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A correct knowledge of the screening potential in heavily doped semiconductors is highly desirable for

analyzing various electronic engineering problems. In this paper a method for the solution of a non-

linear Poisson's equation in the framework of an equivalent variational approach is presented. Strengths

and weaknesses of the earlier methods, including those of Csavinszky and co-workers, have been dis-

cussed in some detail. On the basis of a comparison of the present method with the earlier ones, it is felt

that the present one is very promising, and perhaps more general and unified than most, if not all, other
methods available in the literature.

I. INTRODUCTION

The scattering of the mobile charge carriers by ionized
impurity atoms is one of the most important scattering
processes in heavily doped semiconductors. Almost all of
the theoretical treatments' of this scattering process
make use of the potential that results from the screening
of impurity ions by mobile charge carriers. This poten-
tial finds other applications as well. For example, it is
noted that the screening potential is highly useful for es-

timating band-gap narrowing " in electronic devices
with heavily doped semiconductor regions. Calculation
of depletion layer width and junction depletion capaci-
tance for a heavily doped p-n junction is based on the
same screening potential. ' A knowledge of depletion
layer width is vital to the formulation of important pa-
rameters such as Early voltage of bipolar transistors. '

An accurate analytical form for screening potential is

desirable for the performance analyses of metal-oxide-
semiconductor field-effect transistors (MOSFET's). Be-
cause of such an enormous importance of screening po-
tential for the evaluation and analyses of parameters of
electronic devices, a number of researchers, " includ-

ing Csavinszky and co-workers, ' attempted to ad-

dress various aspects of this problem in some details. In
a series of papers Csavinszky and co-workers made use of
an equivalent variational method to develop a modified

formula for the screened Coulomb potential, taking, for
example, spatial variation of dielectric constant, and

higher powers of the expansion of Fermi-Dirac integral
of order —,', into account. Despite great successes, the

method seems to have some shortcomings. For example,
when the spatial dependence of the dielectric constant
and the higher powers of the expansion of Fermi-Dirac
integral of order —,

' are taken into account, the modified

Poisson's equation becomes extremely complicated, and

almost intractable for extracting useful informations [see,
for example, Eq. (15) of Ref. 15]. Even in this form, it

remains inadequate for small-distance behavior. ' Our
aim in this investigation is to propose an alternative

method, which in the framework of the same powerful
equivalent variational technique of mathematics, would
be simpler, and would yet lead to a more accurate and
generalized screening potential.

II. THEORETICAL METHOD

p(r) = /I [F&/z(rI) —Ft/z('r)+cop/kT)), (2)

where g is the reduced Fermi level, rI=(E~ E, )/kT, E~-
is the Fermi energy, and E, is the lowest edge of the con-
duction band. The parameter A is defined as

2eo(2vrm *kT)

The Fermi-Dirac integral of order j given, in general, by

1 z~dzF (g)= (4a)
I (j+1) o 1+e'

does not possess analytic closed-form expressions for any

of the interesting j&0 members of Eq. (4a). An approxi-
mate expression for F,&z(g) may be given by

10

1/2(YI)= g a 'r)

v=o
(4b)

Let us consider an n-type (uncompensated) heavily
doped semiconductor region characterized by spatially
variable dielectric constant e(r) In such. a semiconduc-
tor one excess electron is provided by each donor atom.
The Poisson's equation, for the potential y(r) of this
semiconductor region, would be given by'

+ 4vrp(r) 1 de(r) dip(r)V'pr+
e(r) e(r) dr dr

where r is the spherical polar coordinate, and p(r) is the
density of screening charge. Let eo be the electronic
charge, m * the isotropic effective electron mass, T the
absolute temperature, k the Boltzmann constant, and h is
Planck's constant. The charge density p(r) may be ex-

pressed as
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TABLE I. Various parameters Q (v=0—10) used to define

Eq. (4b).

10

u„= g C„a g' "s",

Parameter

Qo

Q&

Q2

Q3

Q4

Q5

Q6

Q7

Qs

Q9

Q&o

Value of the parameter

0.677 36
0.547 14
0.168 89
0.125 38 X 10-'

—0.282 12 X 10
—0.970 32 X 10

0.514 83 X10-'
—0.63648 X 10-'

3.618 30X10-'
—1.023 60 X 10-'

1.16490X 10-"

with "C„(n = 1, 2, 3, etc. ) are binomial coefficients

and

C„=
n!(v n—)!

(7a)

e0

kT
(7b)

d p E'df e'

e dr er

4m Aui 4n A o u„g"
E' e &r"

If we make a substitution P(r) =ry(r), then with the help
of Eq. (5), Eq. (1) may be rearranged to

where a„(v=0—10} are suitable parameters listed in
Table I. Variation of F,&z( ir} with rj as calculated from
Eq. (4b) is shown in Fig. 1. For the sake of comparison,
exact values of F,& (2r))for various values of g are also
presented in the figure. From this figure it may be noted
that the calculated results are in very good agreement
with the exact results, and that the range covered by g
corresponds both to nondegenerate and highly degenerate
levels of the material. The average percent error

[7}(exact}—g(calc)]100%
g(exact)

(4c)

60—I

40—

for the most values of g in the range —4~ g &20 is less
than 0.02. Values of g for g(0.0 are very small, and
hence a small deviation of the calculated results from the
exact ones causes a very large percent error. Because of
this, although hg is about 2.0 for g= —2.0, and to some
extent higher for g& —4.0, it should not be taken very
seriously.

