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Strained superlattices and heterostructures under hydrostatic pressure exhibit changes in the elastic
strain and stress components which, in the lowest order, are linear in the applied pressure. An arbitrary
direction of growth is assumed. Criteria are established for predicting the form of such changes in any
combination of material constituents. The pressure dependence of the tetragonal distortion is shown to
affect the built-in piezoelectric fields, wherever present. Expressions are derived for the effective linear

compressibilities parallel and perpendicular to the direction of growth, and for the effective bulk

compressibilities and bulk moduli of the system.

I. INTRODUCTION

Strained superlattices (SL) and heterostructures (HS)
have been studied extensively in recent years under hy-
drostatic pressure P. Interesting changes have been ob-
served in the phonon spectra through Raman spectrosco-
py,

' in the electronic band structure through photo-
luminescence or other optical spectroscopic techniques,
and in the type conversions and phase transitions of the
constituents. A constantly increasing variety of constit-
uents is involved in these studies. It will be useful, there-
fore, to have some general criteria for predicting the be-
havior under P of a particular combination of constitu-
ents. In a very recent publication, Tuchman and Her-
man presented a theoretical discussion of the effect of P
on the in-plane strain of HS based, mainly, on physical
arguments; the direction of growth presumably is along
[001] and the analysis includes nonlinear terms in P,
which turn out to be of importance for pressures beyond
the linear range.

Here, the problem is treated theoretically in its most
general form, and concerns the pressure dependence of
the complete strain and stress tensors in strained SL and
HS grown along a general direction. Only linear terms in
P are considered; thus, all conclusions are subject to a
linearity criterion, which is quantified by setting an upper
limit to P. In order to determine the latter, we assume
that the pressure-induced linear change 5B =B'P of the
bulk modulus B of either constituent is negligible com-
pared to 8 (we assume the same is true for all elastic con-
stants). The upper limit P,„of that constituent then
satisfies P,„&&B/8'; for practical purposes we can set
P,„=B/8' . [For the III-V and II-VI materials, the
slope 8'=18/dP is around 4.5 (Ref. 7); a rule of thumb
then is to take P,„=B/20.] In general, we can define

P,„ for the system as the lower of the P,„pressures of
the two constituents. In short, the present work concerns
pressures P ~P,„.

It is assumed that these structures are coherently
grown, with no interfacial disorder, and that the elastic-
continuum theory can be applied. For simplicity, the SL

are regarded as being in a free-standing state. The results
are easily extended to include buffer effects [see discus-
sion following Eq. (4)].

Of central importance is the P dependence of the in-

plane and normal-to-the-plane strain components E"(P)
and E (P), respectively, and also the P dependence of the
tetragonal distortion

he(P) =E"(P)—e (P) .

For all combinations of constituents, these functions are
linear in P, in the lowest order. Furthermore, in some
combinations of constituents, e "(P), e (P), and i5e(P) can
be tuned by P to positive, zero, or negative values, de-

pending on the bulk values of the lattice constants and
bulk moduli. The piezoelectric fields that may exist in

piezoelectric constituents are shown to depend on P in a
similar manner. The effective values of the linear
compressibilities parallel and normal to the direction of
growth are derived explicitly in terms of the correspond-
ing constituent's properties, and likewise for the effective
bulk compressibilities and bulk moduli of the system.

Section II includes the necessary background informa-
tion and notation, followed by the derivation of the P-
dependent strain and stress components, independently
for SL and HS in Secs. III and IV. Compressibilities and
piezoelectric fields are treated in Secs. V and VI, respec-
tively. The results are summarized and discussed in Sec.
VII.

II. BACKGROUND INFORMATION
AND NOTATION FOR THE I' =0 STATE

A detailed treatment of the elastic strains and stresses
for cubic constituents at P =0 (more precisely, at 1 bar)
can be found in Refs. 8—10. Only the necessary results
are repeated here. This and the following section concern
SL. Similar results for HS are presented in Sec. IV.

By a and h (v denotes layer 1 or layer 2) we designate
the bulk lattice constants and the layer thicknesses of the
two constituents. The SL consists of equal numbers of
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layers 1 and 2, say, m. Thus, the total thickness is

h, , =m(h &+h2 }(h, ,

where h, is the critical thickness for which misfit disloca-
tions start to appear (subcritical). Since we have assumed
coherent growth, the direction cosines and all their func-
tions are common to both layers. All other layer parame-
ters should carry the layer index v. Wherever obvious, v
will be omitted for simplicity. The lattice misfit is defined
here as f=(a2/a, )

—l.
We designate the cubic axes by x, ([[100], x2[([010],

X311[001],and the SL axes by XI 11[Iim in' ] xz ll[I2m2n2]
(in-plane axes), and X3~~[lsmsn3]=N (direction of
growth), I&, m &, n z being the direction cosines of x z rela-
tive to xz (A, =l —3). Hereafter, all primed (unprimed)
components refer to the primed (unprimed) system, and
all latin (greek) indices run from 1 (1) to 6 (3). Latin in-
dices refer to suppressed indices, i.e., 11~1, 22~2,
33~3, 23 =32~4, 31~5, 12—+6.

