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X-ray-photoemission spectra of impure simple metals
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In this paper we study the inhuence of disorder on the x-ray-photoemission spectra of simple metals
using functional methods. The exact long-time behavior of the core-hole Green's function is recovered
for pure metals. The generalization to the case of impure metals yields an unusual time dependence for
the core-hole Green's function. In the Drude region, the x-ray exponent is modified. Universal behavior
is predicted close to the disorder-induced metal-insulator transition. Logarithmic relaxation occurs due
to Mott's hopping conduction in the insulating region.

In theoretical investigation of the x-ray spectra of sim-
ple metals by Mahan, ' an edge singularity in the absorp-
tion spectra was predicted due to the formation of exci-
tons. It was pointed out by Anderson that in addition to
the excitonic effect the orthogonality catastrophe plays
an important role. Both effects contribute to the low-
frequency (co((EF) power-law singularity of the core-
hole-conduction electron correlation function, which is
observed in absorption spectra of simple metals. How-
ever, the absorption edge singularity could be annihilated
due to the exciton mechanism. ' On the other hand, pho-
toemission spectra involve only the localized core-hole
Green's function where only the orthogonality catas-
trophe contributes. We will confine ourselves to the
study of x-ray-photoemission spectra in this paper, since
we are interested in the effect of disorder on the ortho-
gonality catastrophe.

To the best of our knowledge this more realistic prob-
lern has not been addressed due to the diSculties involved
in tackling disorder and interaction at the same time.
The original diagrammatic formulation is not easily
adaptable to include disorder. In this paper we present a
functional integral treatment of the problem which repro-
duces the known results and is readily extended to the
case of disordered conductors.

This paper is organized as follows: In the first part we
show that the core-hole Green's function can be ex-
pressed as a ratio of two Fredholm determinants and is
evaluated in the long-time limit (EFt ))1). It is seen that
the long-time behavior is determined by the coupling of
the core hole to the density fluctuations of the conduction
electrons. The effect of disorder is studied in the second
part. The expression in terms of deter. ninants still holds;
however, impurity averaging is required to obtain the
Green's function. The long-time limit of the core-hole
Green s function is studied in the diffusive, localized, and
the Anderson transition regions. Universal time depen-
dence of the core-hole Green's function close to the
metal-insulator transition is predicted. It is suggested
that this could be used experimentally as a signature of

the localization transition. In the standard formulation '

of the x-ray problem, one has the following irnaginary-
time action describing the interaction between the core
hole (d, d) and the conduction electrons (c,gc:

S[c,c;dd]:—f d x f d~c„B,— —p c„
0 2m

+ f drd(t}, c„)d+—Vf dodd c c
0 0

where Itt is the chemical potential, P=l/T, V is the
Coulomb energy, and %=1. The core level cd is taken to
be well below the conduction band so that overlap is
negligible. For the present purpose of studying the effect
of disorder on interaction we take the simplest model
where the spin degrees of freedom and the momentum
dependence of V are neglected (another way to think
about this is to assume that the Coulomb interaction be-
comes short ranged due to screening).

The photoemission cross section is the Fourier trans-
form of the core-hole Green's function. ' ' The
imaginary-time Green s function is defined as

Qd(i„i~) = —(d(r, )d(r~) ),

with

f2)[c,c,d, d]e ( . )
(( ))=

f2)[c,c,d, d ]e

In calculating Qd we follow the procedure reported else-

where: By integrating out the core hole we arrive at
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~d(T1~T2}

c,c exp — c —6 2m pc d ~i ~2 p
' F[p]

f2)[c,c]exp( —fc(d, —6/2m —p)c) F[) (3)

F[p] det(B, —Ed+ Vp)

F[0] det(B, —ed )
(3a)

where p=cp(T)cp(T) is the conduction electron density at
the origin (the location of the heavy hole) and
~d(T1 T2 [p] ) satisfies

[8 —e + Vp(T )]g (T,T;[p])=—5(T —T ) . (4)

It is seen that Qd [p] describes the propagation of the core
hole under the influence of p. A simple calculation gives

Qd(T) y
ln = — tr

Qd(T}

Note that a similar expression has been found by Hansch
and Minnhagen.

