excitations cannot exhibit the
extensive and linear heat capacity for this system. In
our discussion of the grand-canonical partition function
below, we shall see that the fluctuations in the particle
number are critical for recovering the extensitivity and
the linear heat capacity.

Before examining the grand-canonical ensemble, let
us discuss the first few corrections to this simple result
for the canonical partition function and demonstrate the
manner in which the Pauli exclusion principle can be in-
cluded. This requires that we discuss the next few terms
and cumulants in the series.

The second-order term in the sum t2 is given by

where z = Np/P. Combining this with ti ——4zz/N, we

can calculate the second cumulant

xg ———Sz —4z + -z . (3.22)

Now the first few terms of the exponential argument can
be written as

0 17 2 2 3 4 4
4 ) (3.23)

where e is clearly not extensive.
Higher-order corrections can be carried out for the

canonical ensemble, but will not be completed here. The
higher-order terms represent higher powers of the particle
number N and the temperature T and do not change the
basic result that the canonical ensemble does not give
the expected temperature dependence and extensivity.
The fact that 0 from this cumulant expansion calcula-
tion is not extensive is rather surprising. Since the 0
series appears to converge only for small values of z, our
result may only reflect the series expansion of an ana-
lytical function in the small z regime, whereas the same
function should be extensive at the large z (i.e. , large

N) limit. The simplest class of such analytical functions
can be obtained by factoring z out of the 0 series and
seeking the [M, M —1](z) Fade approximantiz for the
remaining series:

0 = z [M, M —1](z),

where [M, M —1](z) is defined as

(3.24)

[M, M —l](z) =
PO + Pl z + ' ' ' + PM™(3.25)

in which n's and P's are constants to be determined from
the expansion of 0 in the small z regime. In the large
z limit, the leading term of 0 from Eq. (3.24) is propor-
tional to z, thus proportional to the particle number N.
Evaluation of the leading coeflicients for large z was car-
ried out with several terms and the corresponding Pade
approximants. There was no convergence as the order
of the Pade approximants and partial sums increased,
and the values of the heat capacity did not correspond
to the grand-canonical ensemble result. In any case, we
have demonstrated that the "proof" of the equivalence
between the canonical and grand-canonical ensembles is
not as trivial as indicated in standard textbooks. The
rest of the paper will focus on the experimentally more
important grand-canonical ensemble.

IV. THE GRAND PARTITION FUNCTION

The formula for the grand partition function is a sum
of terms exp{P[N'p —Eiv(o, )]} for all possible numbers of
particle numbers N' and all states o, for each N'. When
we want to compare with the evaluation for a system of
N particles, we can rewrite the series by first summing
all of the terms for N particles, then summing all of the
states for N + 1 particles, N —1 particles, N + 2, etc.
Symbolically, we can write the grand partition function



1344 S. P. BOWEN, Y. ZHOU, AND J. D. MANCINI 46

I I

&exp[—&(NI —Eo)I = +(")/2!+(' ")/3'+.
+(o) + (o ~ o) /2'+ " 1+(-)+ (~ o -) /(2')'+ + (~) + (~ ~ o) /2'+

I I

+(oo) /2! + (~ ~ oo) /3! + + (4.1)

Here the terms in the partition function are written in lines by the particle number in the system. The first line
displayed is for N —2, the next lines are for N —1, N, N + 1, N + 2, etc. The line including the 1 represents the
terms included in the canonical ensemble for N particles.

For the purpose of applying the cumulant formula we need to regroup the terms by dominant powers of the number
of particles. (That is, we group all terms that go as N together, all N terms together, etc.) If we carry this out, we

can write the partition function as

~exp[—&(NIi —&o)] = 1+(~)+(')+ —,K") +(") +2("))+—,K' ~ ~) +("') +3(~ ")+3(' ~ ~) ]

1 I I I I I

+—[(~ ~ oo) + (o o oo) + 4(~ o oo) + 4(o ~ oo) + 6(~ ~ oo) ] +
4t

(4.2)

Note that only the 1 and the terms with equal numbers
of particles and holes represent the contributions from
the canonical ensemble. In Eq. (4.2) there are only two
such terms explicitly shown excluding the initial 1. Most
of the terms displayed in Eq. (4.2) represent small fluc-
tuations in particle number. To evaluate Z using the
cumulant formula we need to calculate the various cu-
mulants. Using the results from the Appendix we have
the following:

1 1 1 118 = 4z
I

1 ——+ ———+ —
i22 32 42 52)

which is within 1.96%o of the correct coefficient.

