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The structure of a plasmaron excitation is described for a two-dimensional electron gas at T=0 K. It
is shown to lead to a staircaselike density of states with three steps. The band renormalization is then
calculated by taking the imaginary part of the self-energy fully into account. The renormalization of the
chemical potential is shown to be smaller than that of the edge of the density of states. The quasiparticle
energy dispersion is strongly nonparabolic but the renormalization of the effective mass at the Fermi sur-
face is found to be well approximated by the widely used lowest-order approximation.

I. INTRODUCTION

The plasmaron excitation was identified by Lundquist
for a three-dimensional electron gas.! He showed that,
aside from the usual quasiparticle peak, the spectral func-
tion presents a low-energy peak resulting from the reso-
nant plasmon-hole coupling. He termed this additional
peak plasmaron excitation. In a three-dimensional elec-
tron gas, plasmaron excitation leads to a satellite peak
below the edge of the one-particle density of states (DOS).
This structure gives a possible explanation for the low-
energy tail observed in soft-x-ray emission spectra for
light metallic elements.> It was also shown that the plas-
maron excitation makes an important contribution to the
cohesive energy of metals.?

The two-dimensional (2D) electron gas has been stud-
ied intensively in the past two decades. Several authors
have calculated the self-energy corrections to the sub-
band energy of electrons confined in semiconductor
heterojunctions and quantum wells. Most of them used
the standard random-phase approximation (RPA) with
the charge-density fluctuations approximated by a single
plasmon pole.> ™% Full RPA calculations have also been
reported®’ and local-field corrections have been con-
sidered in order to improve the evaluation of the effective
mass and the Landé factor.?

For the evaluation of the band renormalization, the fol-
lowing assumptions are often made.

(i) In all the papers cited above, it is assumed that the
band renormalization is given by the quasiparticle energy
calculated by neglecting the effect of the imaginary part
of the self-energy. Reference 9 takes this effect into ac-
count but only to a certain extent.

(ii) Most of these recent calculations use the zeroth-
order approximation when evaluating the quasiparticle
energy. This approximation consists of taking the self-
energy at the noninteracting electron energy when solv-
ing the Dyson equation. Reference 3 already discussed
this point in connection with the renormalization of the
effective mass. Arguments have been given against and
in support of the solution of the full Dyson equation.°

(iii) Many authors assume that the band shifts rigidly
and hence that the shift of the chemical potential is equal
to that of the edge of the DOS.

(iv) Finally, the band renormalization is usually report-
ed to be a function of the density of the noninteracting
electron gas. This makes the comparison with measure-
ments difficult since only the density of the interacting
electron gas is experimentally available.

In this work, I attempt to avoid these additional ap-
proximations. The spectral function for the 2D electron
gas is calculated using the full RPA. The structure of the
2D plasmaron is thereby obtained and the density of
states computed. This allows the electron density to be
evaluated for a given chemical potential, fully including
the real and imaginary parts of the self-energy. The re-
normalization of the energy band is then described by
studying the shift of the chemical potential and of the
edge of the DOS separately.

The main contributions of this work are (i) the descrip-
tion of the 2D plasmaron excitation, and (ii) a precise
evaluation of the renormalization of the 2D energy band
and a discussion of the rigid shift approximation.

The paper is organized as follows. Section II is a
theoretical introduction. Section III describes the struc-
ture of the self-energy, the spectral function, and the cor-
responding DOS, and states the substantial differences
from the 3D case. The last section discusses the shift of
the chemical potential and of the edge of the DOS as well
as the renormalization of the effective mass at the Fermi
surface.

In a subsequent paper, I shall discuss the effects of the
plasmaron excitation on the line shape of the intersub-
band absorption spectra in a confined electron gas.

II. THEORY

The spectral function 4 (k,E) is related to the retarded
self-energy S (k, E) by the following expression:!!
—2S,(k,E)

A(k,E)= .
[E —&(k)—Sg(k,E)*+[S;(k,E)]?

