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Long-range interactions and the quantum Hall effect
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We have studied the consequences of long-range interactions for the properties of the quasiparticles in

the quantum Hall effect. We find that the quasiparticle states have long-range tails in their current and

density distributions. These tails are an effect of Landau-level mixing and are absent if the state space is

restricted to the lowest Landau level. We also discuss a violation of the spin-statistics relation for the

quasiparticles.

The theory of the quantum Hall effect' is constructed
around the observation that a two-dimensional electron
gas in a transverse magnetic field is incompressible at cer-
tain rational filling factors. The sharp commensuration
between magnetic field and density that produces the in-
compressibility also determines the character of the ele-
mentary charged excitations —the quasiparticles are the
defects that accommodate the deviations of the density
from a commensurate value. The properties of these
quasiparticles are of great interest —at noninteger filling
factors they have fractional charge and statistics.

In this paper we report results on the structure of the
quasiparticles that arise from going beyond a common
approximation —the neglect of Landau-level mixing-
and are specific to long-range interactions. We show that
for long-range interactions Landau-level mixing has im-
portant consequences for the structure of the quasiparti-
cles, in that their density and current profiles become
long ranged. For example, Coulomb (1/r) interactions
produce tails in the density and current profiles of the
quasiparticles that fall off as 1/r and 1/r, respectively.
As these profiles are short ranged in the absence of
Landau-level mixing it follows that regardless of the ratio
of the cyclotron gap A'co, to the typical interaction energy
e /el, one cannot study their long-distance behavior in a
state space restricted to a single Landau level. The same
is true of the asymptotic behavior of the connected
ground-state correlation functions. This is our most im-
portant result.

We also address two other overlapping problems. First
we show that two natural definitions of the spin of the
quasiparticles are in convict with the spin-statistics rela-
tion. Finally we comment on a tentative connection be-
tween our work on quasiparticle current profiles and the
magnetization of Hall systems.
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where tn ' is the (effective) mass of the particles, A is the
vector potential of the background magnetic field 8, P
and f are, respectively, the particle creation and destruc-
tion operators, and V(r) is the interparticle potential.
[The second term in Ht is the interaction with the com-
pensating background of density p, this can be ignored
for potentials for which fd r V(r)( ao].

In subsequent calculations we use A = —( —,
' )r X8

(symmetric gauge) with 8=Bz. Also we denote the cy-
clotron frequency by co, ( —=eB/tn 'c) and the Landau
length by I( =&Pic /eB ). Th—e (familiar) eigenfunctions in
this gauge are

u„(r)=
1/2

n!
2ml (n+m)!

m
hei 8

P 2 2

2I

f (r) = g u„" (r)c„

where the L„are Laguerre polynomials. We expand the
field operators in terms of the creation and destruction
operators for the orbitals in the usual fashion:

f(r) = g u„(r)c„

PRELIMINARIES

In this work we consider only the fully spin-polarized
electron gas. Hence we consider a system of spinless par-
ticles of charge e that are confined to a plane perpendicu-
lar to a uniform magnetic field. The Harniltonian of the
system in second-quantized notation is

Here n is the Landau-level index and Am(m + —n ) is the
eigenvalue of the canonical angular rnomenturn L, .

We discuss the Laughlin fractions (1/m with rn odd
and inclusive of 1) but it is clear that the analysis applies
multis mutandis to other filling factors that exhibit
quantum Hall ground states as well.
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QUASIPARTICLE PROFILES

j(r)= [zXVp(r)],
2m

(4)

The theory of the Laughlin fractions simplifies in the
high-field limit. Initially one restricts the state space to
the lowest Landau level. Subsequently the effects of
higher Landau levels are included perturbatively.
Though this is an expansion around the infinite B limit it
is technically more convenient to describe it as a small
m* expansion. The small m* limit has the advantage
that it allows the cyclotron gap to diverge without requir-
ing that we change the number of particles to keep the
filling factor constant. The wave functions and various
physical quantities are then expressed as series in powers
of m * with the leading term arising from the lowest Lan-
dau level alone. At issue here is whether subleading
terms in the mass expansion (i.e., the effects of Landau-
level mixing) can invalidate conclusions about the struc-
ture of the quasiparticles reached on the basis of the lead-
ing term (i.e., the lowest Landau-level approximation).
Previously it has been assumed that quasiparticle proper-
ties such as their density and current profiles are qualita-
tively similar to their lowest Landau-level forms. We
show below that this expectation is incorrect for long-
range interactions; the leading long-distance form of the
quasiparticle profiles is altered completely by terms that
are subleading in the m * expansion.