Within each layer, the in-plane strain is isotropic. The
tetragonal distortion of either layer is defined as the
difference of the in-plane strain c.~~ and the normal-to-the-
plane strain c . It is given by

[C44+ CC44(1 —
T33 }

38 m.

+3C (I3msn3) ],

sij =(a "/a, ) —1= h262 f
h i Gi+h2G2

eel
= ( a li /a )

—1 =
—h G1 1

hi Gi+h2G2
(5b)

and the normal-to-the-plane strains of the two layers are

s'= si( b, s— (6a)

(6b)

The shear strains and the stresses of either layer ( v) are

(i) The SL is grown on the buffer incoherently; the buffer
then remains practically unstrained; the SL remains in its
own free-standing state and Eq. (4) continues to hold; (ii)
the SL is grown on the buffer coherently; if h& ~ h, the
buffer is also strained, as if it were a third constituent of
the SL; Eq. (4) is valid with the terms h&Gba& and h&Gb

added to the numerator and denominator, respectively;
(iii) as in (ii), but with h„»h„; the buffer is practically
unstrained and a ~~=ah. Analogous definitions apply to
HS. For simphcity we consider from now on only case
(i).

The in-plane strains of the two layers (v=1,2) are, by
definition,

C =Ci i
—C)2 —2C44

T33 l3+m3+n3

b —C) ) C44+ (CC44/2)(C„+ C,2 )(1—
T33 )

+C (C„+2C,2+C44)(lsmsn3)

(2a)

(2b)

(2c)

i.e., it is expressed in terms of l3m3n3, the corresponding
elastic stiffnesses C;, and the in-plane strain. The bulk
modulus of the layer is B=(C»+2C, 2)/3, and

and

[C44T34+ C( T3~ T34 T35 T36 }]„

&v S=

=2g'
3

2cv 23 &

38 ciiC
[ C44 T35 +C( T32 T35 T3$ T34 )],

V

(7a)

(7b)

The reduced tetragonal distortion, defined from Eq. (1}as

Ac. =Ac/c~~,

o'» =3B„s„"—( C,2+ CT3, ),b e„

+C (Ti4s4+ Tissu) =cr, &i

a'„2=3B„e'„' (C&2+CT32 }„—bs„

(8a)

is readily computed from l3, m3, n3 and C, It is an im-
portant parameter and will be used extensively in the fol-
lowing analysis. Having determined the value of AE for
each layer, the relevant elastic properties are obtained as
follows.

A positive-definite property, usually defined as the
shear modulus of the layer, is given by

+C,(T24s4+ T25ss)„=cr„22,

cr,'6= —C„T36he~+C„(T25s4+ T,4ss')~=o'„,2,
where

(8b)

(8c)

TT

Tripp

lplpl lp+m&m„m, m+n&n„n„n

G„=3B (3—hs„} . (3)

Within an N-dependent multiplication factor, the in-
plane lattice constant at P =0 for both layers is

h, G, a, +h262a2
a~~=

h, G, +h2G~
(4)

To be precise, Eq. (4) corresponds to the free-standing
state only and is derived from the requirement of minimal
elastic free-energy density. If the SL is grown on a
buffer (hb, Gb, ab) the following three possibilities exist:

is a fully symmetric third-rank tensor, and i and j are the
suppressed indices for A,p and ~p, respectively. To avoid
confusion between tensor indices 1 —6 and layer indices
v=1, 2 we add the latter explicitly in Eqs. (7) and (8), and
in some of the following equations, wherever omitting v
may cause confusion.

In summary, at P=O the generalized Hook's law for
crystals combined with the strain and stress boundary
conditions yield the fo11owing strain and stress com-
ponent arrays for each layer v
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E'.=(ell, ell, e', E4, e', ,0)„,
o' =(o', , o2, 0,0, 0, o6)

(10a)

(lob)

count. Within the same approximation, the P-dependent
in-plane strains relative to the P =0 state (net strains) for
the two layers become, to first order in f,

Of these components, only c, is readily computed from
Eqs. (5); all others are expressed in terms of Ell. Notice
that E'„'e„&0, i.e., a contractive (negative) in-plane strain
is accompanied by a tensile (positive) normal-to-the-plane
strain, and vice versa. On the other hand, Eq. (5) sug-
gests that e'jet &0. We therefore conclude that the strains
El), E2 have the same sign as f, and the strains e, , E2 have
the opposite sign of f.

Finally, for later use we introduce the following posi-
tive parameters:

El)(p) = —1=
a&

P
3B,B,

h, G, B2+h2G2B,
h, Gi+h2G2

h262 f(p)—
h )6, +h2G2 3B,

(lsa)

(15b)

al —=el/f

at=——e//f =

h2G2

h )G, +h262

a, = —E, /f =alL(bf, —1),
h, G, (1,

h, G)+h2G2

(1 la)

sjl(P) = —1=a Il(p)

a2

(B,—El(sB/f )
P

3B)B2

P (B,—alLZB ),
3B)B2
—h, G, f (P)

h, G, +h2G2 3B2

(15c)

(15d)

a2=—E2/f =a/(b, e2 —1) . (lib)

They are independent off and can be computed straight-
forwardly.