(1)

The kinetic energy of the noninteracting electron, with
mass m, measured from the chemical potential u is given
by &(k)=(#*/k*/2m)—pu. The real (Sg) and imaginary
(S;) parts of the self-energy are obtained from the stan-
dard RPA expression. After the frequency summation,
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we have the following equation:!°

S (k)= [E(k+q)]

(2m

2quvqf

C(q,
np[§(k+q)]+ng(E)
E—&k+q +o+id

)

The first term is the unscreened exchange contribution
and the second one the correlation term. The charge-
density  fluctuations are described by C(q,E)
=—2Im[1—v,P"(q,E)]"!, where P'"(q,E) is the sin-
gle bubble retarded polarization function whose analyti-
cal expression at 7'=0 K is well known for a 2D electron
gas.!? The 2D Fourier transform of the Coulomb poten-
tial is vq=e2/2eq in mks units, where € is the back-
ground static dielectric constant. The Fermi and Bose
distribution functions are ny and np.

The DOS is the sum over the momentum of the spec-
tral function:

__ 2 2, Ak E)
g(E) (2Tr)2fdk il (3)

The charge density is the integral of the DOS weighted
by the Fermi distribution function:

ns= [dE g(E)ny(E) . @)

The corresponding chemical potential for a nonin-
teracting electron gas is u'”’ =#%ngm/m and the resulting
renormalization of the chemical potential is
AW =y —u'Y With this procedure, the variation of the
shape of the DOS due to the electron-electron interaction
and in particular the contribution of the imaginary part
of the self-energy is fully included.

The shift of the edge of the DOS is determined by the
position of the low-energy peak of the spectral function
at k =0,E'‘?)(0). It is given by the solution of the fol-
lowing equation:

E —&(k)—Sg(k,E)=0 . (5)

The shift of the DOS is then
A(DOS)ZE(QP)(O)+H.

In the literature, the band renormalization is computed
in a different way. The charge density ng is given and,
using Luttinger’s result that the Fermi momentum

=1/2mng is the same in an interacting and in a nonin-
teracting electron gas,'® the chemical potential u is given
by the solution of (5) at kK =k in the lowest-order ap-

proximation,'* i.e.,

edge of the

u=pO+SQkg,0) . (6)

As seen in (2), the chemical potential u appears explic-
itly in the expression for the self-energy. In (6), however,
S is computed by approximating u to the chemical po-
tential of the noninteracting electron gas, u'?),® indicated
by the superscript (0) in (6).

PAUL von ALLMEN 46

III. THE 2D PLASMARON

In this section I discuss the structure of the self-energy
and of the spectral function as obtained from (2) and (1),
respectively. Figure 1 displays these functions at T =0 K
for a given chemical potential u =14 meV and for various
values of the momentum k. The electron effective mass is
m =0.07m, and the background relative dielectric con-
stant is €, =12. These numbers are close to those used
for an electron gas confined in a GaAs/Al,Ga,_,As
heterojunction.

Two values of k are important in this system. One is
the Fermi momentum of the noninteracting electron gas,
ko=[(2m /#*)]'/%. The other is the Fermi momentum
of the interacting electron gas kp at which the momen-
tum distribution has a discontinuity.!! The curves in Fig.
1 are given for these momenta and for values below and
above them.

The imaginary part of the self-energy will now be dis-
cussed and its structure elucidated by considering the
scattering events in the electron gas. A striking property
is that S;(k,E) is small in a given energy region around
the Fermi surface (E =0), the extension of which varies
with k. I shall first discuss this point.