The conduction electron Green's function 0, satisfies

a, — —1u+A5(x1)$(T1', T) Q, (x1,T1,'x2, T2', A, )
2m

P
Qd(T1, T2, [p) )= Q&(T1 —T2)exp —V d TS(T;T1,T2)p(T),

0

(5)

where QPd is the free Green's function satisfying

and

= —5(x, —x2)5(T, —T2) (9)

tr(SQ, )=f dT' fd x 5(x)$(T';T)
0

[8,—sd ]9~(T)= 5(T)— (Sa) X Q, (x,T',x,T'+0;k} . (10)

and

S(T;T,, T2) = 1 e
1$(T 7 ] ) ls(1 72)

(6)

By expanding 9, to first order in 4, the coupling of the
core hole to the density fluctuations of the conduction
electrons is made evident while the zeroth-order term
simply shifts cd,

In Eq. (6), co=2nTr/I3 is the boson Matsubara frequency.
At T=O, by replacing the sum over the Matsubara fre-
quency by an integral, S becomes a switch function over
the interval T~ T2.

ed(T) =SPd(T)e t-'"

where

ef ( T;T1,T2 ) =—,
' [s gn ( T—

T1 ) —sgn ( T—
T2 )] (6a)

The determinant in Eq. (3a) describes in general the
recoil of the heavy hole on the conduction electrons and
is usually dificult to calculate except in a perturbation
expansion. However, in the present problem the recoil is
unity since there is only one hole. Mathematically, this
can be seen by evaluating the determinant directly using
the solution of Eq. (4), given by Eq. (5), and from the fact
that the occupation number for the heavy hole is identi-
cally zero. This statement is verified in the Appendix.

We may therefore disregard the determinant while in-
tegrating out the conduction electrons in Eq. (3);

g( )
V21 ~ 1 cos(coT) f

—d k
(k

~ ~)
co (2n )

(12)

Qd(T)

Qq(T)

Ql
det 8 — —p+ V5(x')S(T';T)

2m

det 8,— —p2m

(7)

which was derived by Nozieres and De Dominicis and
also appeared earlier in the context of the scattering
phase shift in Fermi systems. According to Eq. (7), the
propagator is expressed in terms of the response of the
electron gas to the localized time-dependent perturbation
and we have

thus recovering the exact long-time behavior Qd(T)
2-(E,T), for E,T»1, where E, -EF is the bandwidth

cutoff and V= VJV. The spectral function of G (co) is

2sin —V
2 1 —V

ImG (a))-
r( V') E~ co Ed

It is seen here that the infrared divergence [ln"(E,T)]
generated in a perturbation series in V is exponentiated
by Eq. (11). The logarithmic behavior of Q(T) is caused
by the Landau damping of the Fermi gas. However, im-
purity scattering gives rise to diffusive transport which

At low frequency (co«vFk), the density correlator of
the Fermi gas is y-(n/2)JV~co~/vFk, where JV is the den-
sity of states at the Fermi level. [We are in the Matsu-
bara representation, hence the form ~co~. In the real-
frequency domain the retarded density response function
is Imp" (co, k ) = (m /2) JVcolvF k—.] We find at T=0

p'2
Q(T)= in[1+(E,T) ),
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will become important for sufficiently high impurity con-
centration. From these considerations, we expect that
the long-time behavior of the core-hole Green's function
in a disordered metal would depend on the impurity-
averaged density-density correlation function. This will
be shown below. We take the model of a disordered met-
al as that proposed by Edwards. The impurities are
represented as elastic scattering centers distributed at
random in the system. At finite concentration (C;), the
potential ( U) seen by the conduction electrons becomes a
Gaussian random field with zero mean and uncorrelated
variance,