III. PRESSURE-DEPENDENT STRAINS
AND STRESSES IN SUPERLATTICES

P
2P

2

P
3B,B2

h ) G)B2+h2G2B,
h )G)+h2G2

(16a)

(16b)

(12b)

Upon combining Eqs. (12) with the P-dependent counter-
part of (10), we find that the expressions for AE, E~, E', , cr', ,
o.2, and o.

6 can be transcribed to the corresponding P-
dependent components by imposing the substitution

As usual, the hydrostatic pressure is defined as nega-
tive and set equal to —P, so that P &0. Because of the
isotropic nature of P, no new components are induced by
P in the arrays of Eqs. (10), provided no phase transition
is caused by P. Instead, each component becomes a
linear function of P, in the lowest order (P & P,„,see the
Introduction). To determine these functions, we write
the generalized Hook's law for each layer as follows:

o,'(P) P, i =1—3— (12a)
I t

o,'(P), i =4—6 .

P
(B,—s/igB /'f )

3B)B2

(B, +aI),b,B )
P

3B,B2

where always bB =B2 B„f=a2/—a, —1, and

f(p)=a, (P)/a, (P) —l=f + PAB

1 2

22 P I 1+ PbBh G

G, +h

(16c)

(16d)

(17)

(18a)

(18b)

3Bell (P) +P (13) f (P) is the lattice misfit at PAO. In view of Eqs. (15a),
(16a), and (18), the substitution (13) becomesAgain, all P-dependent strain and stress components turn

out to be proportional to El'(P). In order to determine
ell(P) itself, the P-dependent free-energy density must be
minimized. Following the same procedure that has led
to Eq. (4), we find

(13')
3B,B2f

Thus, in order to have, in lowest order, the P-dependent
counterparts of hc., c4, E~, o. ', , o.2, and o.

6 for both layers,
it suffices to multiply the latter by the factor
(I+PUB/3B, B2f). The tetragonal distortion of Eq. (1),
in particular, takes the form(14a)

h
& G, a, (1 P/3B, )+h2G2a2—(1 P/3B2)—

a (P)=
h ) G& +h2G2

=a II

3B)B2

h ( G)a )B2+h2G2a2B)
h, G, +h2G2

(14b) be (P)=b.E 1+ PhB
1 2

(19a)

where the linearity condition has been taken into ac- and, for nearly matched constituents (hc. =0),
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Ae (P)= (Ae„/f )=+ aPAB Pb,B
38182 38182

(19b)

1= C.
1
—P +

381 P
(20b)

P=e, — (B2+a,hB ), (20c)
1 2

ez(P }= e/i(P) —b, ez(P) =ez — (B,—ezhB /f )
P
1 2

(21a)

1 &2" '
38, +P. (21b)

P= ez — (B, aid B}, (—21c}
1 2

where, for b,B%0 only,

Pm

3B,B2f 3B,B2 a2 —a,
AB a, 81 —82

(22)

According to Eqs. (15b) and (16b), the in-plane strains
sI(P) and e/(P) have the same (negative) slope. On the
contrary, Eqs. (20a), and (21a) suggest that the slopes of
the normal-to-the-plane strains e, (P) and ez(P) are not
equal, in general, except when 58 =0, in which case they
are also equal to the slopes of e„"(P). It is emphasized
that all strains here are defined relative to the P =0 state;
therefore, Eqs. (15), (16), (20), and (21) include the aniso-
tropic as well as the isotropic part —P/38 . The latter
cancels out in the expression for the tetragonal distortion.

The normal-to-the-plane lattice constant at PAO fol-
lows immediately from the definition of e,(P) since,
within the same proportionality factor applied to Eq. (4),
we can write

a (P)=a„[1+e„(P)]. (23)

The critical pressure P appearing in Eqs. (20b) and (21b)
has a particular physical meaning, provided P ~P,„.
According to Eqs. (17}and (19},the P-dependent lattice
misfit and tetragonal distortion of both layers become
zero at P, i.e.,

f(P )=be (P )=0. (24)

The condition P & 0 requires that a2 )a1 and 81 & 82,
or a2 &a, and B, &Bz, in short, fb.B &0. Satisfying ei-
ther of these two requirements is, as we shall see shortly,
a necessary but not sufficient condition for the tetragonal

where the upper (lower) sign holds for v= 1 (2). A P
dependent tetragonal distortion begins to develop even in
lattice-matched systems, provided 8,%82.

In a similar manner we find for the P-dependent
normal-to-the-plane strains

e, (P) =EI(P)—be, (P) =e, — (B e—,hB /f )
P

1 2

(20a)

distortion to be zero at P . The unit cells of both layers
recover their cubic shape at P, and the net (hydrostatic)
strains become

I'=fB, /bB &0,

eJ~
' =fB, /b, B & 0 .

