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Low-temperature exciton linewidth in short-period superlattices
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The expressions for absorption and luminescence linewidths of Wannier excitons in short-period su-

perlattices are derived for several scattering mechanisms. The wave function of the 1s excitons is as-
sumed to be a product of (i) a variational function describing relative motion of electrons and holes, and
(ii) the envelope functions for the electrons and holes obtained from the Kronig-Penney model. The
scattering rates are calculated by using Fermi s golden rule for deformation potential, interface rough-
ness, and alloy-disorder scattering. The linewidth due to interface-roughness scattering is also expressed

by employing the self-consistent Born approximation. Numerical values presented for
GaAs/A10 3Gao 7As superlattices indicate that the deformation-potential scattering is weak and that the
alloy-disorder scattering is significant for lower values of the superlattice period. The most significant
contribution to the linewidth comes from the interface-roughness scattering; the golden rule yields quite
large values, whereas reasonable values are obtained from the self-consistent Born approximation.

I. INTRODUCTION

Excitonic absorption and luminescence in semiconduc-
tor heterostructures like quantum wells (QW's) and su-
perlattices (SL's) have intrigued a large number of
researchers around the world over the past decade be-
cause of a number of physical phenomena and technolog-
ical applications in a new generation of optoelectronic
and photonic devices. ' lt is also recognized that the
study of the luminescence line shape may provide other-
wise inaccessible information regarding chemical and
structural properties of heterointerfaces in QW's and
SL's. ' In the past, emphasis was given mainly to the
study of excitonic process in QW's (Refs. 5 —11) from
both the theoretical and the experimental points of view,
because of the technological nonviability of growing
high-purity interfaces with an accurate in situ monitoring
of the periodic structure of the SL. It is only recently
that similar studies are being extended to SL's, owing to
the immense development achieved in the techniques of
crystal growth as well as that of the post-growth analysis
of the material properties. Study of the excitonic features
in the luminescence from SL's is, therefore, an important
field to be explored. Theories of excitons in SL's
developed so far concern mainly the calculation of the os-
cillator strength and the excitonic binding energy. To
our knowledge, absorption and photoluminescence (PL)

I

line shapes of excitons in SL's have so far remained fairly
unexplored from the theoretical point of view.

It is well known that the absorption (emission) peaks
due to formation (recombination) of excitons are
broadened by several intrinsic and extrinsic mecha-
nisms. ' In the present paper a theory for the excitonic
linewidth (LW) is developed, taking into account the
scatterings by deformation-potential (DP) acoustic pho-
nons, interface roughness (IFR), and alloy disorder (AL).
We have not considered polar-optic phonon scattering
since its contribution at low temperatures is negligible. '

At higher temperatures this scattering contributes
significantly to the LW; however, the calculations be-
come quite involved since the contribution from both the
bound excitonic states and the continuum states must be
taken into consideration. The theory is presented in Sec.
II. In Sec. III results obtained for a GaAs/Alo 3Gao 7As
SL are presented and discussed. A comparison is also
made between the values obtained by using envelope
functions derived from the Kronig-Penney (KP) mod-
el' ' and from the tight-binding (TB) approximation. '

II. THEORY

A. Envelope function

The two-particle Schrodinger equation in the present
case is written as' '

1
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where V, (zh ) and Vz(zz ) are, respectively, the periodic
potentials seen by the electron and the hole. In the above
equation the center of mass and the relative coordinates,

+ V„(zq )—,Eg(R, r,z„z„)=—0, (1)
Ir +(z, —zh) ]

'

I

R and r, respectively, are used to describe the in-plane
motion only, as has been done in the case of single QW's.