With the help of Eq. (4b), the screening charge density
of Eq. (2) may easily be simplified to

10

p(r)= —A g u„[q(r)]",
n=1

where v„ for n = 1, 2, 3, etc. may be given by

where e'=de/dr.
For the sake of convenience, let us define the following

terms:

(
E'(r)
e(r)

4m. Av,T(r)= —+
6r E

Let us also assume that /=ad, and that

(9a)

(9b)

~R (r)a(r) =exp dT
0 2

(9c)

An alternate form of Eq. (9c) would be a=a ' Equa-.
tion (9) allows Eq. (8) to be rewritten as

dP ()P 4nA
Q

"na ~
0

dp' 6
n =2 1

with U(r) defined by

1 da R(r)da
a dp a dr

(10)

Equation (10) may be called the modified Poisson's equa-
tion, which is a second-order differential equation with
variable coefficients. This equation is similar to Eq. (21)
of Csavinszky, ' except that the coeScients for the latter
are constant, instead of being variable as the former. In
order to solve it by the equivalent variational method, we
consider the functional

20

L [P]=f F(P, P', r)dr, (12)
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FIG. 1. Comparison of the fitted and exact values of the
Fermi-Dirac integral of order

2
as a function of the reduced

Fermi level g.

where P is a trial function and P'=(dgldr}. The parame-
ter r0 is a constant, the value of which depends on the na-
ture of the problem. It will be discussed later. Let us
now choose F as

4~~ " v.a" ' &"+'
F = —

—,'($')'+ —,
' U(r)P' — g „, . (13)

E „2 p
' n+1

The expression for F in Eq. (13} is such that when it is
substituted into the Euler-Langrange equation
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8 F 8 0 F
ay a. ay

(14)

the modified Poisson's equation as given by Eq. (10)
would result.

The very success of the present procedure would rest
on the judicious choice of the final form for P. As a
search for this form for P we examine Eq. (8). From this

equation it is apparent that had the dielectric constant of
the medium been spatially invariable, and F,&2(rI) of Eq.
(4b) been estimated more approximately, taking only the
linear term into account, Eq. (8) would reduce essentially
to the form obtained by Dingle. "This indicates that the
terms containing e' and r ' represent the perturbation
terms, and that the solution of Eq. (10) would be practi-
cally the same as the Dingle potential. So P(r) may be as-

sumed to be of the form

P(r) = Ce '"+De (15)

where C and D are the parameters to be determined by
considering the first one of the Dingle boundary condi-
tions

P(0) =ep/ep, (16a)

P(co )=0, (16b)

and where a and b are real and positive. Note that E'0 of
Eq. (16a) is the static dielectric constant of the medium,

e(r) = ep for r tending to infinity. Equations (15) and (16a)

give D =C —1, suggesting that the functional L[/] is a
function of C, a, and b:

This extremalization may be carried out by numerical
method, which would yield optimum values of C, a, and
b, and thus define the screening potential Eq. (15). The
evaluation of the integrals would necessitate a knowledge
of rp. The number of electrons per unit volume sur-

rounding a donor ion may be given by

n, = AF
~ &2 [g+

eppes(r)

/kT], (23)

and the screening length R0 by

0477e m ~(2m ~77kT)
R0 —Ii2( l)

ah
(24)

with m * to be the (isotropic) effective mass of electrons.
This distance R0 of electrons that surround the donor

ion would be shortest when the semiconductor is very de-

generate. One possible condition for achieving this de-

generacy would be to choose r0 to be that value of r at
which

r)=epy(r)IkT (25)

in the expansion of the Fermi-Dirac integral of Eq. (23).
An alternate condition would be to equate r0 to that
value of R0 that corresponds to the highest possible dop-

ing level of a semiconductor, and which yet does not lead
it to exhibit a metallic character. In the case of silicon,
for example, with n-type doping level Nd=10 cm
R 0

' would be about 0.17 A
In order to determine a, b, and C, we may first employ

Eqs. (18)—(21) to calculate BLIBa, BLIBb, and BL /BC.
When BL /BC is equated to zero, we obtain C as a func-
tion of a and b. This allows us to obtain two transcen-
dental equations

L [$]=L(C,a, b) .