(25a)

(25b)

In view of (14a), (23), and (25), the lattice constant of
both layers in the linear approximation becomes at P

a"' =a, (1+fB2/bB)=a2(1+fB, /bB) . (26)

It is also clear that f(P), b, E,(P), and b,s2(P) reverse their
signs at P=P . Like a "(P), the critical pressure P is a
parameter characterizing the system as a whole and not
the layers individually, to first order in f. Contrary to
a "(P), the critical pressure P is isotropic in that it does
not depend on N. Furthermore, it is independent of the
thicknesses h . For most combinations of constituents,
P turns out to be between 1 and 70 GPa according to
Eq. (22).

It is important to emphasize that the critical pressure
P reached from Eq. (22) is physically meaningful and

practically useful only as long as its value falls in the re-

gion of linearity, i.e., P P,„. Otherwise, the linear

approach expressed by the result of Eq. (22) is not
sufficient and one should include nonlinear terms in

determining P (Ref. 7). We consider three examples:
For ZnSe/GaAs and GaSb/ZnTe superlattices or hetero-
structures, the above condition is satisfied, i.e.,
P =2.2 &P,„=B/B' =2 6GPa (.see Introduction}
and 1.2(2.2, respectively. At least for a ZnSe/GaAs
heterostructure the value of P has been confirmed ex-

perimentally. On the other hand, in InAs/ZnTe HS or
SL, the above condition is not satisfied (6.3)2.2). The
nonlinear approach of Ref. 7 places P around 13 GPa,
much higher than the value of 6.3 GPa reached from Eq.
(22). For all these numerical applications, and the ones
that follow, we have used the values of a, 8, and 8' from
Table I of Ref. 7. It is noted at this point that the
definition of strain used here (net strain) is different than
that used in Ref. 7 (nonhydrostatic strain) and this should
be remembered when comparing any conclusions about
strains in the present work and in Ref. 7.

An additional restriction concerning P, in either
linear or nonlinear approach, is that its value should be
lower than the lower of the critical pressures Pg where

phase transitions for the layers may take place. Most of
the well-known combinations of constituents do not satis-
fy this restriction and, therefore, P carries no physical

meaning. ' Examples of combinations where this is not
true, i.e., P (P, are ZnSe/GaAs, and GaSb/ZnTe,
with Pg =1.4 and 6.2 GPa, respectively. On the other
hand, in InAs/ZnTe the value of P =8.4 GPa falls be-
tween the linear (6.3) and nonlinear (13 GPa) value of P
and this shows the importance of knowing in advance the
extent of validity of the linear approach.

A geometrical presentation of the functions e'I(P) and

E,(P) in the form of Eqs. (15d) and (20c) is quite helpful in

following the behavior under P of any combination of
constituents. Regardless of the sign of c, I (i.e., of f), the
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1

kB+0

EB=O

f=o fco
P

There are four configurations where the two lines inter-
cept each other. These are the cases where f and b,B
have opposite signs, thus rendering P positive. The
crossing points correspond to the negative strain at P
according to Eqs. (25), and a zero value for EE(P ), pro-
vided that P ~P,„. The P-dependent tetragonal dis-
tortion

«1

V

Cl

CO

d
Cl

A

ei

h, a(P)

C

D

b, e(P) =a "(P)—E'(P)

is represented in each configuration by the di8'erence be-
tween the two lines. Clearly, the eft'ect of P in these four
configurations is to reduce AE(P), thus increasing the
elastic stability of the system.

There are critical pressures PI and P, in Fig. 1, for
which E~~(PI ) =0 and ei(Pt ) =0, independently. The
pressure PI requires f & 0 and is given by

FIG. 1. Geometrical presentation of the in-plane strain EI(P)
(solid lines} and normal-to-the-plane strain c~(P) (dashed lines)
vs pressure P( &0) for constituent 1 in a superlattice grown
along an arbitrary direction N. The bulk moduli differ by
AB =Bz B, ; lattic—e misfit f=(az/a, ) —1. In rows C, D, and

E, the conditions imposed by a& refer to superlattices. The same
conditions become 2C~2,-38, when referred to a [001]-grown
heterostructure with 1~layer (no index) and 2~substrate (in-

dex s). The tetragonal distortion hc(P) is shown by an arrow.
The critical pressures P, PI' are discussed in the text. To
demonstrate the P dependence of the lattice constants in a simi-

lar way, use Eqs. (38). The configurations describing constitu-
ent 2 in superlattices correspond to hB and —f, while for the-
a& conditions indices 1 and 2 should be switched. Only the

range of pressures satisfying the linearity criterion P P,„(see
the Introduction) is applicable for each combination of materi-
als.

slope of eI(P) is always negative. On the contrary, the
slope of E,(P) can be positive, zero, or negative, depend-
ing on the sign of B2+aiAB, where e& &0 and B2 &0
(remember that cIe, &0). Using these facts, we find a to-
tal of 15 configurations for the slopes of eI(P) and E, (P),
in pairs. They are shown schematically in Fig. 1 for the
various signs of f and AB. It is understood that in Fig. 1,
only the range P ~P „is applicable for each combina-
tion of materials; moreover, it is assumed that P does
not occur in that range. The configurations that corre-
spond to f=0 and b,B=0 are included for completeness
and for consistency checks. It is emphasized that these
configurations are intended to show the functions cv(P)
(solid lines) and E&(P) (dashed lines) only qualitatively.
Each configuration is designated by a row index (A to E)
and a column index &, =, &, according to the sign of f.
Configuration B= corresponds to the trivial case of a sin-
gle bulk inaterial under P (isotropic contraction). Notice
that the two top rows are independent of N and h, , h2.
On the contrary, the three lowest rows (C, D, and E) de-
pend on N and li, hz through a, of Eq. (1 la).

