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A matrix method for the numerical determination of steady-state hot-phonon and nondegenerate hot-
electron distribution functions is presented. The coupled Boltzmann equations for the longitudinal-
optical phonons and for the electrons, in the I and L valleys of III-V semiconductor compounds, are
iteratively solved with high accuracy under typical hot-electron conditions. The phonon distribution is
shown to be significantly disturbed from thermal equilibrium. In turn, nonequilibrium phonons induce a
substantial disturbance of the hot-electron distribution. Computations are performed for InP at 300 K,
taking into account all relevant scattering mechanisms. It turns out that the electron transport parame-
ters are strongly affected in the field range from 0 to 10 kV/cm: the drift velocity is increased by about
42% at 2 kV/cm and the Ohmic mobility by 37%%uo. These effects are shown to be due to the drag and re-

duced cooling of the carriers by the nonequilibrium LO phonons.

I. INTRODUCTION

When calculating hot-carrier transport, one usually
solves the Boltzmann equation, assuming that the reser-
voir of phonons is in thermal equilibrium. However, the
phonon distribution may be significantly disturbed, when
the carrier scattering rate of a given type of phonon is
comparable to the nonelectronic thermalization rate of
these phonons. ' In the case of acoustic and piezoelectric
phonons, this disturbance occurs at low temperature. '

Conversely, optical phonons may be strongly disturbed
even at room temperature, as observed by picosecond
laser-pulsed experiments. In hot-electron transport,
the emission of longitudinal-optical (LO) phonons is the
main energy-relaxation mechanism of charge carriers in

III-V semiconductor compounds at intermediate fields,
that is, at fields large enough for electrons to gain, during
a mean free Aight, an energy higher than the energy AcoL&

of a LO phonon and lower than the energy gap 5 be-
tween the I -valley minimum and the next higher (gen-
erally the I.) -band nunima. Therefore, the electric-field
range in which we are interested in for studying phonon
disturbances and their efFect on the electron dynamics is
such that only the two lowest types of valleys are in-
volved.

In this paper we present a method for numerically sol-
ving the coupled hot-phonon —hot-electron Boltzmann
equations for the steady state. This will allow us to study
the disturbance of the distribution function of the LO
phonons from equilibrium, induced by the hot carriers,
and the ensuing modifications of the distribution of the

hot electrons due to the amplification and displacement
of the phonon distribution. We will then be able to study
the corresponding modification of electronic transport
parameters. These results will confirm and complement
the earlier carrier-temperature or Monte Carlo approach
for the investigation of nonequilibrium LO-phonon
efFects on non-Ohmic transport in polar semiconduc-
tors 2, 6—8

In Sec. II, the numerical method will be described.
The expression of the Boltzmann equation for the pho-
nons and for the electrons will be given in Secs. III and
IV, and the results obtained for InP will be described in

Sec. V.

II. METHOD OF SOLUTION

t)N(q, t) BN(q, t)
Bt Bt

t)N(q, t)
atelec iatt

where the two terms on the right-hand side are related to
the variations of N(q, t) produced by electron-phonon
and by phonon-phonon collision processes. We shall take

In this section, we shall give the method used for deter-
mining the steady state by solving the coupled Boltzmann
equations for nondegenerate hot electrons and hot pho-
nons, in homogeneous III-V semiconductor compounds,
for a uniform external electric field E.

The evolution of the phonon distribution function
N(q, t) is obtained from the solution of the Boltzmann
equation
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into account only the LO phonons, since disturbances of
other phonon branches will be negligible in the high-
temperature regime of our following applications. ' One
may then write

(}N(q, t)
c}t

=C' „N(q, t) —D „N(q, t}, (2}
elec

where C~„and D~„are gain and loss operators, respec-
tively, related to emission and absorption of phonons by
electrons. The expressions for these operators will be
given belo~, in Sec. III. Their important feature is that
they depend on the electron distribution function f (k, t).