Recall first that the properties of the quasiparticles in
the lowest Landau level are well described by the wave
functions introduced by Laughlin in his seminal work on
the subject. The plasma interpretation of the wave func-
tions shows that they describe density profiles that relax
exponentially on the scale of l to the density of the parent
Quid. The current in these states is exponentially local-
ized as well. This is a consequence of the current-density
identity

The presence of this power-law tail makes clear the
inadequacy of the lowest Landau-level approximation
when the interactions are long ranged. In fact, we can al-
ready guess that this tail arises in the next order of the
mass expansion by noting that (6) is 0 [ ( m *

) ] and that
the current operator has an explicit factor of 1/m*. In
the next two sections we shall rederive this result first by
perturbation theory and then using the Landau-Ginzburg
theory of the Hall effect. Before we turn to the details of
these derivations we would like to list some other exam-
ples of changed asymptotic behavior that we have derived
similarly.

For the density profile of the quasiparticles we find the
leading large distance term

OH e /e
5p(r) =

co r

which has the effect of reducing the accuracy of quantiza-
tion of the quasiparticle charge.

Analogous terms arise in ground-state correlation
functions. For example, the static structure factor S(k)
picks up a nonanalytic ~k~ contribution from the interac-
tions which yields

(p(r)p(0)) =p I —v — — +O[(1lr) ]4 %co r

for the density-density correlation function.
Finally we would like to emphasize that these results

are a consequence of the absence of long-wavelength
screening due to the incompressibility of the electron gas
and the presence of a long-ranged interaction. It is cru-
cial that the incompressibility itself, unlike in the case of
a charged system with a finite plasma frequency, does not
arise from the long-range nature of the interactions.

due to Girvin, MacDonald, and Platzman and valid in

the sense of equality of matrix elements between arbitrary
states in the lowest Landau level. In short, the quasipar-
ticles in the lowest Landau level have a size of the order
of l.

We now show that this cannot be the whole story by
deriving the true asymptotic form of the quasiparticle
current profile by means of a hydrodynamic argument.
Consider a quasiparticle centered at the origin. Since the
Hall liquid is incompressible and hence does not screen,
at distances much greater than the size of the quasiparti-
cle but far from the boundary of the system there exists a
radial electric field in the system with a magnitude

E„=
r2 '

/
io( )= 0 r2

(6)

where e* is the quasiparticle charge. Since the system
has a nonvanishing Hall conductance o 0, the presence of
this field must cause a circular (particle) current to flow

with a form

PERTURBATIVE CALCULATIONS

The task of deriving (6) analytically is straightforward
for v= 1 and for the other integer Hall states. We treat
Hr in (1) as the unperturbed problem whose eigenstates
are Slater determinants constructed from the orbitals in

(2). It follows from the earlier comments on the small
m* limit that we need only calculate the wave functions
perturbatively to first order in Hz and take the matrix
elements of j between the zeroth- and first-order pieces.
We have done this and confirmed that (6) is correct to
O[(m ') ], and to leading order in I Ir for large r In fact, .
it arises entirely from mixing to the next Landau level.
The relevant asymptotics are detailed in the appendix.

For v & 1 the noninteracting problem is degenerate and
therefore the corresponding point of departure would be
the exact eigenstates of the Hamiltonian restricted to the
lowest Landau level. Unfortunately these are not avail-
able and we are forced to reformulate the problem in a
way that can take advantage of known (nonrigorous)
theorems about the physics of the lowest Landau level.
Consider a different decomposition of H, namely



LONG-RANGE INTERACTIONS AND THE QUANTUM HALL EFFECT 13 321

H=Hi+Hz

Hi =H~+PHiP,

Hz =HI —PHIP,

=H+ [T,H]+ [T,[T—,H]]+1
(10)

where P is the operator that projects onto the lowest Lan-
dau level. The strategy is to include the effects of higher
Landau-level mixing (present solely in H2) by construct-
ing a unitarily equivalent Hamiltonian,

H it should hold for H as well. Consequently the leading
long-distance piece of the 0 [(m '

) ] correction to the
current can be calculated by taking the expectation value
of the O[(m *} ] term in the current operator in the quasi-
particle eigenstate of H. It is worth emphasizing that
there is another correction to the current profile at
O[(m ) ], which is the change in the expectation value
of the O[(m') '] term in the current operator [j(r)] due
to O(m') changes in the eigenstates; however, by virtue
of our theorem this is of finite range.