38,8ifaI
PI = &0.

8, —aIbB
(27a)

The pressure P, occurs with either f & 0 or f & 0 and is
given by

38,Buffa)Pi= — &0.
B2+a)EB

(27b)

38,82faJ &0,
Bi+a

(28a)

38i82fai &0.
B,—a25B

(28b)

The vast majority of known SL belong to the upper three
of Fig. 1. Thus, from these criteria one easily finds that
A & is the configuration appropriate to describe, in the
linear region of P, constituent 1 in the following superlat-
tices:

Since the net strain parallel (normal) to the plane is zero
at PI) (P& ), the corresponding in-plane (normal-to-the-
plane) lattice constant at this pressure acquires its unper-
turbed bulk value.

Figure 1 can also be used to follow the behavior under
P of constituent 2. Once the configuration of constituent
1 with specific signs for f and 68 is identified, the
configuration of constituent 2 corresponds to f, —b,B, —
and the conditions a» ~82/bB~ (defined as the a cri-
terion from now on) become az & ~

8 i Ib,B ~. Suppose, for
instance, that constituent 1 is represented by one of the
configurations C &, D &, E &. Then, the corresponding
constituent 2 is represented by configuration A&. In-
versely, constituent 2 at A & has its constituent 1 in one
of C &, D &, E &, to be specified by the a criterion. The
critical pressures PJ and P2 are
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—=InP/GaAs, InAs/GaAs, GaAs/GaP, InAs/InP, GaSb/InAs,1

Zn Te/ZnSe, CdTe/Zn Te, ZnSe/ZnS,

Ge/Si,

GaAs/Si, GaP /Si, InAs/Si, Zn Te/GaSb, Zn Te/InAs, ZnSe/GaAs .

Likewise, constituent 2 of these SL follows, in the linear
region of P, one of the C &, D &, E & configurations, to
be specified by the a criterion, most likely C&. In
A1As/GaAs we have f &0 and b,B &0 at 300 K; the
configuration for constituent 1 is between C= and C&,
and the configuration for constituent 2 is between A =
and A &, depending on the exact value of f. The situa-
tion is expected to change at different temperatures.
Similarly, in A1Sb/InAs we have f &0, EB &0; the
configuration for constituent 1 is between C & and B(,
and the configuration for constituent 2 is between A &

and B&, depending on the exact value of hB. In
Hg Te/CdTe we have f & 0 and b,B & 0; the configuration
for constituent 1 is between A& and B&, and the
configuration for constituent 2 is between C & and B(,
depending on the exact value of b B. In A1Sb/GaSb, con-
stituent 1 follows one of the C &, D &, E &

configurations, to be specified by the a criterion, and
constituent 2 follows A & . Notice the ambiguity in some
assignments, due to the fact that the values of f and/or
hB are not accurately specified.

The lowest two rows are rather unlikely to occur, be-
cause of the stringent conditions imposed by the a cri-
terion. Good candidates for the lowest two rows would
be SL involving thin diamond layers alternating with
thicker layers of III-V or II-VI compounds, provided the
growth of such SL is technically possible.

As shown in Ref. 7, many combinations of constituents
from among the same series of II-VI, III-V, or group-IV
semiconductors happen to satisfy the condition fb,B & 0;
therefore, with increasing pressure these structures be-
come elastically more stable than at P =0. There are sit-
uations, however, in which these trends are not followed,
e.g., A1As/GaAs, A1Sb/GaSb, and HgTe/CdTe. More-
over, this stability condition is satisfied by constituents
from different series as well, e.g. , ZnSe/GaAs and
GaSb/ZnTe. The safest way, therefore, to decide on the
trends of b,e(P) and the concomitant elastic stability in
the linear region, is to consult Fig. 1, regardless of the
series of the individual constituents. The effects of non-
linearities on P and the relation of the latter to P con-
stitute independent problems for which physical trends
can be established only through microscopic models, as
was done in Ref. 7.

IV. PRESSURE-DEPENDENT STRAINS
IN HETEROSTRUCTURES

The results of the preceding section are easily adapted
to HS, i.e., thin films (constituent 1, no index) grown
coherently along an arbitrary direction N on much thick-
er substrates (constituent 2, index s). For P =0, Eq. (1) is
still valid and f=(a, /a ) —1, EB=B, B. With h, »h, —

I

Eqs. (5), (6), (11),and (4}give

e =f b—e e"=e =be =0

a =he —1, a~~ =a, =0,
a~~=a, .