The lattice scattering term in Eq. (1) can be simply de-
scribed through a relaxation time ~z, which will be given
in Sec. III below:

BN(q, t ) N(q, t) —N,
+L

(3)

where Nz is the thermal-equilibrium Bose-Einstein distri-
bution. Finally, Eqs. (1), (2), and (3) lead to

aN(q t) =C'~„N(q, t) —B~„N(q, t )—
at (4)

f, (k, t)
+C» f1(k, t)—

rz k
(6)

where the subscripts 1 and 2 stand for I and L, respec-
tively. C „and Czz are the "entrance terms" for intraval-
ley scattering, corresponding to the sum of the scattering
from any state k' of a given valle (I or L) to the state k
of the same valley. C,z and z, describe intervalley
scattering; they correspond to the sum of the scattering
from any state k' of a given valley (I or L) to the state k
of the other valley (L or I ). 1/r, (k) is the "exit term
from the valley I,*' corresponding to the sum of the
scatterings from a given state k of the valley I, to any
state k' of any valley (I or L), and 1/rz(k) is the "exit
term from the valley L." These expressions will be de-
tailed in Sec. IV.

The operators C" depend on N(q, t), which is assumed
to be constant, when hot LO phonons are neglected, but
which is not constant in this study. %e should then solve

As concerns the electrons, we are interested in GaAs-
like III-V semiconductor compounds, where three groups
of valleys are involved: the I, L, and X valleys. Howev-
er, as explained in the Introduction, the electric fields of
interest for the present study are such that only two
groups of valleys are involved, namely the I and the L
valleys. The Boltzrnann equations for this two-band
model are then

Bf,(k, t) eE
~kf 1(k t)+ll f1(k t}

at

f, (k, t)
+81zfz(k, t)—

7

Bfz(k, t) eE
~ Vkfz(k, t)+Czzfz(k, t)

Bt

the system of nonlinear coupled equations (4)—(6), with
the unknowns N(q, t), f, (k, t), and fz(k, t). We are in-
terested in the steady-state regime, given by

N(q) N—t
C „N(q) —D hN(q) — =0,

+L
(7)

~kf1«)+ C»f1 «)+ C'1zf z «)—
71

~kfz«)+ Czzfz(k}+ z1f1(k)—
rz k

III. THE PHONON BOLTZMANN EQUATION

A. Lattice relaxation

In Eq. (7), Nt is the Bose-Einstein thermal-equilibrium
distribution

'flop~
N~ = exp

k~ T~
(10)

where Scuzz is the energy of the LO phonon, k~ is the
Boltzmann constant, and Tz is the lattice temperature.

The relaxation time ~1 for LO-phonon thermalization
is given by'

In the following, this system will be solved by extend-
ing the matrix method developed by Aubert and two of
the present authors to the non-equilibrium-phonon case.
Since this system is nonlinear, only an iterative method
can be used, consisting in the following steps.

(i) The phonon distribution is first taken as being the
Bose-Einstein thermal-equilibrium distribution N (q)
=N'0'(q) =Neo. Inserting N„o into Eqs. (8) and (9), one
gets, after discretization, a linear homogeneous system
[since the derivatives involved in Vk and the integrals in-

volved in C;J can be expressed as linear forms of f;(k)].
This system is solved using a least-square method suited
for overdeterrnined systems. One then gets a first esti-
mate of the f;(k), labeled f '(k), which is the electron
distribution function one would obtain neglecting hot-
phonon effects, i.e., the hot-carrier distribution function
usually studied. Note that, since the system of Eqs. (8)
and (9) is homogeneous, one gets an infinite set of propor-
tional values of f, (k) and fz(k). The correct values are
obtained by normalizing f, (k)+fz(k) to the total carrier
density N„set equal to ND for uncompensated and non-
degenerate material at room temperature.

(ii) The f,' '(k) are now carried into Eq. (7},which then
becomes a linear equation, which is solved using the
above technique, giving a phonon distribution N'"(q).