(4.11)

The higher-order terms begin to be significantly
more complicated. We have evaluated t5 and z5 us-

ing the computer-based algebra manipulation program
MATHEMATICA. The combination of all of the cumu-
lants evaluated. including ts yields

~i —ti —
(~) + (o) = 4z, (4.3)

where z = N p//3. It should be noted that it is zi that de-
termines the major temperature dependence of the par-
tition function. In this case the contributions to zi rep-
resent fluctuations in the particle number by jl. The
first contribution from the N particle states arises not in

ti but in t2. To evaluate t2 it is necessary to evaluate

t = (") + (") + 2(") (4.4)

Using the results of the Appendix it is easy to show that
t2 —16z —2z. Note that, since z is proportional tc
the number of particles, t2 is of order N . When we

calculate the second cumulant, it is found to be extensive
as required:

~q ——t~ —t& ———2z.—2=— (4 5)

8 = 4z(1 —1/2'). (4.6)

The next two terms in the series t3 and t4 can be picked
out of Eq. (4.2). Using the results of the Appendix it is

easy to show that

t, = 64m' —24m'+ -'z,
8

K3 = 3Z)

t4 —256z —192z + (is2s + 12)z —6z,
K4 ———6z.

(4.7)

(4 8)

(4 9)
(4.10)

Combining these two results to determine the first ap-
proximation to 8 we find the first two terms in the series

for x2/12,

V. CONCLUSIONS

This research originated in an attempt to explore
methods for many-body calculations which dealt directly
with the many-particle states and did not start with the
independent single-particle approximation. The fact that
the grand-canonical partition function can be approxi-
mated in this way indicates that this approach may have
merit for more complex interacting systems. Indeed, cal-
culations using this approach have been started.

The result that there is a difference between the canon-
ical and grand-canonical ensembles has been quite sur-

prising. Since the difference seems to be to arise from the
distinctly different terms that are allowed in the sums of
the two ensembles, there seems to be no way to avoid the
results of this study. This descrepancy raises a number
of questions that merit further study.

The first question arises from the surprisingly strong
role that extremely small Quctuations in particle num-

ber play in the low-temperature properties of the free-
electron gas. Our traditional understanding has assumed
that experimental measurements should be most closely
described by the canonical ensemble for a fixed num-

ber of particles. Indeed, all comparisons of calculated
heat capacities use the formula for C~~~ derived from the
grand-canonical ensemble in which the chemical poten-
tial changes with temperature to constrain the average
number of particles to be equal to N.

The fact that the canonical ensemble does not have an
extensive exponential argument, and does not agree qual-
itatively with experiment, suggests that heat-capacity ex-
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ds(&l(s —&) '14)e ' (5.1)

By collecting terms representing the same number of ex-
citations above, an approximate ground state in much the
same way as in Eq. (4.2), it is possible to approximate
the first few cumulants z„. This study will be described
elsewhere.

periments might be compared instead with C&, where p
at T = 0 is determined by the particle number. Using C&
instead of C(iv) for a free-electron-gas density of states
would give rise to an increase in the theoretical estimate
by a factor of 1.5. A cursory comparison of reported
experimental heat capacitiesi4 and band theory calcu-
lations for simple metals shows that for Li and other
few-electron systems the ratio of experimental to theo-
retical C(~) is greater than 1 and close to 1.5. For more
complicated systems there is no correlation with this sim-
ple picture. Since no consideration has been made here
of corrections due to the Coulomb interaction, the lack
of agreement is not unexpected.

Nevertheless, the role that particle-number fluctua-
tion plays in the thermodynamics of the free-electron gas
raises the question of validity for approximation schemes
where it is implicitly assumed that the canonical ensem-
ble most closely represents experimental measurements.
These questions should be studied for other systems.