Furthermore,

(29a)

(29b}

(30a)

a =a(1+a )=a, (1 be}+ah—s

=a, —adit, =a, —hahZ, (30b)

where ha =a, —a is the absolute lattice misfit.
For 0 & P &P,„,Eqs. (14a), (15), (20c), (19a), and (21c)

give

a'~(P)=a (P)=a 1— P
S S (31)

e (P)=f(P)— =fP P
3B 3B,

e'(P) =e' — (B+Mb B),P
S

b,e(P) = b, e 1+ PbB
S

eJ'~(P) =e, (P)=—,be, (P) =0 .
P

S

Equations (22) —(26) continue to hold, and

(32a)

(32b)

(33)

(34)

3BB,f(hZ 1)—
P"=3Bf&0, Pi=- & 0, (35a)

B+EEAB
P~~=P'=0

S S (35b)

Figure 1 is valid under the same conditions as for SL,
especially in regard to the linearity condition P P,„.
For growth along [001] we have bZ =3B /C

& &
and

a =2C,2/C». The conditions a»B2/~hB~ become
2C, z & 3B,. It is emphasized that constituent 2 (substrate)
contracts isotropically, always following configuration
B=, while constituent 1 (layer) may follow any of the
configurations in Fig. 1. Thus, a ZnSe film grown on a
GaAs substrate follows configuration A (. A diamond
film on a Si substrate follows C & . On the contrary, a di-
amond film on a GaAs substrate would follow
configuration E&. In fact, if the ratio h/h„which, for
HS is practically zero, starts increasing, the configuration
of the corresponding SL passes quickly through D & and
terminates in C & . This is an example where the
geometric parameters alone dictate the behavior of the
system under pressure.
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a =1/3B =(C„+2C,2) (36)

P

P=O
PstO

C
~ ] +2C ]p is invariant under rotation and so is K. There-

fore, in cubic materials K is isotropic. The same is not
true in SL and HS, as shown next.

The lowest-order dependence on P of the in-plane and
normal-to-the-plane lattice constants of a SL can be ex-
pressed by

all(P)=all(1 &gl P)

a„(P)=a„(l—a+),
(37a}

(37b)

Pll
1

Pll
1

Pl(
1

where aJ„(a„)is the linear compressibility governing the
in-plane (normal-to-the-plane) linear lattice contraction
under P of the entire SL (constituent v). The linear
compressibilities a(L and a.„are expected to be functions
of the bulk values of the constituent's linear compressibil-
ities K and to exhibit a weak dependence on P through
the P dependence of a,. The expressions of a" and a "(P)
are given by Eqs. (4) and (14). Furthermore, the
definitions of the P-dependent strains, relative to the
P =0 state, i.e., Eqs. (15), (16), and (23) yield

P
1

E,"(P}= —1, e„(P}=all(P)

V

a, (P) —1
a

(38)

FIG. 2. Schematic presentation of the change, with pressure
increasing downwards, of the cubic unit cells in a [001]-grown
heterostructure with f&0. The row indices A-E are the same
as those used for the corresponding strains in Fig. 1, i.e., each
column of blocks here corresponds to the configuration in the
first column of Fig. 1 which bears the same letter index. The
critical pressures are marked explicitly. The dimensions of the
cells change with P at arbitrary (and rather exaggerated) rates,
but in a consistent way within each column. Only the range of
pressures satisfying the linearity criterion P P,„(see the In-
troduction) is applicable for each combination of materials.

An alternative presentation emphasizing the evolution
in the shape of the unit cells, in the linear range, for a
[001]-grown HS, is shown in Fig. 2 for f &0. Here the
cubic unit cells of the layer (upper square) and substrate
(lower square) are depicted in various stages, i.e., before
growth (top left) and after growth, at P =0 and PWO (P
increases downwards). Each column of blocks is con-
sistent with the configuration in the first column of Fig. 1

bearing the same letter index. Notice that the substrate's
cell maintains its cubic shape at all pressures P, while the
layer's cell becomes cubic again only at P

V. COMPRESSIBILITIES AND BULK MODULI
OF SUPERLATTICES AND HETEROSTRUCTURES

It is possible now to deduce the linear compressibilities
of the layers, for directions parallel and perpendicular to
the direction of growth. Such information may be partic-
ularly useful in analyzing experimental data of x-ray
di8raction under P.

The linear compressibility K of cubic materials is relat-
ed to their bulk modulus by"

from which we obtain by subtraction,

a, (P)=a "(P)—a b, e (P)

a, =a —a,hc.

Upon combining Eqs. (37a), (4), and (14b) we obtain,

(39a}

(39b)

da "(P) ai~= h, G)a, K, +h262a2K2

h, G, a, +h2G~a~ 3B(„

(40a)

with

h ] G/a ) +h262a2

31'(L h/Gfa]/Bt+h2G2a2/B2
(40b}

da (P)
/a„=a] hahE, /f . — (41a)

The normal-to-the-plane compressibility of the entire SL
is easily shown to be

h, K, +h2K~
K

h, +h,
(41b)

with

h
&
b, c., +h2hc. 2+

BtsL B )I L B( B2f h ( +h 2

(41c)

where ba. =a~ Ir„AB =B2 B, , a—nd 5s —/f =+a."bZ„,

Equation (40a) describes the in-plane linear compressibili-

ty of the SL as a whole. It is isotropic within the plane
and depends on N through the shear moduli G .