The operator T can be calculated perturbatively by us-
ing the expansion in (10) and it suffices to obtain it to
lowest order in Hz. To this order the relevant nonzero
matrix elements are

( T is anti-Hermitian} which has vanishing matrix ele-
ments between states that lie wholly in the lowest Landau
level and those that do not, i.e., the lowest Landau level is
an invariant subspace of H. To calculate the current in
the eigenstates of H we calculate the expectation value of

(i IT'la)=(iIH2la)/(E, E)—
= —(a T'~i)', (12)

where i labels a state in the lowest Landau level, a labels
a state with higher Landau-level content. To the same
order (11)simplifies to

j(r)=e j(r)e
j(r)=j(r)+ [T',j (r) ]; (13)

in the eigenstates of H. At this point the reader might
despair of our sanity since we know even less about the
eigenstates of H than about those of H. The point, how-
ever, is this: We expect that the physics is relatively in-
sensitive to the choice of Hamiltonian in the lowest Lan-
dau level. Consequently the nontrivial modifications to
the quasiparticle profiles will arise from the modified
form of the current and density operators. By making
fairly general assumptions (see below) about the physics
of the lowest Landau level we will be able to extract the
exact leading long-distance behavior of the quasiparticle
profiles. The particular (nonrigorous) theorem we shall
use asserts that all reasonable Hamiltonians in the lowest
Landau level have incompressible ground states at
v= 1/m which support excitations of charge 1/m and
that their connected ground-state correlations as well as
the profiles of their quasiparticles decay exponentially
with I. Since the theorem is believed to hold for H and
the interactions in H are not longer ranged than those in

the second term on the right-hand side is the desired
O[(m') ] term in the current operator. The demonstra-
tion that taking the expectation value of this term in the
quasiparticle state reproduces (6) is contained in the Ap-
pendix. We turn next to an alternative derivation of
these results within the framework of the I.andau-
Ginzburg theory of the Hall effect.

Z.ANDAU-GINZBURG THEORY

In their construction of a Landau-Ginzburg theory for
the Hall effect, Zhang, Hansson, and Kivelson' reformu-
lated the problem of interacting fermions in a magnetic
field as a problem of interacting bosons with an addition-
al Cherm-Simons interaction. In their language the
quantum dynamics of our system is governed by the La-
grangian density

2
1 A' eX(r) =P(r)[iiriB, eao]P(r) —, —V———[ A(r)+a(r)] P(r)

2p7l

2—
—,
' f d r'V(r —r')[~P(r)~ —n][~P(r')~ —n] — e"' a„(r)B)~ (r), (14)

provided 8=(2k+1)m.. [V(r} is, as in (1), the interparti-
cle potential. For notational convenience we pick A so
that B=—Bz, i.e., the field is reversed from that used in
(1).]

Following Ref. 10, the Landau-Ginzburg equations are
the classical equations of motion derived from X. For
static field configurations they are a gauged nonlinear
Schrodinger equation

2 2
ie

V — [ A(r)+a(r)] P(r)+coo/(r)2m* Ac

+ d r'Vr —r' r' —n r =0, (15)

and the two components of the Chem-Simons field-
current identity
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IP(r)l = V' Xa(r),2' 0 (16) f '(r)= e e* 1+0 1

2n (2/g) r 2

1.—j(r) =
C

z X Vao(r) .2' 0 (17)
c e* 1g'(r)=— 1+0

2nkt9 r2
(24)

Spatially uniform solutions correspond to the Laughlin
states and exist only when

e*
h '(r) =— 1+0 1

r2

f(r)=f (r)+m~f'(r)+

g(r)=h (r)+m*h'(r)+

h(r)=h (r)+m'h'(r)+

Upon inserting these series in the Landau-Ginzburg
equations and collecting terms of each order in m * we

get a hierarchy of coupled equations. The nth order
equations for f", g", and h" involve the solutions to the
lower order equations. The lowest-order (O[(m*) '])
equations are independent of the potential interaction.
The asymptotic (large r) behavior of their solutions is

f (r)=&n +O(e "i'),

g ( )=0( "'),

h (r)=O(e " ),

(20)

where I is the Landau length. At O[(m*) ] the equations
depend upon the detailed form of the O[(m*) '] solu-
tions but their form at large r can be determined using
(20) alone. For 1/r interactions [V(r)=e /r] we find the
equations