As noted by Lundquist,' the plasmon-pole contribution
to the correlation term of the self-energy is similar to the
self-energy for the polaron problem in a degenerate semi-
conductor.'” From there it can be deduced that this con-
tribution must be zero in a region around the Fermi sur-
face, where the electron or hole excitations cannot scatter
to the Fermi surface by emitting a plasmon. For a 3D
electron gas, the size of this region is almost the same for
all momenta because the plasmon dispersion is almost flat
at long wavelengths. For a 2D electron gas, the plasmon
dispersion behaves like Vg at long wavelengths, and
therefore the momentum conservation during the
electron-plasmon scattering implies that the size of the
region is different for each momentum.

We now determine the boundaries of this region from
the properties of the electron-plasmon scattering.

Figure 2 shows the plasmon energy dispersion and the
energy [£(q)—E] that is exchanged during the electron-
plasmon scattering in a 2D electron gas at k =0. The
shaded areas indicate the regions where the statistical
factor (np+ng) in (2) is nonzero at T =0 K. The mean-
ing of this statistical factor is that only scattering events
where a plasmon is emitted are allowed at T =0 K. The
scattering events are given by the intersections of the
plasmon and the electron dispersion curves. They con-
tribute to S; only if the intersections are in a shaded area.
The upper half-plane (E <0) is for the plasmon-hole
scattering and the lower half-plane (E >0) for the
plasmon-electron scattering.

Figure 2 permits us to find the boundaries of the region
where the plasmon-pole contribution to S; is zero for
k =0. For k >0, the situation is somewhat more compli-
cated because of the summation over the angle between k
and the plasmon momentum q. It can be shown that the
boundaries are given by the following expressions:

E(k)SE=w,(ky—k) for k <k, ,

,
—w,(k —kg)SE<E(K) for k >k . @
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FIG. 1. Real (solid line) and imaginary (dashed line) part of the self-energy and spectral function for a 2D electron gasat T=0K,
for a chemical potential p=13.7 meV; (a) k =0, (b) k =0.005 A7 (0 k= =ky,=0.016 AL k= =kr=0.022 A~!, and (e) k =0.025

AL

We note that for k =k the domain reduces to a single
point E =0, and that its size grows when k is larger or
smaller than k. Figure 1 displays this typical behavior.

S; is not exactly zero in the region defined above be-
cause the electron-hole scattering, which is not ruled by
the same constraints as the electron-plasmon scattering,
also contributes to the charge-density fluctuations and
hence to S;.

The second important observation about the structure
of S; is that it presents a strong resonance or even a
divergence situated below (above) the Fermi surface
(E =0) for k below (above) k,. This peak is associated
with a resonance in the joint density of states for the
electron-plasmon scattering, which occurs when the elec-
tron and the plasmon energy dispersion curves are
tangent. The resonance is at E <0 ( > 0) if the dispersion
curves are tangent in the upper (lower) half-plane.

We now come to the discussion about the structure of
the spectral function. Since the retarded self-energy is a
causal function, its real and imaginary parts are related

ENERGY (eV)
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FIG. 2. Electron (solid line) and plasmon (dashed line) ener-
gy dispersion for a 2D electron gas. The initial energy in the
electron-plasmon scattering w is subtracted from the electron
energy. The shaded areas indicate the regions where the scat-
tered state is allowed to be at T =0 K.

0.016 0.020

by a Kramers-Kronig relation'! and hence the real part
presents a strong oscillation associated with the strong
resonance in the imaginary part. As noted by Lund-
quist,’ this implies that the spectral function has more
than one peak. From the previous section, we know that
the position of the peaks are given by the solutions of (5).
These solutions are the quasiparticle energies whose
damping is given by the imaginary part of the self-energy
at that energy. Graphically, the solutions of (5) are given
by the intersections of straight lines with the S curves
(see Fig. 1).