Likewise, from Eqs. (37b), (39b), and (14b) we obtain,
in the lowest order,
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the + ( —) sign corresponding to v=1 (2). Equations
(41a) and (41b) describe the normal-to-the-plane linear
compressibilities of the individual layers and of the SL as
a whole, respectively. They depend on N through Ac,
andG .

%e can now define the effective bulk compressibility
Es& and bulk modulus BsL of the entire SL as

pressure is

El
3

P3
E1 =Ex 0

where

P3= —e(T333 323 4 3]3 5)

(47)

(48a)

2 1
Ksr =2aLL+xst = +

3Bs~
(42a)

3Bc.lie 2 2 2[(C„—C, 2 ) +2C44 —C T33 ](l3m 3n 3 ) .

1 + 6B
3B,B,f

h ) hc. )+h2hc2
h )+h2 BsL

Here, e is the PZ constant of the bulk material, and

(48b)

(42b)

For HS, the corresponding results are obtained from Eqs.
(37)—(42). To avoid confusion, we use explicit indices
s (e) for the substrate (epilayer),

a "(P)—:a "(P)=a "(P)=a '(P) =a (P)

P=a, 1—
3B,

=a ~~(1 —all, sP), (43)

a, (P)=a, (1 x,P ) =—a, (P}—a, b s, (P),

HS s s e s

Ke =K~ [K~ Ke ]SeeIf,
j.

KHS
=Ks

E, =2~i'+v =3m —babe, If—:1/B, ,

KHs =2allts+aHs=3@, =1/B, = 1/BHs,

where

(44)

(45a)

(45b)

(45c)

(45d)

(45e)

h, &&h„hB=B,—B, , and 6K=K K, . (46}

VI. PRESSURE DEPENDENCE
OF PIEZOELECTRIC FIELDS

Strained piezoelectric (PZ) layers are capable of exhib-
iting PZ fields. ' ' A number of theoretical and experi-
mental works have appeared in recent years that deal
with this problem. Depending on the magnitude of the
strains and the PZ constants, the fields may reach
significant values, exceeding 10 V/cm, provided the con-
centration of mobile carriers is low enough to keep the
fields unscreened. In the presence of PZ fields the overall
behavior of the layered system is modified. Changes in
the electronic band structure and the degeneracy and fre-
quency of the long-wavelength optical phonons, by analo-
gy to similar effects induced by strains, are among the
most important consequences. The PZ fields, for a gen-
eral direction of coherent growth, assuming cubic PZ ma-
terials, have been examined in detail in Ref. 14.

According to the phenomenological definition of the
PZ effect, " the strains in each layer may induce an elec-
tric polarization P. Only the normal-to-the-plane com-
ponent P3 is allowed by the boundary conditions of elec-
trostatics to induce a PZ field E which is also oriented
along N. The resulting expression for the PZ field at zero

T»„=(I3m„+l„m&)n,+ c.p.

=2(l3 m„n„+ c.p. )
—s»„ (49)

is a fully symmetric third-rank tensor analogous to Tz„„
of Eq. (9), s»„ is the antisyrnmetric unit tensor, and c.p.
means cyclic permutation over l, m, n. The vacuum per-
mittivity is so and ~, is the static (relative) dielectric con-
stant of the layer (not to be confused with x, of Sec. V).
It has been assuaged that no external charges are present
and the dielectric constant is uniform throughout the lay-
er. Equation (48b) suggests that PZ fields are induced

only for those directions of growth for which all three
direction cosines l3, m3, and n3 are nonzero. Often in

the literature, such directions of growth are stated as po-
lar axes. Thus, PZ fields are expected to exist for N along

[111], [112], [211], [113], etc., but not for [100], [110],
[120],etc.

A hydrostatic pressure cannot induce PZ fields in bulk
materials, because of the form of the PZ tensor. On the
other hand, the pressure modifies the strain and stress
components, as we have already seen in the preceding
sections. This results in a P-dependent PZ field in those
SL or HS which, according to the above general rule, are
allowed to exhibit such a field. In view of Eqs. (47), (48a),
(19a), and the comments following (13b), the P-dependent
PZ field in each layer becomes, to terms linear in P,

E3(P)=E3 1+ PhB
1 2

E3
b,s(P) . (50)