(U)U=O, (U(x)U(x'))z=U 5(x—x')

where
'2

U =C; d"xUx

U P U o ~ ~

JnUP[U]

and

P[U] ecxcp — J U
1

2U

Including the impurities the action becomes

S[c,c;d, d, U]=S[c,c;d,d]+ jd x I dr U(x)c„c„.
0

(13)

The core-hole Green's functions is

while for 1/r, &co&E, and 1/l &k &kz the Landau

damping form of y is adopted. In Eq. (18) r, ' =n JVC; U
is the rate of elastic collisions, I=OF~; is the mean free

path, and Dd( I
co I ) denotes the diffusion coefficient in d di-

mensions. Corresponding to the diffusive and Landau
damping behavior, the momentum integral in Eq. (17) is
split into two regions: Q =Q„t,+Qk& „displaying the
contribution of both transport processes. Let us first con-
sider the insulating side of the localization transition.
Clearly, there is no contribution from the Landau damp-

ing mechanism, since kF l ( 1 in this case, and the form of
Dd(IcoI } will play a crucial role in determining Q(r).
There exist excellent reviews' ' on the theory of locali-
zation where the calculation of Dd( I

co
I ) is discussed in

detail. According to the standard theory of localization,
all states are localized in dimensions d 2, while there is
a transition in higher dimensions. In the localized region,
the diffusion coefficient is

Dd(IcoI)= IcoIg +(lIcoI) r;ln(~lcolr;} (19)

where g is the correlation length, which diverges at the
mobility edge and the logarithmic part is due to the hop-

ping mechanism of Mott and Davis. ' In one dimension,
D has been found exactly, '

In the presence of disorder the density correlation func-
tion gd (k, IcoI ) acquires a diffusion pole structure at small

frequencies and momenta,

gd(k, IcoI)= for IcoIr, «1, kl «1,rr&IcoI

co +Dd( co )k

(18)

cdd(r } .
y

exp —f dl trdP, ]l, ] U]) )~,
Sod(r)

(14) D, (l~l) =4&3)1~Ii'+4(l I~I }'r;ln(i2l~lr;) ' . (20)

where ( ) U denotes the impurity average. Q, (k, [U])
satisfies

c}, — —p+ U(x, )+d(,5(x] )S(r],'r)

X Q, (x»r»x2, r2, A, [U])=—
,5(x, x2}5(r& r2) .

(15)

F, ( )=rao(r)e

where

(16}

It is clearly difficult to perform the impurity average
exactly. From the insight gained in the discussion of the
pure case, one learns that the low-frequency properties of
the emission spectra are determined by the coupling of
the core hole to the density fluctuations of the electronic
background. It is to be expected that such a mechanism
still holds in the impure case. A curnulant expansion—
here with respect to the random potential —is known to
be applicable to the case where there is only a single core
hole' and reveals just this coupling:

Ad(x)= 1 d" 1

x lzi «(2') 1+y
(22)

The frequency integral is evaluated with an exponential—l~l~;
cutoff (e '). The momentum integral is cut off at l
From Eq. (21), one finds universal time dependence of
Q(t) close to the localization transition. Although there
is no gap in the electronic spectrum, the core-hole
Green's function closely resembles that of an insulator.
However, we find two important differences: (1) While
the core level remains sharp there is a significant shift of

To a first approximation, the logarithmic terms in Eqs.
(19) and (20) can be neglected since we are interested in
the long-time behavior (t ))r;) of Q(t). Therefore g has
practically no frequency dependence. From Eqs.
(17)—(20), one see that Q(t) is purely imaginary,

. V2

Q(t)=i Ad(g/l) —(for T=O), (21)
g0 7;

where go= JVDdl is the dimensionless Drude conduc-
tance with Dd =(1/d)UFr, and

d

co (2~)
(17)

1 V
Fd =Ed+ — Ad(g/1) .

Ro
(23)