(iii) N' "(q) is carried into Eqs. (8) and (9), giving distri-
butions f;"'(k), then a new distribution N' '(q) is found
from Eq. (7), and this process is continued until conver-
gence is reached, when two successive electron, as well as
phonon, distributions agree within the desired accuracy.
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jL

1+ exp
0.65%coLQ

k~ TL

Tp
—1

+ exp
0.35AcoLQ

where ~p has been found experimentally to lie in the
range 8 —20ps in GaAs. ' " The calculation is detailed in Appendix A. Equation

(12a) can be written as

B. Phonon-emission operator C~b

The rate of LO phonons generated in the state q by
electrons, initially in state k, emitting a LO phonon and
ending up in the state k —q, is written as

C N( )= 2ApS PO

X I P, (k)dk f f [k, 8o(u)]du,

0 ),N(q)=
3 f Pz«, (k, k'=k —q)f(k)d k,

8m'

so that, neglecting free-carrier screening of the polar-
optical coupling,

[N(q)+ 1 ]
pt po

q

X j G(k, k —q)f(k)
k

X &[ &(k —q) —[e(k)—i)iroLo]] d'k,

with

e ACOLQm*

E.p

P, (&)= [(1+a"e)' (I+a'E')'ik

(1+2a*E)
+a'(Ee')' cospo]

E E ACOLQ e

(14)

(15)

(16)

(17)

with

e RcoLQ
2

CO=

(12a)

(12b)

In Eq. (12a), E(k) and E(k —q) are the energies of the
electron before and after a phonon emission, and Ace„Q is
assumed to be independent of q. Furthermore,

G(k, k —q) =G(k —q, k}

= [a (k)a(k —q)+c(k)c(k —q)cosP]

(12c)

As shown in Eqs. (A14), k;„c is a function of q. This
function also depends on the effective mass m ' and on
the nonparabolicity factor a*, that is on the valley in
which the process is studied. Figure 2 shows, in indium
phosphide, the variations of k,„& vs q, for emission of
phonons, in the valleys I and L [circles ( 0 ) and horizon-
tal crosses (+)]. In practice k,„ is chosen such that
f ( k,„) is negligible; typically, k,„=l. 6 X 10 m
(dashed line in Fig. 2). From Eqs. (A13) and (A20),

with

a(k)= 1+a"e(k)
1+2a"e(k)

1/2

and

c(k)=
a"E(k)

1+2a*E(k)

1/2

(12d)

f(k)=f(&,g, u),
s(k —q) —[E(k)—firoLo] =H, (k, q, g ),
G(k —q, k)=G(k, q, g) .

(13}

where P is the angle between the vectors k and k —q [in
shortened notation, P=(k, k —q) ], a* is the nonparaboli-
city factor of the bands, and c.„and c.„are the relative
high-frequency and static dielectric constants.

It is much easier to coinpute the integral (12a) using
polar coordinates with a polar axis along q. Then (see
Fig. 1 and Appendix A) k =

[ k, g, u ], and in this system FIG. l. The electron distribution function f(k)=f(k, O) is

computed in the coordinate system Ix,y, z] with z along the
electric field E, k= ~k, and 0=(E,k). The phonon distribution
is N(q)=N(q, a) with q=~q~ and a=(E,q). The integrals in-
volved in the phonon Boltzmann equation are computed in the
coordinate system tx', y', z'] with z' along q.



NUMERICAL SOLUTION OF COUPLED STUDY-STATE HOT-. . . 13 085

so that

10-

0
0

InP
TL= 300 K

= p

10 15

q (10 m )

BphN(q, t )=
2 2C~

q

X f G(k, k+q}f(k}
k

X5[e(k+q) —[e(k)+%co„o]]d3k,

(23)

where C is given by E . (12b). Using the same pro-
cedure as for computing ph one gets, in analogy with
Eqs. (14)-(21),

BphN(q, t)=
3 23~

q

FIG. 2. Variation of k;„=k;„&and of k;„=k;„& vs q, for
emission of LO phonons in the I valley (circles o,
k;„=k;„&), absorption of LO phonons in the I valley
(squares 0, k;„=k;„&),emission of LO phonons in the L val-

ley (crosses +, k;„=k;„&),and absorption of LO phonons in
the L valley (oblique crosses X, k;„=k;„&). The dashed line
corresponds to the value of k,„.

max
7r

X f„PD(k)dk f f[k,8QD(u)]du,
minD Q=0

(24)

where A~ is given by Eq. {15)and PD is similar to P,
defined by Eq. (16), namely,

Po(k) = [(1+a~s)'~ (1+a~s')'~2
{1+2a's)

k —qsoc
cosPpc =

(k +q —2kqspc)

with

(18)
with

8 =8+fKOLO s

+a'( se') '
cosPQD ] {25)