One may also consider the P dependence of C;, e, and K„
which will impose on E3(P) an additional slow variation
with P. Otherwise, Eq. (50) suggests that E3(P) can be
tuned by P to any positive or negative value, or even be
zeroed at P, since bs(P )=0, provided that P&P,„.
Figure 1 shows indirectly that evolution of E3(P) in a PZ
constituent through the difference between the solid and
dashed lines. Thus, in a [111]-grown ZnSe/GaAs super-
lattice, the ZnSe layer exhibits a PZ field that is propor-
tional to hs, (P); according to configuration A(, the
latter decreases with P, becomes zero and reverses sign at
P, and then continues to increase. On the other hand,
the GaAs constituent develops a PZ field that is propor-
tional to b s2(P); the latter has a different magnitude and
opposite sign of hs&(P) but, otherwise depends on P in a
similar manner, according to Eq. (19a}.It should be men-
tioned at this point that, with no pressure applied, the
sign of P3 (and E3) for a strained layer (i.e., whether it
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points along N or —N), depends on four factors: (i) the
polarity (cation A or anion 8) of the layer's face nearest
to the free surface, (ii) the sign of the PZ constant, (iii) the
sign of the in-plane strain, and (iv) the direction of
growth, through the sign of the product (13m 3n3), ac-
cording to Eq. (48b). [It is assumed that the bracket of
Eq. (48b) is positive, as is the case for most materials un-
der consideration. ] By definition, a positive component
P3 points from the layer's B face towards its A face. In
principle, a fifth parameter, the pressure, may be added
to those factors affecting the sign of PZ fields.

VII. DISCUSSION AND CONCLUSION

The first-order effects of hydrostatic pressure on
strained SL and HS grown along arbitrary directions
have been examined in detail. Only the range of pres-
sures satisfying the linearity criterion P P,„ is con-
sidered. Criteria were established for the direct assess-
ment of the P dependence of all strain and stress com-
ponents and of the tetragonal distortion for any combina-
tion of constituents. The criteria are shown schematical-
ly in Fig. 1 and require essentially the lattice misfit f and
the bulk moduli B, of the two constituents. In SL, the
geometrical parameters h and l3, m3, n3, enter through
Eqs. (11) and (1)—(6). In HS, Fig. 1 concerns only the epi-
layer ( v = 1), the substrate being contracted isotropically.
Figure 1 can also be used to obtain information on the P-
dependent lattice constants, according to Eq. (38). From
the analysis it has become possible to deduce the linear
compressibilities of the system for directions parallel and
perpendicular to the direction of growth, as well as the
effective bulk compressibility and bulk modulus of the
system as a whole.

Throughout the present work, the strains E~'(P) and
s (P) are defined relative to the P =0 state of the system,
according to Eq. (38). In this way, the results include the
net effect of P, i.e., all equations for the P-dependent
strain components and all figures include the total hydro-
static part, as well as the shear part. This is to be borne
in mind when making a comparison of the present results
with analogous results in the literature where, most often,
the strain is defined relative to the bulk state of the con-
stituents at pressure P.

The critical pressure P at which the tetragonal distor-
tion becomes zero is simply expressed in terms of f, 8„
and B~ through Eq. (22). The value of P was measured
recently from Ram an experiments under P, in a
coherently-grown [001] ZnSe/GaAs heterostructure, and
was found equal to the value predicted by Eq. (22), i.e.,—2. 2 GPa (Ref. 3). It is emphasized that Eq. (22) is valid
only in the linear approximation, i.e., under the assump-
tion that P ~ P „. For pressures beyond P „one
should consider nonlinear terms.

It has been shown here that the built-in PZ fields,

wherever present, can be modified by pressure according
to Eq. (50). This fact should be taken into account when
analyzing data of electronic transitions across field-
modified energy gaps, in the presence of pressure.

Raman-scattering measurements under P on HS grown
along [001], [110],and [111],have been shown to lead to
values for the phonon deformation potentials, namely,
the tensor components that are necessary to convert the
observed (through Raman or any other technique)
optical-phonon frequency shifts to strains' or PZ
fields, ' ' and vice versa. In view of the extensive use of
Raman spectroscopy for routine strain characterization
of SL and HS, the above technique for obtaining
phonon-deformation potentials is particularly suitable in

types of materials such as A1As where other techniques
cannot be employed.

The layers have been treated here as homogeneous and
dislocation-free (subcritical); we have not considered
corrections due to internal displacement (i.e., due to the
internal strain parameter g). In HS, all present results
concern the epilayer, with E"=f. In SL, a free-standing
state has been assumed and the results concern each layer
v independently, with s'„' given by Eqs. (5). Often, on the
other hand, overcritical HS or SL systems are completely
relaxed at the growth temperature Tg because of misfit

dislocations. In such cases, the in-plane strain c.„at room
temperature To (and P =0) is no longer determined from

Eqs. (5), which are valid only for coherently-grown sub-
critical systems. Instead, it is given by

—(p" —p )(Ts —To) =5phT, —

where p, is the linear thermal-expansion coefficient for
layer v and p~~ is a coefficient governing the in-plane
linear thermal expansion of the entire system; the value
of pl is given by an equation similar to Eq. (4), with a"
and a„replaced by P~~ and P„respectively' (more pre-
cisely, p" and p, stand for their mean values in the tem-

perature range b, T=T —To). In HS, p„and p'~ corre-
spond to the linear thermal-expansion coefficients of the
layer and substrate, respectively. Often, in SL and HS
the strains at T are not fully relaxed; the analysis, then,
should take into account contributions from both f and
—5pb, T in proportion to the degree of relaxation.

Since much of the experimental work with either sub-

critical or overcritical SL and HS under P is carried out
below room temperature, the entire subject of simultane-
ous variation of P and T becomes of interest and will be
treated independently. '
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