X-RAY-PHOTOEMISSION SPECTRA OF IMPURE SIMPLE METALS 1335

fd(t/r;)=( —)d+'f [1—cos(t/~, )]ln +'x ed+i

ln + — (for t»r, )d+2 (25}

and

I dd 2

B„(x)=
x b I «(2n ) (1+y )z

(26)

In one dimension, we have

—
( )

. tan '[g'~ (3)] V
( )

2m/'"(3) g

and

(27)

5Qi(t)= 1 1

2m/ (3)
—tan '[2('~ (3)]

gl /2( 3 ) V&
fi(t/2r;) . (28)

In the Drude region, both diffusive and ballistic trans-
port contribute, and one has

V2Q(t)=, 1n(it/a, )+ V'
277 gO

X ln( iE, t ) . (29)

(2) It was shown by Mott that there is hopping conduc-
tivity at finite frequency. By including the logarithmic
terms from Eqs. (19) and (20), we find a slow-relaxation
correction to Q(t ),

2

5Qd (t ) = Bd (g/l )f ( t /r; ),
go

"

where

in the frequency integral, and one has with Eqs. (18) and
(31)

+eS'

go 2m (g/l)

r,tr= ( /D(0) defines the characteristic time scale of the
system. Figure 1 shows the core-hole spectral function
for V =0.5. As ~,ff diverges close to the transition, we

may expand the logarithm in Eq. (32}and get

Q(t )=i, (1/g)'t/r, ,
. V 1

gp 2' (33)

thus displaying universal long-time behavior. Note that
Eq. (32) provides an interpolation between the insulating
and the Drude regions: on the localized side it matches
Eq. (21) for g))l, while on the metallic side, in the
difFusive region, D(0)/g ~1/r;, and the difFusive contri-
bution to Q [Eq. (29)] is recovered. For sufficiently long
time and at fixed ~,z, we may identify an effective x-ray
exponent from Eq. (32),

V 1
V's = (34)

gp 2

which diverges —1/D(0) as the localization transition is
approached from the metallic side. However, the charac-
teristic time r,tt (Refs. 11, 12, and 15) has an even
stronger divergence. This implies a sharpening of the
core-hole spectral function at the transition. This could
be observed in experiments, since other structures in the
spectral function are usually smeared out by disorder.
Figure 2 shows the shift of the core level as a function of
the disorder parameter 8'.

In this paper we have studied the effect of disorder on
photoemission spectra. The picture that emerges is as
follows: %hen an electron gas is suddenly perturbed its
long-time response depends crucially on the way the

Q( t )=(a, +az)ln( it /to ), (30)

Landau damping takes over when kzl &&1, the first term
in Eq. (29) is negligible, and we recover the clean-limit x-
ray exponent. In the diffusive region and for sufficiently
long time (t &&r;, t »1/E, ) the two terms in Eq. (29) can
be combined as

Cl

o
ggo
Q

l 4.~ EO~O

0.4
0.0

LLI
0.99

D3(IrdI)=D(0}+ IrdIg' (31)

where D(0) vanishes at the critical impurity concentra-
tion. ' ' It is clear from Eq. (17) that in the long-time
limit the switch function introduces a lower cutofF (1/t)

where a, = V /(2rrzgo), a&= V [1 (kF1) ], an—d
a&

—a2 1/(a&+a2)
t (or,. 'E, ') ' '. This shows that in the difFusive
regime (d =3) the power-law behavior of the edge singu-
larity survives, which is to be expected because the elec-
tronic states are extended. However, the exponent as
well as the characteristic time scale are modified accord-
ing to Eq. (30}. Having studied the behavior of Q(t) in
the diffusive and localized regions, we now turn to the
transition regime. On the metallic side the diffusion
coefficient is

eOo
C3~ 04

C)
C)

O.OQO

EF
0.005

C)
—0.02 0.00 0.02 0.04

td EF'

FIG. 1 Core-hole spectral function Ad(co) for V =0.5. The
frequency is measured relative to the position of the elean x-ray
singularity. Data for the parameters entering Eq. (32}were tak-
en from a self-consistent diagrammatic theory of localization
(Refs. 12 and 15), where a tight-binding model with rectangular
distribution of impurities (width W) was adopted. Ad is shown
for W/W, =0, 0.4, 0.6, 0.8, and 0.99, with W, the critical disor-
der.
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FIG. 2 Shift of the core level as a function of the disorder pa-
rameter 8'.

ness, we present here two more, the first of which is sim-
ple, because the nonperturbative solution Eq. (5) can be
exploited to our advantage. The second method, which is
based on perturbative expansion in p, requires a careful
examination of a multiple phase-space integral, but gives
the same conclusion.