(26)

q m coLo
spc = „+ [1+a'(e'+s)],

fikq
(19)

k +qsoa
cos pg)

=
(k + +2kqspn )

(27)

q,„=k(s,„)+k(e,„—Root o),
(21)

and, from Eqs. (A22) and (A21),

cos[8Q&(u)]=spccosa —{1—spc)'~2sinacosu . (20)

The double integral in Eq. {14}has no analytical solu-
tion, and the electron distribution function is tabulated at
the k; and 8 values of the mesh in [k] space, through
the numerical solution of the electron Boltzmann equa-
tion.

Equation (14) holds for q;„~q &q,„. As discussed
in Appendix A,

q m co&o
Spo =CosgpD =

2k
+

~k
[1+a (s +s)] (28)

fikq

cos[8pn(u }]=sp~cosa {1—spD
—)' sina cosu . {29}

The lower-k limit k;„n is such that, in Eq. (28),

st =cosgpn & 1, and is given by Eqs. (A14},in which tQLo
and q should be changed into —cozo and —q. As a conse-
quence, one can draw additional curves k;„D vs q for
phonon absorption, which depend on the valley through
m' and a', and which are restricted by additional q;„
values, in the same way as for phonon emission. These
curves have been drawn in Fig. 2 [squares (C3} for the I
valley, oblique crosses (X) for the L valley, of Inp].
Again, k,„ is chosen such that f(k,„) is negligible;
typically, k,„=1.6X10 m

where, as shown in Fig. 2, q;„also depends on the valley
through m' and a'. In practice, the value q,„ is very
large; we limited ourselves to q,„=1.5 X 10 m

C. Pbonon-absorption operator 8~h

D. Phonon distribution

Carrying Eqs. (14) and (24) into Eq. (7}gives

A [N(q)+ 1]—BN (q}—[N{q }—Nt ]=0, (30}

The rate of destruction of LO phonons in the state q by
electrons, initially in states k, absorbing an LO phonon
and ending up in states k+q, is written as

+~hN(q, t)=
3 fP~, (bk, k'= lt+)fq( )dirk,2Q

8~'

where

max
A =r~, f P, (k}dk f f[k,8pc(u)]du

minC @=0

(31)

{22) and
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max
ji'

B =rL j PD(k}dk f f[k, ooD(u)]du .
minD 0=0

f;(k) =gf;(k)P(k, k') =f;(k)g P(k, k'),
r;(k) k'

(37)

The solution of Eq. (30) is

1V~+ A

1+B—A

(32)

(33)

and I/r;(k) is the sum of the corresponding scattering
rates, namely,

1 1

r, (k) r„(k) rp, (k) r; (k)

Obviously, the phonon distribution N(q) is symmetric
around E, hence, N(q)=N(q, a), where q=~q~ and
a=(E,q). Therefore, we divide the {q,a} space into a
mesh, and we compute N(q) at points {q, , a }.

IV. THE ELECTRON BOLTZMANN EQUATION

The steady-state Boltzmann equations for the electrons
are given by Eqs. (8) and (9). In these equations, C,,f, (k)
is the sum of the probabilities that an electron, in any
state k' in the valley number i, is scattered into state k of
the valley belonging to the group of equivalent valleys.
This includes intravalley scattering, as well as intervalley
scattering between two equivalent valleys (namely L L). -

Hence, if the I and L valleys are labeled 1 and 2, C»
represents intravalley scattering in the valley I, and C22
represents intravalley scattering in L plus intervalley
scattering between equivalent L valleys.

C';;f;(k)= g f;(k')P(k k) ',. (34)
k'E valley i

C; ~; is the "input intervalley scattering operator be-
tween nonequivalent valleys, "

C;1fj(k) is the sum of the
probabilities that an electron, in any state k' in any valley

j Wi, is scattered into state k of valley i:

r„(k) rp, (k), rj(k)
(38)

All these scattering mechanisms are kept unchanged
with respect to the usual formulation, except for polar-
optical-phonon scattering, where we should take into ac-
count the displacement of the phonon distribution func-
tion with respect to thermal equilibrium. This term will

be studied in Sec. V.