At low k, there are three intersections. The low-energy
intersection produces a peak in the spectral function that
reduces to a & function if the corresponding damping is
zero (see first graph in Fig. 1). The number beside the 8§
function indicates its spectral weight. Lundquist called
this peak a plasmaron.! It exists because there is a strong
oscillation in S; due to the strong resonance in S; for
E <0. Therefore we can say that the plasmaron peak is
caused by the resonant plasmon-hole coupling. The oth-
er two intersections in Fig. 1 produce a single broad peak
because the corresponding damping is large. This peak
corresponds to the usual dressed quasiparticle.? At
higher k, the plasmaron peak broadens and merges with
the high-energy peak at around k =0.01 A~1. Above
k=0.01 A™! there is only one solution to (5), and the
second peak in the spectral function is due to the strong
resonance in S; for E>0. At k =kj, most of the spec-
tral weight is in the & function centered at the Fermi sur-
face (E =0), as expected from the Fermi liquid theory of
Landau discussed in Ref. 16. We know that the integral
of the spectral function over the entire energy range is
equal to 1.!! The curves in Fig. 1 fulfill this sum rule
within less than 1%. This gives an indication of the nu-
merical accuracy of the calculation.!

The behavior of the spectral function described above
is very similar to that found in the 3D case in Ref. 1. An
essential difference is that in 3D the plasmaron peak
disappears around k =k, whereas in 2D it merges with
the other peak. To illustrate this fact, Fig. 3 displays the
dispersion of the solutions to (5) and the corresponding
damping. The low-energy solution at k =0 (plasmaron)
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FIG. 3. Quasiparticle energy (a) and width (b) dispersion for
a 2D electron gas at T=0 K. Solid line: ng=2.2X10" cm™%
dashed line: ng=7.1X10"" cm~?; dotted line: ng=1.2X10"
-2
cm™ 2

is on the same curve as the solution that gives the 8 func-
tion at k =kp. In 3D, the plasmaron band is separated
from the band that gives the 8 function at k =k .

This difference between the 2D and the 3D case also
appears in the DOS. Figure 4 displays the DOS for three
values of the chemical potential (n=2.7, 13.7, and 27.4
meV). The corresponding densities are ng=2.2X10"
em ™2, ng=7.1X10" cm~2 and ng=1.25X10"? cm 2
Whereas in 3D the plasmaron produces a satellite peak
below the edge of the noninteracting electron DOS,' in
2D it produces a staircaselike structure with three steps.

The first two steps are associated with the two peaks in
the spectral function at k =0. The first step is a discon-
tinuity at low density because the plasmaron peak is a 6
function. The third step is associated with the beginning
of the region where the quasiparticle damping is small
and where the curvature of the energy dispersion de-
creases (see Fig. 3). The height of the third step is pro-
portional to the variation of the curvature and is larger at
low density. The peaks at the edge of the steps in the
DOS are explained by the dispersion of the quasiparticle
energy. The enhancement at the edge of the first step is
due to terms of k of an order higher than quadratic. It is
stronger at low-density. The peak at the edge of the third
step is associated with a flat portion in the quasiparticle
energy dispersion at k0.

It is interesting to note that whereas in 3D the struc-
tures in the DOS related to the plasmaron are stronger at
high density, in 2D the steps in the DOS are sharper at
low density.
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FIG. 4. Density of states for a 2D electron gas at 7=0 K.
Solid line: ng=2.2X10"" cm~% dashed line: ng=7.1X10"
cm™ % dotted line: ng=1.2X10"2 cm™2.

IV. BAND RENORMALIZATION

Figure S displays the shift of the chemical potential
A" and of the edge of the DOS, AP%S) computed as de-
scribed in Sec. II. We see that A* is smaller than A‘P9S),
The difference between A*) and APOS is due to the fact
that the DOS is quite different in an interacting and in a
noninteracting electron gas (see Fig. 4). This difference
can be ascribed to the shape of the quasiparticle energy
dispersion that is not parabolic and also to the contribu-
tion of the imaginary part of the self-energy.

Figure 4 shows that with increasing density the shape
of the DOS becomes more different from that for a nonin-
teracting electron gas. In particular, the tail extends to
lower energy. This explains why the difference between
A" and A'POS) increases with increasing density.