MII and @II are, respectively, the total and the reduced
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masses in the layer plane, m; and z; are the mass and the
coordinate in the z direction for the ith particle (i =e, h ).
The wave function for the exciton in the QW's is ex-
pressed as a product of (i) exp (iK))R), describing free
center-of-mass motion in the x-y plane, (ii) a function for
bound excitonic state, and (iii) envelope functions for the
confined electron and hole. In the present case, electron
and hole wave functions are not confined but extended
along the z direction also. We now assume that

where E, is defined as E,=k„+k,h, a,(h)=/n, (h)/M,

MII=mlI, +III&N& is the occupation number of the
three-dimensional (3D) phonons of wave vector (Q)), g, ),
and + ( —) refers to the emission (absorption) process.
H, ~, ~

represents the contribution from the interaction of
electron (hole) with DP acoustic phonons, and can be ex-
pressed as

H, „(aQ)),g, ) =N, I,(h)(g, ) g g„,(h)(Q))) .

z;=z,. +n;I. , i =e,h, (2) In Eq. (6)

where L is the period of the SL, and n, ~&~ represents the
supercell in which the electron (hole) is present, and
lz;I L/2. In Eq. (1) we may neglect lz, —zhl since it is
much smaller than the excitonic Bohr radius and may
write the Coulomb potential term as e /(r —+n L )'
with n =n, —nz. This leads to the following wave func-
tion for the exciton in a SL

g„=(L/V)' N„p('K .R)

Xexp[i(n, k„+nhk, h )L]f, (z, )fh(zh )

I,(h)(g, ) =f dz, (h) exp(ig, z, (h) )E,(,) If,(h)(z, (h)) I'

and

g„,(h)(Q)()= fd rexp[iaQ(). r —p(r +n L )' j,
where

a= —ah for g„,
=a, for g„h .

E [ ] js defined as
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2
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where V is the volume of the SL, KII and R are the wave
vector and the position vector of the excitonic center of
mass in the layer planes, r is the corresponding spatial
separation of the electron and the hole, and k„~I,] is the z
component of the electron (hole) wave vector. f, (z, ) and

fh (zh ) are the normalized SL periodic envelope functions
for electron and hole, respectively, with z,~I, ~

ranging over
a single period. The parameter P is the variational pa-
rameter obtained by minimizing the binding energy, and
the constant N„ is calculated from the normalization
condition that the total probability of finding an exciton
in the entire volume of the SL is unity. N„may, there-
fore, be expressed as

In Eq. (9) D,(„) is the DP constant for the conduction
(valence) band, A' is the reduced Planck's constant, p is
the mass density of the crystal material, and u is the ve-
locity of the acoustic wave in the crystal. The interaction
potential is assumed to be unscreened. Working out the
integration in Eq. (8a) and performing the summation in-
volved in Eq. (6), we get.

IM-, (K,K. )I'
r

P [1—exp( PL)]— , +,
1 —

( 1 —PL ) exp( —PL )

I,(g, )e, (Q~)) I/, (g, )e/, (Q)()

ne&e(Q~() &h&h(Q)))
(10)

[P2/2 ]
1/2 P P (4)

[1—(1 PL ) exp( —13L)]'—
where I,(h)(g, ) is as defined in Eq. (7), and

e,(h)(Q)() =1—(1—g, (h)L ) exp( r/, (h)L ), —(1 la)

(1 lb)X„„(Q„)=1- p(-~„,L),
(Q )

—[$2~a2 Q2 ]1/2

The transition rate may now be written as

It should be noted that in the absence of the periodic po-
tential the problem reduces to that for a QW and the
wave function contains the terms f; (z; ) instead of
f, (z; ) exp(in, k„L ). Thus Eqs. (1)—(4) describe the exci-
tonic envelope function in short-period SL s, with which
one can proceed to derive expressions for excitonic
linewidths (LW's) due to various scattering mechanisms.

B. Deformation-potential acoustic-phonon scattering

The squared matrix element for the transition from a
state of wave vector K to another state of wave vector
K', without any change in the internal state due to DP
acoustic-phonon scattering, may be expressed as '

I Mo~p (K,K') I'

=
I H, ( —ah Q((, Q, ) —H„(a,Q(( Q, ) I , fde,' fd'I(."„) .