C,„f(k)= j f(k')P, (k', k) N(q)+
8~' 2

X5{E(k')—[E(k)+A,A'o~Lo]}d k',
(40)

A. Input operator Cp,

The operator C, is the sum of two operators, one for
LO-phonon emission C„, and one for absorption C', +.

C„,=C,++C, (39)

Each of these operators will be labeled C,i, with A, = 1

for emission of a phonon, and k = —1 for absorption of a
phonon. Transforming discrete sums into integrals over

{k } by using the density of states, one has

C';J~; f, (k)=
k'P valley i

f (k')P(k', k) . (3&) with

k'=k+Aq . (41}

Cti =C'rr =C.e+C'p, +Cim+Cpp

C2~ =C'LL =C'„+C'; +C; + C „p

+pp + ~inter equiv LL-
(36a)

(36b)

The "output scattering operator" is the sum of the
probabilities that an electron, in a given state k in valley
i, is scattered into state k' of any valley (including the val-

ley i); it is the inverse relaxation time 1/r, (k), defined as

Intravalley scatterings involves acoustic deformation po-
tential (ac), piezoelectric (pi), impurity (im), intravalley
nonpolar optical phonon (np) in L (not in I }, and polar-
optical-phonon (po) scattering due to LO phonons, in the
valley i (the nonelasticity of acoustic scattering is not ta-
ken into account), hence,

In polar coordinates with E as the polar axis, and with
the notation e=e(k) and e'=e(k'), Eq. (40) becomes

X N(q)+

X 5[e' —(e+XA'co„o) ]

X k ' sjnO'dk 'd 0'd y' . (42)

The Dirac function determines the radius ko of the
sphere where integrations over the angles 0' and y'
should be performed. Since f (k') is obviously symmetric
around E, it does not depend on tip'. Equation (42) can be
written as

C,i f(k)= C,k0

dE
dk'

G(ko, k, P)f f(k It, o')sin8'd8' f N(q, a )+ dip',
0'=0 p'=0 q 2

(43)
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with ko such that e(ko)=E(k)+Aficoto .Inserting Cz, into Eq. (43) and taking ide/dk'i„, and G(ko, k, P) from Eqs.
0

(12c) and (12d), one obtains
I

C'~ qf(k)= f f(k0, 8')sin8'd8' f F, N(q, a)+ dp',
2 1+2+ c. g=o g =0 2

(44)

with

F
2

( I+a's)' ( I+a*a')' +a'(EE')' cosP

q
(45)

and A, given by Eq. (15).
The integration over y' must be performed numerically

by interpolating N(q) for each value of q&'. For that pur-
pose q and a are computed as functions of 8' and y'. For
performing the integrals in Eq. (44), we choose E=z, and
the x axis in the plane [E,k) (see Fig. 3); then,

k' is given by Eq. (41). Using the same technique as that
used for Eq. (40), one gets a result analogous to Eq. (44),
1.e.s

A~, kof(k, 8)

r~,&(k) 2 1+2a'e

cosP =cos8 cos8'+ sin 8 sin 8'cosy'

and q is determined by Eq. (41) through

q =k +ko —2kkocosP .

The scalar product of Eq. (41) with z yields

cosa =iUkocos8' —k cos8)/q .

(46)

(47)

(4&)

X f sin8'd8'
8'=0

X f F N(q, a)+ dy',
y' =0

(51)

where A, and F, have the same values as they had pre-
viously, and k'=k —A.q.

with

f(k) f(k) + f(k)
rp, (k) rp, +(k) r, (k) ' (49)

f (k) f (k) P (k, k') N( )+ I+A,
T&og(k) 'g~ v ~ '

2

x 5 [E(k')—[e(k)—A A~„o]J
d'k';

(50)

Z

FIG. 3. Coordinate axis chosen for computing the integrals

1Il pp o

B. Output term 1/~p, (k)

The output term I/r~(k) is also the sum of two terms,
corresponding to absorption and emission:

V. APPLICATION TO INDIUM PHOSPHIDE

A. Material parameters for InP

The numerical values of the material parameters used
in this section are given in Appendix B. They are taken
from previous studies where they had been adjusted un-
der the assumption of LO-phonon equilibrium.

