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Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors
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A thermodynamic derivation is given of the hydrodynamical model describing charge-carrier trans-
port in semiconductors. The set of moment equations is closed by utilizing the principles of extended
thermodynamics. The method of Maxwellian iteraton yields, then, hydrodynamical-like equations with
constitutive equations for the heat flux and anisotropic stresses.

I. INTRODUCTION

Lately, hydrodynamical models have been used in
simulating charge-carrier transport in semiconductors
particularly with regard to hot electrons and submicron
devices. ' The aim of these models is to incorporate
higher-order effects than those included in the standard
drift-diffusion equations, in order to be able to describe
high-field transport in semiconductors. '

These models comprise the fundamental laws of bal-
ance of particle number, momentum, and energy for the
charge carriers and are derived from the moment equa-
tions of the Boltzmann transport equation (BTE) by suit-
able approximations. In particular the right-hand sides
of these equations, which represent the production of
particles, momentum, and energy due to various interac-
tion mechanisms (carrier-phonon, carrier-carrier, and
carrier-impurity collisions) are modeled by relaxation-
type terms (the distribution function is assumed to relax
to an appropriate equilibrium distribution function).
Moreover, anisotropic stress is ignored and a Fourier-like
constitutive law is assumed for the heat flux vector.

The basic model, in which the various steps and ap-
proximations are derived and discussed in detail, is due to
Blotekjaer. "' In Blotekjaer's model one considers the
moment equations corresponding to particle number,
momentum, stress tensor, and heat flow tensor (third-
order off-center moment). In the latter equation the
fourth-order moment appears. In order to close this set
of balance equations Blotekjaer" assumes that the
fourth-order moment has the value appropriate for a dis-
placed Maxwellian. Furthermore, the source terms ap-
pearing on the right-hand sides of the aforementioned
balance equations are calculated assuming a phenomeno-
logical relaxation-time approximation for the collision
operator appearing in the Boltzmann transport equation
(BTE) (i.e., writing it as a sum of relaxation-type terms
according to each kind of interaction process).

A slightly different model has been proposed by
Hansch and Miura-Mattausch. ' In their model the dis-
tribution function is expanded in Legendre polynomials
and only the first two terms in the expansion are retained.
Only the balance equations for particle number, momen-
tum, and energy are considered and the closure is
achieved by utilizing the Wiedemann-Franz law for the
heat flux. Moreover, through the expansion of the distri-

bution function the collision term is expressed as a func-
tion of the moments.

Both the Blotekj acr and the Hansch and Miura-
Mattausch models are then further simplified in order to
provide a manageable set of equations, suitable for device
simulation. However, for more accurate results, the full
models must be retained.

Akin to the approaches of Blotekjaer and of Hansch
and Miura-Mattausch are those recently proposed by
Woolard et al. and by Thoma et al, who, however, take
into account the nonparabolicity of the band structure.

All these approaches have in common the assumption
at the basis of the closure approximation, i.e., that some
higher-order moment can be calculated by utilizing a dis-
placed Maxwellian. Such an approximation is rather
rough and imprecise and its range of validity needs to be
assessed. ' More precisely, although it might be reason-
able to expect the distribution function to be close to a
drifted Maxwellian under strong electric fields, it is by no
means clear what the magnitude of the error is when es-
timating some higher-order moment by utilizing such a
distribution function. An assessment of the error could
be obtained if one had a systematic (albeit formal) ap-
proximation procedure for solving the BTE for semicon-
ductors, asymptotic with respect to some parameter, the
leading term of which would be a drifted Maxwellian.
Presently such a general approach does not seem to be
available, probably due to the complexities of the col-
lision terms. In fact only recently the collision operator
for electron-phonon scattering has been investigated in
detail, its collisional invariants classified and an "H-
theorem" proved. ' The knowledge of the properties of
the collision operator is essential in order to extend to the
BTE for semiconductors the classical approximation
methods used in rarefied gas dynamics, leading to the hy-
drodynamic limit (the methods of Hilbert, Chapman-
Enskog, and Grad among others). An attempt has been
made by Poupaud, ' ' trying to extend Hilbert's method
to the BTE for semiconductors, assuming a collision
operator in the form of a single relaxation term (which is
definitely an unrealistic approximation to the complexi-
ties of the collision operator, and therefore not applicable
for calculating, e.g. , transport coefficients, among other
things) ~