If we assume that

F2(a, b) =0,
F3(a, b) =0,

(26a)

(26b)

L [p]=L, +L2+L3, (18)

L, = ,' f U(—r)[C e a"+(1 C)be ""] d—r,
rO

(19)

L2 = —— [Ce '"+(1—C)e "] dr,
ro dp

(20)

the final task would be the extremalization (e.g., maximi-
zation or minimization) of Eq. (18) as follows:

F, (a, b, C) = =0, F2(a, b, C) =— =0,aL aL
Ba

{22)

F3(a, b, C)= =0 .
BL

v„a"
L3 = —4m. A f g ",[Ce '"+(1—C)e "]"dr,

"0 „—2 E{r)r

(21)

as functions of a and b only. Next, starting with a certain
lowest value of b (for example, bp=b =0.0001), we

choose a series of values of b, viz. , b, = (b +b,b),
b2=(b+2bb), b3=(b+3bb), . . . , b =(b+mhb), etc. ,

where, for example, Ab =0.0001, and determine a~=a
from Eq. (26a), and ar=a from Eq. (26b) for each of
these values of b. The procedure of incrementing b and

of determining az and a~ for each incremented value of
b, should continue until a~ and a~ corresponding to a
certain incrementation becomes almost identical. Thus
we obtain a and b. Once a and b are known, the value of
C can be determined very easily.

The differential equation (10), which is dealt with to
obtain the screening potential P(r), covers the interval

0 r ~ ~. This is refiected in the boundary conditions
(16a) and (16b). Yet the proposed variational principle
involves a relatively shorter interval r0~r ~ ao, which

represents an inconsistency of the present method. How-

ever, noting that for heavily doped semiconductors the
value of r0 would be very small {as small as 0.01 A), the

error resulting from the said inconsistency may be con-
sidered to be negligibly small.
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III. DISCUSSIONS

A new procedure for the solution of Poisson's equation
in the framework of equivalent variational procedure has
been discussed. The procedure appears to be far more
general than most of the methods available in the litera-
ture. It is general enough to be valid for both lightly
doped and heavily doped semiconductors.

The greatest strength of the Csavinszky's method lies
in the fact that unlike the earlier one, " it takes both
higher-order terms of the expansion of the second
Fermi-Dirac integral of Eq. (2) into account, and consid-
ers the effect of spatial variation of the dielectric con-
stant. As noted by Adawi, ' consideration of higher-
order terms of the expansion of this Fermi-Dirac integral
is vital to the acceptability of the end result. The accura-
cy of Csavinszky's method depends largely on the expan-
sion of this second Fermi-Dirac integral of Eq. (2), and on
how many terms of the expansion of this Fermi-Dirac in-
tegral are taken into consideration. For degenerate semi-
conductors g varies approximately between 10 to 20, and
at room temperature eo/kT=0. 387X10 V ', indicating
that the expansion of F,&2(rl+eo(()/kT) is possible only
when P(r) is significantly small. It occurs only at large
values of r appropriate for lowly doped semiconductors.
For heavily doped semiconductors, the screening length
becomes stnall, and consequently the idea of small P(r) at
large r becomes physically meaningless. This renders
Csavinszky's method to be quite unsuitable for heavily
doped semiconductors. The potential obtained by the
same method is seemingly good enough only for room-
temperature as well as high-temperature application, but
possibly not for low-temperature applications. Note that
at low temperatures rl becomes smaller and cog/kT
larger, which obscures Taylor's series-expansion method
adopted by Csavinszky. In a separate investigation
Csavinszky and Morrow attempted to study the small-r
behavior of the nonlinear Poisson's equation for the po-
tential of a donor ion in Si and Ge. The method is good
for estimating only small-r behavior, but not the large-r
behavior, of the Poisson's equation. Further, the method
is based on a very crude approximation of the Fermi-

Dirac integral of order —„which is valid only for a small

domain of degeneracy of the semiconductors. Thus the
method may provide insignificant information when used
to study problems of practical interest. For moderately
doped semiconductors, the method remains valid, provid-
ed quite larger number of terms of the expansion of this
Fermi-Dirac integral are taken into account. However,
when this is done, the method becomes extremely
cumbersome. When the spatial variation of the dielectric
constant is additionally taken into account in the same
treatment, the solution becomes practically intractable.

Let us now turn to the present method. This method
does not attempt at all to expand the second Fermi-Dirac
integral of Eq. (2) using Taylor's series-expansion
method. Rather, it makes use of a polynomial approxi-
mation Eq. (4b) to express F»2(rl) as a function of g.
This allows p(r) to be expressed in terms of a polynomial
of P. As Eq. (4b) appears to be highly accurate for non-
degenerate, moderately degenerate, and highly degen-
erate semiconductors, Eq. (5) is useful for all possible
values of P(r), and over a wide range of temperatures.
Unlike Csavinszky's method, Eq. (4b) allows us to arrive
at Eq. (5) regardless of whether r) is smaller or larger than
cog/kT due to variation of temperatures. Terms like
"small-r behavior" and "large-r behavior" are quite ir-
relevant in the present method; it is useful practically for
"all-r behavior" of the nonlinear Poisson's equation.

In conclusion, a unified approach for the solution of
nonlinear Poisson's equation has been proposed. The ap-
proach is simple and accurate, and promises to be very
widely applicable. It points to the major weaknesses of
the earlier methods, and seems to demonstrate novelty
and uniqueness in avenues where Csavinszky's method
may fail. The information that it attempts to provide to
the general readership may have a significantly large im-
pact on the fundamental theoretical analyses of
tomorrow's digital and electronic engineering problems.
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