The conduction band of Inp consists of one I valley
centered at (0,0,0), four L valleys along (1,1, 1), and
three X valleys along (1,0,0). These valleys are taken as
spherical and nonparabolic, the dispersion law' is given
by Eq. (A8). The energies of the minima of the valleys L
and X are given with respect to the I minimum. '

As concerns the scattering mechanisms, our study in-
cluded acoustic deformation-potential, piezoelectric, non-
polar optical (in the L valleys), polar-optical, and impuri-
ty scattering, which are all intravalley processes, and
nonpolar optical intervalley scattering.

Acoustic deformation-potential scattering is not
efficient at 300 K ' it was considered as being elastic.
The transition rates and the relaxation time are taken
from Refs. 19—21.

Similarly, piezoelectric scattering, having noticeable
effects only at low temperature, was also treated as being
elastic.

At intermediate electric fields, below the onset of no-
ticeable intervalley transfer, polar-optical scattering is the
essential mechanism by which hot electrons relax their
energy. ' ' In Sec. III above we have discussed the
way in which we treat this scattering mechanism in order
to study nonequilibrium LO phonons.

As concerns the intervalley transfers, we took into ac-
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count two types of zone-boundary phonons with their
standard transition rates. ' For ionized impurity
scattering, we assumed equal carrier (N, ) and donor
(ND ) concentrations and used the Brooks-Herring model
including a screened Coulomb potential.

For the LO-phonon relaxation we used the value
~o= 16 ps. As explained in Sec. III A above, this choice is

compatible with values determined in GaAs, which lie in
the range 8 —20 ps. The value 16 ps, close to the max-
imum 20 ps found in GaAs, takes into account the fact
that the experimental thermalization times were found to
depend on the surface preparation of the sample, larger
values being associated with smoother surfaces. Hence,
the bulk values we are interested in should be nearer the
highest value measured. In fact, we tried several values
of ~o and the steady-state result did not significant1y de-
pend on ~o. With the value 16 ps chosen, and for
TL, 00 K- d ~~La 43 2 meV, one gets ~L =5.8 ps.

B. Simple case: Maxmelliandistribution of electrons

crosses (+} on Fig. 4], N(q, a=m/2)=Nt. All are in
agreement with earlier analytical calculations for heated
and displaced Maxwellian carrier distributions.

C. Effects of hot electrons on the phonon distribution

In the following, we discusss the results obtained by
solving Eqs. (7)—(9), by use of the iterative method de-
scribed in Sec. II.

1. Phonon distribution at a very weak electric field

In Fig. 5(a), we have plotted (circles) N(q, a=O) vs q
for uncompensated n-type InP, for N&=10' cm and
TL =300 K, in a very weak electric field, E=l V/cm.
Even at such a weak field, the phonon distribution is dis-
turbed from equilibrium. A peak clearly appears at low-q
values

(0.6 X 10 ~ q ~ l. 5 X 10 m ' },

0.4

U

0.3

0.2

InP
TL= 300KOO~0

o o
00 0

C}0 oo „On~Q~i~[~~~~~~Aba~Aba~Kba~Aba jaa~88~
~++++++

+

In order to check the method, we first computed the
phonon distribution function for given Maxwellian elec-
tron distributions. The calculation is then noniterative.
We first set f(k) to be the thermal-equilibrium distribu-
tion function: f (k) ~exp( —e/knTL ), and found N(q)
equal to the equilibrium Bose-Einstein distribution NL,
checking our numerical accuracy.

We then chose a displaced Maxwellian distribution
centered at ko=4X10 m ' along E, with an electron
temperature T, =300 K, which corresponds to a rough
approximation of the electron distribution at E =2
kV/cm. The phonon distribution was then found to de-
pend on q: N(q) =N(q, a) as shown in Fig. 4, where N is
plotted versus q for three values of a. For a=0, corre-
sponding to N(q) in the direction of the field E [circles
(0) on Fig. 4], N(q, a=O}~NL. In the direction oppo-
site to the field [stars (e ) on Fig. 4], N(q, a=a ) ~NL.
For a direction perpendicular to the field [horizontal
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FICx. 4. Variation of N(q) =N(q, a) vs q, for three directions
a with respect to the electric field, in n-type InP, for TL =300 K
and No=10' cm, when f(k) is fixed to be a displaced
Maxwellian centered at ko =4 X 10 m ' and at temperature
T, =300 K: a=0 (circles o); a=n. /2 (crosses +); a=n (stars
g)