A more promising approach toward obtaining sensible
hydrodynamical-like equations would be to resort to the
Chapman-Enskog method. Extending it to the BTE for
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semiconductors in a mathematically satisfactory way
seems a far from trivial task. Another method suitable
for deriving hydrodynamical-like equations is Grad s
method of moments. ' This method yields, with an ap-
propriate truncation, a set of evolution equations for the
thirteen fields comprising, besides the five balance laws
corresponding to particle number, momentum, and ener-
gy, rate-type equations for the heat flux and anisotropic
stresses. These equations are known to describe dilute
gases only near thermal equilibrium and fail drastically in
nonequilibrium situations. This is the case of shock wave
structure in which the Grad equations fail for a Mach
number exceeding a critical value of order 2, while on the
contrary the usual Navier-Stokes equations remain ap-
proximately valid up to much higher Mach numbers. '

However, the Grad method of moments can still be used
in order to obtain hydrodynamical equations with consti-
tutive equations of the Navier-Stokes and Fourier type,
by successively applying to the Grad equations the
Maxwellian iteration method (e.g. , as formulated by Iken-
berry and Truesdell). ' Although there is no general con-
vergence proof this method seems to be preferable to the
Chapman-Enskog one because it can be implemented
much more straightforwardly in a systematic manner. '

In particular, the transport coefficients for heat conduc-
tion and viscous stresses can be obtained with much less
effort and for this reason such a method is widely applied
(e.g., in relativistic kinetic theory' ).

In this paper we aim at the less ambitious approach of
deriving the form of hydrodynamical-like equations for
charge-carrier transport in semiconductors by utilizing
the methods of extended thermodynamics.

Extended thermodynamics is a relatively recent ap-
proach to nonequilibrium thermodynamics, and its
main objective is the derivation of many fundamental re-
sults of the kinetic theory of gas from a limited number of
general physical principles. More precisely, the Grad
equations for the thirteen fields (density, velocity, energy,
heat flux, and viscous stresses) can be obtained (apart
from a numerical constant) from the general moment
equations under the following general assumptions.

(i) The off-center fourth-order moment and the trace-
less third-order moment (which appear in the moment
evolution equations for the anisotropic stresses and heat
flux) are constitutive functions of the other moments, re-
stricted only by the requirement of material frame
indifference.

(ii) An entropy density and entropy flux can be defined,
both constitutive functions of all the moments under con-
sideration (the thirteen fields), which are also restricted
only by the requirement of material frame indifference.

(iii) The entropy density and entropy flux satisfy a gen-
eral entropy balance law (at this stage the requirement of
positive entropy production is not enforced).

(iv) The constitutive functions for the off-center fourth
moment and the traceless third-order moment, the entro-
py density, and entropy flux can be expanded around a
state of local thermal equilibrium (the former two up to
first order because one looks for linear constitutive rela-
tions, the entropy density, and entropy flux up to second
order, although a higher-order analysis is also possible ).

In this way one obtains the Grad equations of moments
without resorting to approximation procedures for the
distribution function, but on the basis of general physical
principles. By imposing the restriction that the entropy
production must be non-negative one then obtains re-
strictions on the coefficients which appear in the constitu-
tive equations. By further applying the Maxwellian itera-
tion procedure one recovers the usual Navier-Stokes and
Fourier constitutive equations for a dilute gas, and the re-
quirement of non-negative entropy production implies
that the transport coefficients for heat conduction and
viscosity are nonnegative.

In this article we adopt the approach of extended ther-
modynamics (suitably tailored to the problem under con-
sideration) in order to derive hydrodynamical equations
for carrier transport in semiconductors. This choice is
motivated by the success obtained by extended thermo-
dynamics in recovering the standard results of the Grad
method for dilute gases.

The advantage of such an approach is that it generates
constitutive laws for the appropriate higher moments of
the distribution function (depending on the order of trun-
cation) irrespective of detailed microscopic assumptions
of the form of the distribution function.

Extended thermodynamics cannot provide numerical
values for the parameters appearing in the source terms
of the balance equations. However, it can yield useful re-
strictions in the form of inequalities among them.