'

8~
(13)

WDp(K) = g IMDp(K, K')I 5(EK.—E~k))icoq),
K'

(12)

where co& is the angular frequency of phonons defined as
co&=u IQI. The summation in Eq. (12) is converted into
an integral over K' by the following conversion rule

II' ll II

(&)
The integration over K' is performed following the
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m ethod developed by Palmier and Chomette' using the 6
function in Eq. (12). The transition rate is finally ex-
pressed as follows:

II'D, (K)=, , f"d~,' f'd~, l~D, (K, K )l',
4~'A'

(14)

with the condition
l Kt~ l

=
l K~~ l, 8x being the angle be-

tween KII and KI~. We can, therefore, express the in-plane
component of the phonon wave vector, Q~~, as

Parameters

me

mh

u (m/s)

p (kg/m')
D, {eV)
D, (eV)

GaAs

0.0665 X mp
0.377 X mp
4.81X10'
5.36X10'

6.7
2.7

Alp 3Gap 7As

0.0885 X mp
0.453 X mp
4.825 X 10
4.88X10'

6.34
2.67

TABLE I. Values of parameters used in the calculations. All
data are from Ref. 20. A. , =200 A and +=35 A (Ref. 14).
hE, =0.6 eV and ATE& =0.21 eV (Ref. 20).

Q~~
=4K sin (tax/2) . (15)

The half-width at half maximum (HWHM) of the exciton
line, I, is related to the transition rate by the following
relation:

I =RW (0)/2 .

In the above equation the emission process is not con-
sidered since at the zone center it is only the absorption
of phonons that can take place. We can finally express
the HWHM of the excitonic PL spectra due to the DP
acoustic phonon scattering by the following expression:

2

HiFR g g HiIFR (19)

where 0 s represent the undulations in the interfaces of
the order of monolayers; i =1 for the interfaces when
Al Ga, , As is grown on GaAs, and i =2 when GaAs is
grown on Al„Ga, „As. In Eq. (18) b is half the barrier
width and Vo is the barrier height. The total scattering
potential, that includes contributions from all the inter-
faces, may be expressed as

f d~[D, (z)lf, (z)l' D, (—~)lf, (z)l']', It has been accepted that IFR obeys a Gaussian correla-
tion written as

(17)

where kz is the Boltzmann constant, T is the lattice tem-
perature, and z ranges over a single period.

C. Interface-roughness scattering

Following Dharssi and Butcher, ' one can express the
scattering potential associated with the interface rough-
ness (IFR) as

(II', (x,y}QJ (x',y')) =5,, 5,, 0, exp[ —
A. , lr —r'l ],

(20)

where k; is the correlation length. The correlation
lengths are found to be different for the two different in-
terfaces discussed above. ' The values of X, and X2 for
the materials we have considered may be found in Table
I. The Fourier transform coefficient of this potential may
be expressed as'

—V„jL+b+0, &z & jL+b, 0,- &0

0'IFR ' Vo jL+b &z &j'L+b+0, , 0, &0

0 otherwise,

(18)
v, (Q„)l'= v,'n,'X,' p( —X,'gI/4) (21)

The matrix element for scattering from the potential
mentioned above is given by

2

IM„.(K, K ) I'= [ L/V]~'„y y[ V., IZ, (b}l'g...(Q„)-I;, lx, (b) I'(.,, (Ql)]'II,'~,'-p(-~,'a'„/4),
j=1 n

(22)

where g„,~hI(Q) is as defined by Eqs. (8a) and (8b), and

Vo, [&) is the conduction- (valence-) band offset. Equation
(22) can be further simplified to

1 (1 r) ~g)L)exp( 'g (iIL)
e(h) 2'9. ( )[1 "p( &.( )

(24)

l M ipse ( K K' }l

where

P [1—exp( PL)}—
1 —(1 PL ) exp( PL )— —

x [ v„lf, (b) l'0, —v,„lA(b) l'4 ]'