FIG. 5. Variations of N(q, a=O) vs q [Fig. 5(a)] and of
f(k, 8=0) vs k in the I valley [Fig. 5(b)] for n-type Inp,
TL=300 K, N&=10' cm, E =1 V/cm. Circles (O): phonon
distribution N(q, a=O) [Fig. 5(a)] and electron distribution

f (k, 8=0) [Fig. 5(b}]as obtained from Eqs. (7), (g}, and (9}. Full
line: thermal equilibrium distribution functions. Crosses (+):
variations of N (q, a =0) [Fig. 5(a)] corresponding to an
artificially modified electron distribution with f (k, 8=0) given
by the crosses (+) of Fig. 5(b).
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N(q) being exactly equal to the thermal equilibrium
Bose-Einstein distribution at higher q values. This devia-
tion of up to 20%%uo is quite surprising at such a low field at
room temperature. Note that the horizontal scale of Fig.
5(a) has been enlarged by a factor of 10 with respect to
other figures, so that only very small q values are in-
volved in that figure.

In order to study the origin of this peak, we plotted, in
Fig. 5(b), the electron distribution function for k~~E, in ar-
bitrary units (circles). It is seen to almost coincide with
the thermal-equilibrium Maxwellian distribution

f(k) ~exp( —c/kit TL )

(full line), except at large values of k, where the distribu-
tion becomes four to five orders of magnitude higher than
the Maxwellian one. These numbers demonstrate the
very high accuracy provided by our method even at very
low values of f(k) since, at k =1.5X10 m. ', f(k} is
seven orders of magnitude lower than f (k =0).

It is this deviation of f(k) from the Maxwellian, at
high-k values that is responsible for the peak of N(q) at
low q values. In fact, for N(q) being disturbed from equi-
librium, one needs (i) a great number of electron —LO-
phonon interactions, which always occurs at 300 K, even
at thermal equilibrium, due to the wide spreading of the
distribution function at this temperature and (ii) a depar-
ture of the electron distribution function from equilibri-
um; otherwise, due to the detailed balance of the scatter-
ing terms, N(q) is distributed according to the Bose-
Einstein relation.

In order to check this, we purposely modified the elec-
tron distribution function, at high-k values, so that f (k)
became lower than the thermal-equilibrium distribution
[crosses on Fig. 5(b)]. Since this modification was inade
at k values where f (k) is very small, the integral of f (k)
remained practically unchanged. The corresponding
phonon distribution is plotted in Fig. 5(a) (crosses). Obvi-
ously, the peak we obtained with the actual f (k) has now
disappeared and has become a dip. This confirms that
the peak at low q values in N(q) is due to the departure
off (k) from equilibrium at high-k values.

One could wonder that the peak is so narrow, although
for a given k the q values involved extend from q;„ to
q „.Moreover, the higher k, the lower q;„and the
higher q,„,and we have just seen that the peak was due
to high values of k. For example, for k =1.3X10 m
which corresponds to a=0.6 eV, for phonon emission
with A'coLo=43. 2 meV, the values of q involved lie be-
tween [see Eqs. (21)]

q;„=k(c) k(c fic—o, ) =—6 1X 10 m.

and

2. phonon distribution at high electric fiel

i''e have plotted N(q, a) and f (k, 8) in Fig. 6, again
for n-type InP, TL =300 K, ND =10' cm, and for an
electric field E =2 kV/cm. N(q, a) is plotted versus q in

Fig. 6(a), for various directions of q [a=0 (circles 0),
a=ir/2 (crosses +), a=ir (stars s )]. f (k, 8) is plotted
versus k in the I valley, in Fig. 6(b}, for the same direc-
tions of k [8=0 (circles 0},8=m/2 (cros.ses +), 8=ir
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able. The polar-optical-phonon transition rate p, (k, k')
is strongly forward peaked (for example, for k = l. 3 X 10
m ', the probability that P~ir/8 [P=(k,k')] is higher
than 50%), which means that most LO scatterings in-
volve q vectors close to q;„. Finally, one should note
that we are using polar coordinates, so that this distur-
bance involves a small number of phonons