$2 9 f'(r)+&neh'(r)+&n =0
2 r r 3

(21)

2&n f '(r) = B„[rg'(r) ]+0(e —" '),
2%0 r

e

2fic0

which is just v= 1/(2k+1) is disguise. Quasiparticles
arise as charged vortices and they have charge
e/(2k+1). In the rest of this section we rederive our re-
sults for the tails in the current and density profiles of the
quasiparticles within the framework of the Landau-
Ginzburg theory.

For a vortex centered at the origin we write
P=f(r)e +', A—+a=+(Pic/e)V8+g(r)8, ao(r)=h(r)/
m *, and express the unknown functions f, g, and h as
series in powers of m *:

From these we recover (6) and (7) for the current and
density. One feature of these results deserves com-
ment. It is evident from (7) that a new length=vo. H/co, enters the finite mass problem. It is straight-
forward to show' that the corresponding length for an
arbitrary interaction is determined by the equation
A, = V(1/ A, )v m */fi n, where Vis the Fourier transform
of the potential.

EFFECT ON STATISTICS

The long-ranged profiles of the quasiparticles have im-
plications for their statistics as well. It has been shown
by Lee and Hanna" that the phase obtained by braiding
two quasiparticles at a finite distance differs from its
asymptotic value (the statistics) by terms that fall off at
most inversely with the distance. This is to be contrasted
with the exponential approach found by Arovas,
Schrieffer, and Wilczek. Heuristically, this follows from
our result for the density profile as the quasiparticles view
the density of the Quid as fiux.

SPIN AND STATISTICS

We turn now to the question of whether the quasiparti-
cles obey a spin-statistics relation. The inspiration to
look for such a connection is evidently the spin-statistics
theorem in relativistic quantum field theory which holds
for fractional statistics particles as well. ' The relevance
of that result to our system is not evident; nevertheless it
is interesting to pursue this possibility.

To go any further we need a definition of quasiparticle
spin. We define the spin of a quasiparticle as the (orbital)
angular momentum of the state which contains exactly
one quasiparticle at rest. This is analogous to the
definition of a spin for fundamental particles that arise as
quasiparticles in a relativistic field theory; the Pauli-
Lubanski construction implements this definition covari-
antly. ' In defining the spin we have ignored the intrinsic
spin of the bare particles, i.e., the electrons. This is
justified on the grounds that the (interesting case of the}
fractional quantum Hall effect is essentially a property of
spinless electrons. If the behavior of spinless electrons is
sufficient to produce fractional statistics it should suffice
to produce a commensurate spin as well.

In our problem there are at least two "natural" choices
for the angular momentum operator. The first,

ng'(r) = B„h '(r)+O(e—"i') .
c 2AO

Their solution is

{23} I."'= j d rrXRe 1((r) —V ——A(r) f(r) .
C

=m* I d r rXj(r), (25)
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(n+m )n c„c„ (26)

In this form it is clear that the matrix elements of (26) be-
tween arbitrary states in the lowest Landau level vanish
and hence only if we restrict the state space of the system
to the lowest Landau level does the commutator vanish.

The second choice,

(g z) J d r r 1(it(r)1(i(r),
2G

(27)

which is also gauge invariant, generates rotations and is a
constant of the motion. ' In symmetric gauge it reduces
to the canonical angular momentum and takes the famil-
iar form

is the mechanical angular momentum (j is the particle
current operator) and is related to the magnetization by
M=(e/2m'c)L"'. L"' is gauge invariant but it does
not commute with the Hamiltonian, i.e., it is not a con-
stant of the motion. The relevant commutator is

[H,L'"]=A co, g &(n +m +1)(n +1)c„c„+, +,

of 2 in magnitude as well; e.g., for m =1 S'" should
equal fi/2 to satisfy the spin-statistics relation.

In the lowest Landau level the expression (28) for L' '

reduces to

L' '=fig mc pc p . (32)

Given the structure of the orbitals u p(r) and the re-
duced Hilbert space' we can implement (29) by consider-
ing

M
S' '= lim lim R g m(c pc p)&p .