X 0 A, exp( —A. Q~~ /4), (23)

and IQiil is g~~~n by Eq. (15).
The expression of the HWHM, obtained by using

Fermi's golden rule (GR), may be written as

~IFR
2

g [ Vo, lf, (b}l'—Voi, lfh(b}l']'II j'7,' .
j=1

(25)

It has been shown earlier ' for single QW's that in the
GR calculation the broadening of states is underestimat-
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ed and the results calculated under a strong scattering
limit based on the self-consistent Born approximation
(SCBA) yield reasonable values of LW. It is of interest to
compare the results under these two limiting conditions
in the case of SL's, also. In the strong scattering limit
SCBA express the HWHM as

Re erfc(iz )

and so (32)

The expression has been obtained along the same lines
as in the exciton-phonon case." Through analytical
continuation one obtains

= y IM(K K )I' (26}

2 2r,„„„,„=yr, ,
J

where
2

(27)

P I 1 —exp( PL) I—
1 —( 1 PL ) ex—p( PL )—'I;IFR ~ (28)

with

I,',Fit
=f dx, exp( —x, )[g,(x, ) —gl, (x, )] . (29)

In Eq. (29), g, ~h~(x ) is given by Eq. (24}, XJ =A,
JQ~~ /4,

and

7),&h)=p[1+(zat &,&/Ajp) x&I'.
Rudin, Reinecke, and Segall" considered weak coupling
versus strong coupling in the exciton-phonon interaction.
We have assumed, following their argument, a zero band-
width for the exciton in-plane motion, in deriving Eq.
(26) of the present paper. Including the vertex correction
diagrams, one obtains the following series for the exciton
Green's function

G(E)=(E E,+iE)-'—+r'(E E,+i )E-'—

+3r'(E —E,+i )-e'

+15I (E E+iE) +—. (30}

where E is the energy, Eo is the ground-state energy, c is
the positive infinitesimal, and I is defined in Eq. (26). It
may be noted that

exp(X t )dt =— — +f 1 1 1X3
X 22X' 2'X'

K'

As has been done in the case of DP phonon scattering,
the summation over K' in Eq. (26} is converted into an in-

tegration, and after performing the integration the final

expression becomes

D. Alloy-disorder scattering

Our theory is based on the virtual crystal approxima-
tion (VCA). We also consider the inner-potential mod-
el, ' in which the alloy-scattering potential is taken to
be a spherically symmetric square well of height hE and
radius ro. The Fourier series expansion of such a poten-
tial is written as

J)(p, Q~()
aV, = g(Z~p aE) exp( —&'Qi p ),

~ll

where

(33)

(34)

z~ being the z coordinate of the jth cation site, and
Q~~ the

Fourier conjugate of p, and J, the first-order Bessel func-
tion of the first kind.

Following the procedure for deriving the matrix ele-
ment for electrons in a SL, as described in Ref. 23, we
may express the same for excitons by the equation given
below:

l~p L(K, K')
I

= [—', ~ra ] (L /V)Vox (I —x)p(gi) . (35)

In Eq. (32) No is the number of alloy sites per unit
volume, x is the mole fraction of Al in Al Ga, As, and

ImG(E)= — exp{ (E—Eo—)i/2I ~j .
2I

The above expression once again establishes the fact that
in the strong scattering limit the line shape changes from
Lorentzian to Gaussian with a half-width given by Eq.
(26).

The criteria to distinguish between strong scattering
and weak scattering has been discussed in terms of the
respective half-widths by several authors. "

1X3X5
24X'

Using this the Green's function can be written as

G (E)= — f exp( T t )dt-
2m I
. v'2, &m= —i exp(T ) erfc(iz),
2~I 2

(31)