Method I

Consider the ratio F[p]/F[0]. From the identity

tr[ln( 2 +B ) ]—tr(lnB ) =f d A, tr[B ( 3 +A,B ) '],
0

charges reorganize themselves. Whenever there is finite
charge transport either via diffusive or ballistic motion,
the edge singularity in the photoemission spectra pre-
vails. When charge transport ceases (i.e., in the insulat-
ing region} the edge singularity becomes a 5 function cen-
tered at a renormalized core level. By including the Mott
hopping mechanism at finite frequency, logarithmic re-
laxation is obtained, giving the spectral function a small
spread. A formula is found which interpolates from the
Drude regime up to the metal-insulator transition point.
Between the clean and Drude limits an effective exponent
is extracted which incorporates the two different types of
charge transport. The collapse of the edge singularity
into a 5-like peak at the transition could possibly be
detected in x-ray photoemission experiments and shed
light on the nature of the metal-insulator transition in-

duced by disorder.

and identifying A =—8,—e&+ Vp and B=—Vp, we find

—ln =f dl, tr(pQ&[p]),

where

tr(pQz[p])= f dip(r)Qg(1, 7+0;&[p]) .
0

But from Eq. (5) in the text,

Qq(r, x+0; [p]}=Qq(r, r+0),
where

~g(r)»r2) = —
& &,d(r, )d(T2) &0

(Al)

(A2)

(A3)

(A4)
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4(.»} e(——.»—}e""&dd'&, +e(.»}e ""&dtd &,

8(r, )e'—" (A5)

with ~,2 ——~&
—~2, since we have a one-particle problem;

&d d &0=0 and from the anticommutator [d, d ] =1,
&dd &0=1. Hence F[p]=F[0].

is governed by the free Hamiltonian H =e&d d. An ele-
mentary calculation gives

APPENDIX: EVALUATION
OF F[p]=—det(B, —eq+ Vp)

The quantity F[p] has been calculated in many
different ways in the literature. For the sake of complete-

Method II

The perturbative expansion of the right-hand side of
Eq. (A2) is

V 13distr(pgz[p])= p'f dip(r)p~(7 7+0)
V" p p" np«]) p(r„)&&(r,—r, ) . . Q~(r„

77 —2
(A6)

The first term in Eq. (A6) is clearly zero. We shall show
that the remaining series vanishes term by term. Consid-
er the n =2 case; we have typically

P Pf d, f d, e(„)e(„),
0 0

from the fact the free Green's function is purely retarded.
The product of step functions therefore puts a severe re-

striction in the domain of integration, which in this case
is (r2&r, )fl(r, )rz), of measure zero. Next, consider

n =3; the multiple integral becomes
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f d~, f dr f dr . 8(r„)e(r„)e(r„),P P P

0 0 0

where the domain of integration is
('Tg ) 7 3 ) r] ) fl ( rt ) r2 ) rs ) fl ( r3 )r, ) r2 ), again of mea-

sure zero. This process can be inductively generalized to
all positive integers, implying the right-hand side of Eq.

(A6) vanishes term by term. Indeed, the fact that
E[p]=F[0] is physically obvious; a one-particle sub sys-
tem cannot have any influence on the vacuum. For the
action given by Eq. (1) in the text the "no-recoil" approx-
imation has already been built in, which is the physical
mechanism that allows the x-ray problem to be trivially
reduced to an equivalent one-body problem.
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