In general, for practical applications, it will be neces-
sary to treat the parameters appearing in the source
terms as phenomenological quantities to be determined
by experiments.

In Sec. II we recall the basic formalism of the moment
equations. In Sec. III, after having selected the appropri-
ate constitutive quantities, we impose the entropy princi-
ple (the salient feature of extended thermodynamics). We
find that the results obtained by Liu and Muller for the
ideal classical gas are partially applicable to the case un-
der consideration. Furthermore, we obtain physically in-
teresting restrictions on the relaxation times arising from
the source terms.

The set of moment equations we derive are still too
complicated to be used in practical device simulation
and, therefore, by utilizing a method akin to the Maxwel-
lian iteration we obtain a reduced system (which is simi-
lar to the Navier-Stokes and Fourier equations of classi-
cal gas dynamics).

Finally, in Sec. IV we draw conclusions.

II. MOMENT EQUATIONS

For the sake of simplicity we assume a parabolic band
structure for the solid. " Let f(u, x, t) represent the den-
sity of charge carriers in phase space with position x and
velocity u at time t.

Then the transport equation for one species of charge
carriers, electrons, or holes, in an electric field, is
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where E is the electric field, m is the effective mass (of
electrons or holes), q the charge of a carrier (positive for
holes and negative for electrons), f, the time rate of
change off due to collisions.

We define the number density of carriers

tions in the 13 unknown independent variables n, v', m'~,

m '" once the dependent variables

(ij k ) ijk 3 ll(igk)
5 7

(jk ) ll ij 11 l aallgtg
3 7

n= fdu, (2) aa» C Ci Cik gill
7

the mean carrier velocity

u, (x, t)= —ffu;du,1
(3)

By multiplying Eq. (1) by 1, u;, u;u(, u;(u), (u), and
integrating over velocity space we obtain the usual mo-
ment equations (in conservation form}
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where round brackets around indices denote symmetriza-
tion. Here the quantities C, C', C', C' ' appearing on the
right-hand sides of Eqs. (8)—(11) are to be interpreted as
production terms of the particle number, momentum,
stress-energy, and energy-flow densities, respectively.

Now, following the approach of extended thermo-
dynamics, we consider Eqs. (8)—(11)as evolution equa-

and the pressure tensor

m;, =m ff(u; —
v; )(uj —u~)du .

Furthermore we shall need three more moments, the
heat-flow density tensor

m; k =m ff(u, —u;)(u —u )(u(, —uk)du, (5)

and the fourth order off-center moment

m~k(=m ff(u; —u;)(uj —u()(uk —vk)(u, —u, )du

(the latter has no direct physical interpretation). The
heat-flow vector q is then defined as

m
q; = ,'m;((= ——f (u —v)'(u, —

u, )du .

are expressed as function of them. Here and in what fol-
lows for any set of indices A ' "

denotes the trace-free
totally symmetric part of the tensor A.

The closure problem is to find expressions for m '~

m ", m"", C, C', C', C'" as constitutive functions of
n, v', m ', m '" on the basis of physically sensible assump-
tions. In the following section we shall obtain constitu-
tive equations for m~'J ~, m~j" ~", m"" by assuming the
objectivity (material frame indifference} and entropy prin-
ciple. Constitutive expressions for the production
terms C, C', C', C'" can be obtained only at the cost of
further assumptions (motivated by a relaxation-time rep-
resentation for the collision term f, ).

III. THE ENTROPY PRINCIPLE

as esj
Bt Bxj~ =g (12)

holds for all solutions of the evolution Eqs. (8)—(11),

This principle can be split into two parts. The first
part amounts to assuming that a scalar function S (to be
interpreted as entropy density) and a vector function S"
(to be interpreted as entropy flux) exist such that an en-

tropy balance law holds. The second part states that the
entropy production must be non-negative for all physical-
ly realizable states.

The entropy principle can be interpreted mathemati-
cally as a supplementary conservation law in the sense of
Friedrichs and Lax. ' The equations of Newtonian and
relativistic fluid dynamics and magnetofluid dynamics all
admit the existence of such a supplementary conservation
law with a convex entropy density, and this property im-
plies that these theories can be described by symmetric
hyperbolic systems.