The application of these ideas to an interacting system,
such as a Hubbard Hamiltonian, appears to be tractable,
at least to the inclusion of the first few z„. The proce-
dure would select a basis set of many-particle states ~g)
which may be close to eigenvectors of the Hamiltonian.
Approximations will be constructed for the resolvents of
the Hamiltonian H with these states and terms t„will
be evaluated by using contour integrals of the type

and we have neglected exponentially small terms. The
sum over the hole states yields the same result:

(p) —) ep(~~~ p) (A3)

or that (0) = 2z.
The first example of the effect of the Pauli exclusion

principle arises in the two-particle (two-hole) sums. The
two-particle sum (oo) contains both momentum and
spins sums and the restriction is that no two electrons
can be in the same state (p, s),

(oo) =
P&)&&)P&)&&

(A4)

If si g s2, then the momentum sums are unrestricted
and the evaluation reduces to 4@2. If the two spins are
equal, then the prime in the summation reminds us that
the two momenta cannot be equal. For later use it is
helpful to define the sums without the spins using square
brackets:

[oo] —) e p(~~g &)e p(~~a &)

P& )P&

(A5)

[oo] = ) e ('» ")e ('» ")(1—bp p ).
P& )P&

(A6)

In this equation there are no restrictions on the sums and
we may write this equation symbolically as

The summation restriction can be eliminated by adding
and subtracting out the terms with both momenta equal
and having no restriction on the momentum sums. This
is most easily written with a b function:
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[» —o] = z/2. (AS)

With these rules we can evaluate Eq. (A4), taking into
account the factor of 2 for the spin values:

where the second term represents a single momentum
sum of all terms with both momenta equal. It is straight-
forward to show that [o] = z and that

APPENDIX

In this appendix the details of the energy sums will be
briefly listed.

The sum of the exponential of the excited electron
states is given by

( ) = ) exp[ ~(~ &)].
P)&

(A1)

z = Np/P, (A2)

For simplicity in this paper we will assume that the den-
sity of states per spin and per particle for the electrons
is constant over a bandwidth of 2D with value p. At low
temperatures the sum in Eq. (A1) is (~) = 2z, where

(oo) =2[»»] +2[»»],

(-) = 2([.]'- [~ —.])+2[.]'

(A9)

(A10)

So we have that (oo) = 4z —z, which is the same value
as for (oo) .

For the evaluation of the grand-canonical ensemble it is
necessary to evaluate more complicated diagrams. The
first one of these is (o ~ ~), which will involve three
spin sums and three momentum sums. If we consider the
eight different spin terms, we find that there are two with
all spins the same and six with two spins the same. This
means that we can write this three-particle term in terms
of the square brackets which contain only momentum
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sums. That is,

(~ ~ ~) = 2[o e e] + 6[e][oo] . (All)

spins equal, eight terms with three spins the same, and
six terms with two spins the same. This leads to the
following equation:

The momentum restrictions in the three-electron
bracket can be removed by three b-function factors mul-
tiplying the momentum sums,

(1 —bj, i „2)(1—b„2 J,s)(l —b„g „s).

(~ ~ eo) = 2[e ~ oo] + 8[e][o~ o] + 6[oo] [oo] . (A15)

The Pauli exclusion summation restrictions can be lifted
by including b-function factors and a lengthy graphical
analysis leads to the following:

Working out the sums and the b functions yields

I

[ ~ ] =[]'-3[][— ]+2[ —~ —.] (A13)
[e ~ oo] = [e] —6[e] [e —e] + 8[o][e—~ —o]

+3[o —o] —6 [o —~ —~ —e] . (A16)
From this result and using Eq. (A9), it can be shown that

Substitutions from the above yield
4z

(e ~ ~) = 8z —6g + —.
3

(A14) (~ ~ ee) = 16z —24m + ~'z —6z. (A17)

We also have, as before, that (~ ~ ~) = (o o o) .
The four-particle sum can be worked out in a simi-

lar fashion. The four-spin sums give two terms with all

Higher-order contributions can be worked out with rela-
tive ease using something like MATHEMATICA. We have
worked out the fifth-order diagrams in this way.
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