At this point I would like to emphasize that
Luttinger’s theorem cited in Sec. II is entirely fulfilled
when the charge density is given by (4). The Fermi
momentum is determined here by the intersection of the
quasiparticle energy dispersion with the E =0 axis (see
Fig. 3). This provides us with a good indication for the
numerical accuracy of the evaluation of the band renor-
malization.
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FIG. 5. Band renormalization for a 2D electron gas at T =0
K. Solid line: shift of the chemical potential (full RPA); dashed
line: shift of the edge of the DOS (full RPA); dotted line:
lowest-order approximation.
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Figure 5 also displays the shift of the chemical poten-
tial A'” computed by using the approximation described
in Sec. II [see (6)]. This curve lies between the curves for
A™ and A'POS) Tts variation with the density is parallel
to that of A¥). It is interesting to note that at k =k,
E =0 is the solution of (5) and hence that the chemical
potential with the density computed with (4) is given by

p=p'"+Sg(kg,0) . 8)

The difference from (6) is that in (8) the self-energy is cal-
culated using the chemical potential of the interacting
electron gas pu. Hence, the difference between A’ and
A'? is due to the lowest-order approximation made in (6).

In the literature, the DOS is often assumed to have the
same shape in the interacting and in the noninteracting
electron gas. Its edge is assumed to shift to lower energy
in the interacting electron gas by the same amount A'? as
the chemical potential does (rigid shift approximation).
Figure 5 clearly shows that this is not a very good ap-
proximation since A’ and AP are quite different. For
the comparison with experimental data A’ or APOS)
should be used, depending on the measurement to be in-
terpreted. For example, A% should be used when
studying optical data such as photoluminescence spectra,
and A should be used when studying transport mea-
surements.

The renormalized effective mass m * is usually defined
at k =k by the following equation:'®

#kp _ dE'®
m* dk

9)

k=kg

In this definition, the quasiparticle energy dispersion is
assumed to be parabolic with an effective mass m*. Fig-
ure 3 shows that this is not the case if E‘?® is the solu-
tion of (5), especially at low density. The quasiparticle
energy dispersion has two sections. The low-momentum
section starts with a flat region followed by a high curva-
ture region. The high-momentum section is parabolic
with a lower curvature. We then see that, through (9),
the effective mass is determined by the curvature of the
high-momentum section. Figure 6 displays the variation
with the density of the relative mass renormalization.

In the lowest-order approximation, the quasiparticle
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FIG. 6. Relative mass renormalization (m*—m)/m at the
Fermi surface for a 2D electron gas at T=0 K. Solid line: full
RPA; dashed line: lowest-order approximation.

energy is given by
A kr—kE)

k
’ 2m

E'®(k)=&(k)+ S (10)

In the literature, this expression is often used in conjunc-
tion with (9) to evaluate the effective-mass renormaliza-
tion.® Figure 6 displays the corresponding variation with
density of the relative mass renormalization. I feel that
the difference with the other, more exact, procedure is
small if compared with the fluctuations of the experimen-
tal data available in the literature.

V. CONCLUSION

It has been shown that the difference in the plasmon
energy dispersion is responsible for the difference between
2D and 3D plasmaron excitation. This work also shows
that the renormalization of the chemical potential is not
equal to that of the edge of the DOS and hence that the
rigid shift approximation should be abandoned. Finally,
it is shown that the renormalization of the effective mass
is almost the same whether evaluated using the exact or
the lowest-order approximation quasiparticle energy
dispersion.
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FIG. 2. Electron (solid line) and plasmon (dashed line) ener-
gy dispersion for a 2D electron gas. The initial energy in the
electron-plasmon scattering w is subtracted from the electron
energy. The shaded areas indicate the regions where the scat-
tered state is allowed to be at T=0K.