Here we shall assume that such a principle applies to
the system consisting of the solid and of the carrier com-
ponents (say, electrons}. A priori we cannot assume the
entropy principle to hold for the electron component, be-
cause this would require an "H theorem" under very gen-
eral circumstances (see Ref. 13, where such a theorem is
proved for the case of electron-optical phonon scatter-
ing). However, under the assumption that entropy densi-

ty and entropy flux are additive functions of the variables
describing each of the subsystems, we can obviously as-
sume the first part of the entropy principle to hold also
for the electron subsystem. The second part of the entro-

py principle will be treated separately in the sequel.
Let S and S~ now denote the electron gas-entropy den-

sity and entropy flux and g the entropy production. Then
the first part of the entropy principle amounts to assum-

ing that the following balance law:
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once the dependent variables m ~', m ~ "~",m"", C, C',
C', C'" have been expressed as constitutive functions of
the independent variables (n, v', m'J, m'"). Here we shall
assume that these constitutive functions are objective, in
the sense of material frame indifference. At variance
with the case of an ideal gas treated in Ref. 20, in our
case the velocity vector v is an objective quantity, being
the mean electron-gas velocity relative to the solid (as-
sumed at rest). Therefore a priori there could be a depen-
dence of S and the nonconvective part of S~ on v. How-
ever, we exclude this because it would be inconsistent
with our previous additivity assumption on the entropy
density and entropy flux.

If we denote by

gF A

+ F"/=P", A =1, . . . , 13
r}t Bxj

the system of Eqs. (8)—(11), where F",F",P", denote
the column vectors

m( ~ .k) 0
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Now we compute the entropy production g to second
order in the deviation from thermodynarnical equilibrium

g=+ A„P" . (15)

S, = —m(4nk liT )

S2= —m (20nk T )

with a, A, D arbitrary constants which must vanish for a
nondegenerate gas. Here T is the absolute temperature,
kB the Boltzmann constant, and the equation of state is
the perfect gas law

F"=(n,F', F'J,F")

F Aj (Fj Fij Fikj Fijll)T

For this we cannot use the results in Ref. 20 because the
production terms P" in our case are quite different.

Equation (15) explicitly yields

g =AC+ A, C'+ —qE' +A;k C'"+2nU'E
m m

P "= C, C'+ E' C'"+2nv'E"'~, C"
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+ (2FilE +FllE')
m l The Lagrange multipliers can be obtained from Eq.

(13) and are

(with the superscript T denoting transportation) and use
the general theorem of Liu, we obtain the result that the
entropy principle is equivalent to assuming the existence
of multipliers AA (usually called Lagrange multipliers be-
cause of their similarity to the familiar ones [22]) which
are functions of the independent variables so that

A= ' A= A = ' A
gF & ik gF & ill gF

It is easy to check that the coeScient of the term E'q/m
in Eq. (16) is

BS M k BS k;;k BS
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BS + BSl
axj
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a

(13)
and therefore Eq. (16) reduces to

for every value of the independent variables. We notice
that the equality (13) involves only the left-hand sides of
the evolution equations and therefore coincides with the
corresponding equality obtained in the case of a simple
gas 21

The most general solution satisfying (13) up to second
order near thermal equilibrium (we remind the reader
that thermal equilibrium corresponds to the vanishing of
the heat-flow vector and the deviatoric part of the stress
tensor, as well as zero relative velocity v) has been found
by Liu and Muller. The solution found in Ref. 20 for
this case reads

g =AC+A; C'+A;k C'"+A,((C'I'I' .

If we define D', D', D' by

C'= Cv'+D'

C =Cv &U k+2D(iv k)+Dik

U2v'+2v'VD. +v D'+v'D +2V.D' +D

then Eq. (17) becomes

(17)
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In order to compute this entropy production g to
second order (in the deviation from thermodynamical
equilibrium) we need the representation of C, D" to the
second order and of D', D ', D'p to the first order. For
this we need explicit representations for these quantities
as constitutive equations. Instead of proceeding in a gen-
eral and systematic way (which would lead to cumber-
some calculations), we make physically motivated as-
sumptions on the basis of representations of the produc-
tion terms as relaxation type quantities.