M~~ V~~ =o
(33)

Unfortunately this diverges in the one-quasiparticle state
and indeed in any state of interest in the infinite volume
limit (including the ground state) since the occupancy of
the orbitals does not vanish with m for an infinite system.
We consider instead the difference between the one-
quasiparticle state and the ground state

M
S '= lim lim iii g mt(c pc p)qp (c pc p)G)

M —+ oo V~ oo

L '=figmc „c „. (28)
(34)

To isolate the spin of the quasiparticle, which reflects
the effect of a local rotation, one needs to exclude the
effects of the boundary. We consider the definitions

S~'~= lim lim f d r f —L, (r))& ,ri=l, 2
a~oo V~ co a

(29)

where V is the area of the system, a is a sampling length,

f(x ) is a smooth monotonically deceasing function which
takes the value unity at the origin and falls to zero at
infinity, L;(r) are the densities corresponding to L", and
the label QP denotes that the expectation value is taken
in the one-quasiparticle state.

EVALUATION OF SPIN

First we evaluate (25) in the lowest Landau-level ap-
proximation. The current-density identity (4) enables us
to obtain a general relation between S'" and charge. For
states that asymptotically reach a uniform density and
are characterized by an integrated density excess Q we
find

S(1) gg (30)

Consequently, quasiholes (electrons) in the Laughlin state
at filling v=1/m have spin

S(&)—+
m

(31)

while the ground state itself has spin zero. ' Since the
charge of the quasiparticles is expected (in the presence
of a gap in the spectrum) to depend only upon the filling
factor v, independent of the details of the interaction, the
same should be true of S"'. Though the quasiparticle
spin is fractional for m ) 1 it nevertheless violates the
spin-statistics connection since it changes sign between
quasihole and quasielectron. ' In fact it is off by a factor

which is finite. In contrast to our result for S'" we were
unable to find a general relation between S' ' and the
charge of the quasiparticles. In fact one might suspect
from (27) that S' ' is sensitive to the details of the interac-
tion since it differs from S'"by the second moment of the
density in the quasiparticle state. However, for the
Laughlin wave functions the second moment is fixed by
the constant screening sum rule for plasrnas, and S' '

vanishes for all filling factors. It is conceivable that a
similar sum rule can be derived for more general quasi-
particle states and that as a result S' ' is always zero
however, it would still be in conflict with the result for
statistics.

As the reader might expect, the situation deteriorates
considerably when we remove the restriction to the
lowest Landau level and consider the case of 1/r interac-
tions. The presence of the long-range tail (6) leads to a
divergent correction to S"',

e'5S'"=m o'R,H (35)

where R is a length that diverges with the size of the sys-
tem. From (6) and (7) we discover that S'~' has a diver-
gent correction as well.

To surnrnarize: Both L ' " and L ' ' fail to yield
definitions of spin that are in agreement with the spin-
statistics relation. Indeed, in the physically relevant
problem they fail to yield definitions in any useful sense.
Of course we cannot exclude the possibility that a
different, satisfactory definition can be constructed.

MAGNETIZATION

Finally we would like to note a different estimate of
(35) that inay have implications for the magnetization
calculations for Hall systems. Consider a droplet of Hall
liquid of size R that contains a quasiparticle at the center.
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If we increase the magnetic field through the system by
an amount, 6B, the Aux through the system changes by
5$=5BmR . For 5$ (Po the system responds by shrink-
ing uniformly so that a charge 5q =v(5$/Po)e appears at
the boundary. Up to factors of order unity the change in
energy due to the interactions (ignoring the change in
%co, which is interaction independent) is

e*6q
R

V(a, b, c,d)= f d r d r'V(r —r')u, '(r)

Xub (r')u, (r')ud(r),

A 1 0 e
je(a, b, r)=u,*(r) —— ——Ae ub(r') .

r BO c

(Al)

(Here the indices a, b label both the Landau level n and
the angular momentum m. ) The correction to the
current is

R5B .
hc

(36) 5je(r)= g g f„~[je(Om, nm, r)+c.c.], (A2)
1

n~l & m&1

Hence we can obtain the contribution of the interactions
to L ' "by computing the correction to the magnetization
as

B(5E )

B(5B )

ve e2

hc
(37)
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Since L I "=(2m 'c /e )M we recover (3S).
It is possible that this contribution to the magnetiza-

tion in the presence of quasiparticles may lead to calcul-
able experimental consequences. We should note
though that the quantity of experimental interest is the
thermodynamic magnetization which is calculated by
taking the limit 5B~ ao after the infinite volume limit is
taken. Our calculation of the (microscopic) magnetiza-
tion for a single quasiparticle essentially reverses this or-
der of limits; hence, its connection to the thermodynamic
quantity requires clarification.