~Ep, Ifl, (z, )l'4, p, j (36)

where AE, [I, ~
is the alloy-scattering potential for electron

(hole), and g„,~h~ is as defined in Eq. (8a). Replacing the
summation over the alloy sites by an integration over z
one may write

where

1 E—so+is—(E ED+i e) and z =——
I-v'2 r&z

P I 1 —exp( PL}j—
1 —( 1 PL ) exp( PL)— —

X [~E,If, (z ) I'g, ~Ep, lfI (z }I'gI, ]', (37}

and erfc (iz} is the complementary error function. where g, ~I, ~
is as defined in Eq. (24).
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FIG. 1. Linewidths of Wannier excitons as a function of su-

perlattice period at 300 K for scattering due to the
deformation-potential (DP) acoustic phonons, the alloy disorder
(AL), and the interface roughness (IFR) by using Kronig-
Penney envelope functions; TB represents the corresponding re-
sults from tight-binding calculations. The plot marked IFR
(SCBA) shows the results for IFR scattering under the self-

consistent Born approximation.

X dz AE, , z —AE& & z

III. RESULTS AND DISCUSSIONS

The values of the physical parameters used in our cal-
culations are given in Table I. Figure 1 shows the plot of
the LW values against the SL period for a
GaAs/Alo 3Gao 7As SL at 300 K, due to DP, AL, and
IFR scattering. The envelope functions f, (z, ) and

fr, (zh ) are calculated by using both the KP and TB mod-
els. In the KP calculations the widths of the wells and
the barriers are taken to be equal. The results indicate
that the contributions from DP scattering to the LW is
insignificant. We have not shown the results obtained by
using the TB envelope functions, as the values are not
much different from those calculated using the KP en-

velope functions. As one compares the values obtained
with KP and TB envelope functions for IFR and AL
scatterings, one notices that the two methods give almost
the same values for large SL periods. When the period is
large, the barrier widths are also large and hence the car-
riers are confined within the wells. Thus the envelope

The expression for HWHM in this case, obtained from
Eqs. (32), (34), and (16), is given by

8m
2

9A
r()NoM~i~x (1—x )

functions and the values of I obtained from the two
models are identical. On the other hand, for small
periods (L (6 nm) the TB model gives LW values smaller
than what is obtained from the KP model. This is due to
the fact that in the TB model coupling between the wells
is underestimated. For smaller periods our calculations
reveal that the leakage of the particle wave function into
the barriers becomes too large, so that the TB model be-
comes invalid. It is worthwhile to note as well that LW's
in the TB model vary with well widths (SL period) in the
same fashion as the LW's in the MQW's, i.e., the values
increase with increasing well widths, show a peak, and
then decrease. '

We now examine the values of LW for IFR scattering
obtained by using Fermi's golden rule and under SCBA.
As may be seen from the curves in Fig. 1, the values us-

ing the golden rule are considerably larger than the ex-
perimental values for a multiple-quantum-well (MQW)
structure. Although experimental data for SL's are not
available, we believe that the values will not be much
different from the values for MQW's. The SCBA calcula-
tion, on the other hand, gives reasonable values for LW
for IFR scattering. Similar results have already been
found for single QW's. '

It is now appropriate to give a rigorous justification for
the use of strong-coupling theory for IFR scattering by
using the arguments of previous works" and the nu-
merical results obtained in the present one. It was point-
ed out that the weak-scattering theory is applicable and
the line shape is Lorentzian if the ratio I GR/I s~~„«1.
On the other hand, if this ratio is &&1 then the strong-
coupling theory would be valid. Comparing the results
given in Fig. 1 it may be concluded that for IFR scatter-
ing the strong-coupling limit is appropriate and the line
shape should be Gaussian. For phonon and alloy-
disorder scatterings, however, the usual weak scattering
limit is valid in SL s also, as has been concluded by Ru-
din, Reinecke, and Segall. "

IV. CONCLUSIONS

In conclusion, we have derived the expressions for the
linewidths of excitons in a superlattice, considering
acoustic phonon, alloy-disorder, and interface roughness
scattering. The numerical values obtained by using
Kronig-Penney and tight-binding envelope functions
agree for large superlattice periods, but are different for
short-period superlattices. For IFR scattering it is found
that the broadening of states plays a vital role and
Fermi's golden rule breaks down, so that the self-

consistent Born approximation calculation proves to be a
better approach.
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