We remark that the choice of particular forms for the
production terms is somehow ambiguous and can lead to
different results. The procedure which we shall follow is
that of the simplest generalization of the relaxation-form
expression proposed by Baccarani and Wordeman for
energy. In particular the production terms for particle
number, momentum density, and energy density are ex-
actly those of Baccarani and Wordeman. For the aniso-
tropic stresses and energy flow we assume that the pro-
duction terms can be written in the relation form, also
taking into proper account convective stresses and con-
vective energy flow. A justification of this procedure can
be obtained in the simplistic case of a collision term f, in

Eq. (1) of the single relaxation type.
Therefore, the simplest choice for C, C' is

This choice has been motivated in Ref. 25 and used in
Refs. 3 —6 and is justified by the observation that for hot
electrons recombination-generation processes are negligi-
ble and that C' is given by a simple momentum relaxation
expression. Notice that in this expression Galilean in-
variance is only apparently violated because v' must be
interpreted as relative velocity with respect to the lattice,
considered as a rigid body at rest. In general the terms in
v' must be considered as velocities relative to the lattice
and therefore are of first order in the deviation from ther-
modynamical equilibrium (in equilibrium v=0).

For C' we distinguish the trace C" and the trace-free
part C&'i&, which might correspond to different relaxa-
tion processes.

The expression for C" corresponds to energy produc-
tion and can be taken to be that proposed by Baccarani
and Wordeman,

,'nmu +—3nkz(T—
O
—T)

Cll
W

(21)

where v. is to be interpreted as the relaxation time for
energy and To is the lattice equilibrium temperature.
This yields the following expression for D ".

2n

7
p

n z
3nk~u+ (To —T).

1 7 m
(22)

The expression for the trace-free part is needed only to
first order in the deviation from thermal equilibrium and
therefore can be taken to be

7

mw
(23)

(24)

where ~ is the shear stress relaxation time. (This is con-
sistent with previous calculations, indicating the oc-
currence of anisotropic stresses in hot electrons in bulk
semiconductor material. ) Then this gives

nv;C=0; C'=—
7 p

(19) Also, C'" is needed only to first order and therefore we
can take

with ~ )0 the momentum relaxation time. This corre-
sponds to the following expression for D':

C'PP = — (m 'PP+ ,
' u 'm PP), —1

mw
(25)
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D' = — (m'l' +—', v'ml' )
~ 1

mtq
(26)

which corresponds to a simple relaxation formula for the
total-energy flow vector F'~' (to first order away from
thermal equilibrium), which is also the one used by Tho-
ma et al. , t being the corresponding relaxation time.
This corresponds to the same expression for D'pp,

We remark that the relaxation times tp t tq since
they appear as multipliers of first-order nonequilibrium
quantities, must be considered as functions of equilibrium
variables.

The final expression for the entropy production g up to
second order away from thermal equilibrium is

3nkz(T To)—
g= +2t mTQ 20nk&Tp

1—20nk~ Tq, v,
tp

I

21 +8
tq t

n 2

2TQ

3nkz(T To) —
m&,"&m&;

&

v + +
2Tpt 5 nkvd Tp t~

Now the first order-term, which is linear in T-TQ, cor-
responds exactly to the rate of variation of the lattice en-
tropy production (considering the solid as a rigid body)
due to its thermal interaction with the electron gas. In
fact it is just the ratio of the rate of the thermal energy
exchanged between the electron gas and the solid, divided
by the ambient temperature Tp. The remaining second-
order terms therefore represent the rate of entropy pro-
duction due to the dissipative nature of the interaction of
the electron gas with itself and with the phonons.

Now we can impose the second part of the entropy
principle in the form that the quadratic part of the entro-

py production must be non-negative. This requirement
implies the following inequalities:

tq)0, tg&0,

1 1

tp

2t

4 2

Stq tq

1 &0.
w

(27)

ters tW ~ tq

are strictly positive (and this is necessary for stability).
Furthermore, a very important consequence is that t

cannot be arbitrary because it must satisfy the last in-
equality in (27).