I ( —,'+n +m)
V(00, nm, 00,0m ) = 2" + +' (n +m)!n!m!

(A4)

2F, is the Gauss hypergeometric function in the notation
of Ref. 21.

At large m (i.e., large r) the first of these matrix ele-
ments dominates the second. Further, the contribution
from the first Landau level dominates that from the
higher Landau levels as V(00, nm, Om, 00) falls off as
1/m'"+" at fixed n. Replacing V(00, nm, Om, 00) by its
leading large m piece we find that the asymptotic large r
behavior is determined by the series

5j6t(r)= g — [je(Om, lm, r)+c.c. ] . (AS)
e/1 1

2 2m

where c.c. denotes the complex conjugate and

f„=V(00, nm, Om, 00)—V(00, nm, 00, 0m ) . (A3)

For Coulomb interactions the needed matrix elements
can be evaluated in terms of standard (if somewhat
unhelpful) functions:

I ( —,'+n +m)
V(00, nm, Om, 00)=

2"+ +' (n +m)!n!m!

XzF&( —,', —m, —,
' —m —n;2),

APPENDIX

First we will derive the asymptotic current distribution
for a quasihole at v= l. In the notation of (3) the unper-
turbed quasihole state is qh ):—coo lg ) where lg ) is the
filled lowest Landau level. It is straightforward to write
down an expression for the first perturbative correction
to the current in the quasihole state; the only excited
states that enter contain a single particle-hole excitation.
We define

5je(r) = (qh l [ T',j e(r) ] lqh )

=2 Re I ( qh l
T'j e(r ) l qh ) ] (A6)

As the current in the ground state must vanish we can
consider instead

The task of showing that this series reduces to (6) (with
v= 1 and e *=e ) when analyzed for its large r behavior is
left to the dedicated reader as an exercise.

Next we supply the details for the fractional case.
From (13) we obtain

5je(r) =2ReI (qh l
T'j e(r)lqh ) —(gl T'j 0(r)lg ) l

1=
z 2 2 I:&qh lcotjcokcolco lqh & &g lcojcokcoico Ig

—&]
n ~1 & j, k, l. m ~0

X V(Oj, Ok, 01,0m)[je(Om, nm, r)+c.c. ]5~+k I+ (A7)

where the Kronecker 6 enforces L, conservation and we have omitted the background term as it manifestly does not
contribute at large r.
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Thus far our analysis of (A6) has been exact. As before, we are interested in the behavior of the series when m is
large. We now invoke the hypothesis of short-ranged clustering to conclude: (a) that the only contribution to the
diff'erence of the expectation values arises when at least one of the remaining indices (quite generally we take this to be
1) is near the origin (the location of the quasihole); and (b) that the expectation values are exponentially small unless k is
near I and j is near m or vice versa. More precisely we find that, for m &&1 and l small,

&qh leo, cokcotco Iqh & &—glco, cokcotco Ig &-&q" lcojco lqh &&q" Icokcotlqh & &q" lcokco Iq" &&q" lcojcoilq" &

&g
—lco, co Ig &&glcokcotlg &+&glcokco lg &&glco, cotlg & . (Ag)

For m ))1, (qhlczlco Iqh &
—(glcojco Ig & which equals v51 by L, conservation. Invoking L, conservation once

more forces the remaining indices to be equal. Making these replacements in (7) we find

5js(r)=v g g [&qh leo, cotlqh &
—&glcoicoilg &]

1

) 1
~CO&

1, , 0

X [V(01,0m, Om, 01)—V(01,0m, OI, Orn)][j s(Om, nm, r)+c c ].. . (A9)

As the sum over I will be cut off at the size of the quasihole ignoring the I dependence of the matrix elements will not
affect the leading large m behavior This allows us to recognize the sum over I as the charge of the quasihole. Hence the
leading behavior of the current is given by the series

e' 15js(r)=v g g f„[js(Om, nm, r)+c c ]. . .
n~] ~c ~ &0

Since this diff'ers from (A5) only by the presence of the factor ve'/e, (6) follows.
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