Finally we write down explicitly the field equations.
They are

From the inequalities appearing in (27), we immediate-
ly draw the conclusion that all the quantities

Bn Bn
+v; +n =0, (28)

Bv; Bv; 1 Bm;.
+vJ + =~E'+ D', —

Bt ~ Bx; mn Bx, m n
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Bxk

Bm&t Bv m&
&

8m& k& m&& 8m&&+ —,'m 'n 'm&;k&
&

+ 5mjv
&

——2 + —,
'

&
=mD;v n'DJ(m—I&5;I+2m;J),

xk ' x mn xk ' mn x;

(29)

(30}

(31)

with D', D, , D,II given by (20,"22,24,26).
Drawing from the results of extended thermodynam-

ics, the convexity of the entropy density implies that the
system (28)—(31) is equivalent to a symmetric hyperbolic
system, at least in the neighborhood of thermal equilibri-
um. This is very comforting from the mathematical
viewpoint because the initial value problem is well posed
for symmetric hyperbolic systems.

However, the above system (28)—(31) is still too com-
plicated to be used for device simulation and therefore

now we derive a reduced system, more akin to the usual
hydrodynamical equations.

Following the approach proposed in Ref. 20, which is
akin to the Maxwellian iteration, froln Eqs. (28}—(31}we
obtain, in the limit of short mean free path, constitutive
equations for both m ~;~ &

and m,.».
In this way Eqs. (28) and (29) and the trace of Eq. (30)

will form a closed system in the independent variables n,
v;, m», once m&;J& and m,-&I have been expressed as a
function of them and of their derivatives.
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The iteration works in the following way. We substi-
tute in the left-hand sides of Eq. (31) and of the traceless
part of Eq. (30} the sth iterates of m(,"), m;tt. Then the
right-hand sides of these equations yield the (s+1)th
iterates for m &;j &

and m;I&, once nonlinear terms of order
higher than the sth in the deviations from thermodynami-
cal equilibrium have been neglected.

The zeroth iterate is defined by the thermodynamical
equilibrium values of m &,

-
&, m, II, i.e.,

m &,"& =0, m, II=0 .0

the momentum balance equation

dv l Bm &ij& $ Bp ].+ +— =—qE, —v;/w
dt mn Bx n Bx; m

and the energy balance equation

=—', nm
Tp

1

2v
u + ks(Tc—T),

TQ)

k+ 3 mkII +
dt a 'a Bxp

(35)

(36)

In order to obtain the first iteration we notice that
m&, &

and m;II must be considered to be of first order in
the deviation from thermodynamical equilibrium, while
their time or space derivatives are of second order. Like-
wise, the gradients of equilibrium quantities (n, v, T) are
also considered to be of first order.

Finally, as stated before, in D', D'J the terms in v' must
be considered as velocities relative to the lattice and
therefore are of first order in the deviation from thermo-
dynamical equilibrium (in equilibrium v =0}.

The first iteration then gives

a a 2a
m &j&

=
nkvd Tvo. vi + vj

g
vk~ijBx ' Bx ' 38x

(32)

q;=—5k' n T~q T+—,'nk~ Tv; 7
q

0 (33)

We notice that the above constitutive equations are the
usual Navier-Stokes equations for shear viscosity and a
modified Fourier law for heat conduction (the difference
with the usual Fourier law being due to a convective
term). The total-energy flux obtained with the constitu-
tive law (33) coincides with that proposed by Thoma
et al. '

Finally the reduced system of equations we propose
consists of the charge-carrier number conservation equa-
tion

supplemented by the constitutive equations (32) and (33)
for m&; &, q; and where d/dt represents the convective
derivative and p is the thermodynamical pressure
p =nk~ T/m.

IV. CONCLUSIONS

In this paper we have found that the approach of ex-
tended thermodynamics can be applied to fluid modeling
of hot electrons in semiconductors. It gives rise to a hy-
drodynamical model of more general nature than those
proposed by Blotekjaer" ' or Hansch and Miura-
Mattausch' on the basis of (more or less justifiable) as-
sumptions on the distribution function.

Our model is also more satisfactory from the
mathematical viewpoint (because it leads to an original
system which is a symmetric hyperbolic system), and this
could also be an advantage for numerical calculations.
The range of physical applicability of the hyperbolic
model remains to be investigated.

A better understanding of the model requires its testing
vis a uis particular problems (e.g. , the ballistic diode) and
this will be the subject of future work.
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