N(q)d q =N(q)q sina dq da du ~ q

which is small, since q =q;„.
Then, comparing Figs. 4, 5(a), and 5(b), one may say

that, when a certain part of the electron distribution is
higher (lower) than the equilibrium part, there is an in-

crease (decrease) in the kinematically corresponding part
of the phonon distribution, that is, an excess (a reduction)
of phonons necessary for the establishment of the steady
state.

q,„=k(c)+k(c—h'co, )=2.5X10' m 10 15

although one can see in Fig. 5(a) that the peak extends
approximately in the range

6X10 q 1 5X10 m

This is due to the fact that, although all the values
q;„~q ~ q,„are possible, they are not all equally prob-

k (10 m )

FIG. 6. Variations of N(q, a) vs q [Fig. 6(a)], and of f (k, 8)
vs k in the I valley [Fig. 6(b)], for n-type InP, TL =300 K,
X&=10' cm, E=2 kV/cm. (a) Circles (o), a=0; crosses
(+), a=~/2; stars +, a=m. (b) Circles (0 ), 0=0; crosses (+),
8=~/2; stars (+ ), 8=~.
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(stars e)]. Note that, at this electric-field strength, inter-
valley transfers are quite negligible, since 98% of the
electrons still occupy the I valley.

Figure 6(a) shows that N(q) has two maxima along
+=0, a single maximum in a direction transverse to the
electric field a =~/2, and one maximum and one
minimum along a=sr. The position of the first peak, at
low-q values of the order of 10 m ', does not depend on
a, only its amplitude changes. Its existence was ex-
plained in Sec. VC1 above; it is due to the increase of
f (k), at large k, with respect to the equilibrium electron
distribution. This "hump" in f (k) is well known from
Monte Carlo studies of n-type GaAs. It is caused by
the decrease of the polar-optical scattering rates with in-
creasing carrier energy and the correspondingly higher
carrier energy in the I -band regions. The additional
kink is due to I -L transfers. As shown in Fig. 6(b), the
behavior off (k) at high-k values (say, k =1.3X10 m ')
is the same in all the directions 8, which explains the ex-
istence of the peak of N(q) at low q in all directions. At
intermediate k values (say, k=0.4X10 m '), Fig. 6(b)
shows that f (k, 8=0) is higher than the thermal-
equilibrium distribution, which corresponds to the peak
of N(q, a=O) [Fig. 6(a)] centered at q=0. 3X10 m
Along 8=m/2, f (.k, 8=m l2) roughly coincides with
exp( s/k~TI —) [Fig. 6(b)], so that N(q, a=rl/2)=NI
[Fig. 6(a)]. In the direction opposite to the electric field,

f (k, 8=m ) is lower than exp( E/k~ TL )
—[Fig. 6(b)],

which results in N (q, a =n)& NL. .
Figures 7 and 8 show N(q, a) for the same conditions

as for Fig. 6(a), but in electric fields, respectively, equal to
E =5 kV/cm and 10 kV/cm. The amplitude of the peak
in N(q) at low q, in all directions, obviously increases as
E increases [Figs. 6(a), 7, and 8], due to the increasing
number of electrons of high energy. The second peak,
centered around q =0.3 X 10 m ' and a =0, is related to
the fact that, even at low-k values, f (k) departs from
exp( c, /k~TL). A—s the electric field E increases, f (k)
departs more and more from exp( —E/k~ TL ); hence, this
peak spreads in [qj space. At E =10 kV/cm, f (k)
strongly departs from exp( E/k~TI ) at e—very k value,
all the vectors k contribute to increase the number of
phonons, and the two peaks of N (q) merge into a single
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FIG. 8. Variations of N(q, a) vs q for n-type InP, TL =300
K, ND=10" cm ', E=10 kV/cm, along a=0 (circles c),
a =m/2 (crosses + ), a =m. (stars + ).
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one (Fig. 8). A comparison of Figs. 6(a), 7, and 8 shows
that, as the electric-field strength increases, the number
of phonons increases and the phonons are more and more
scattered among all the directions a.

In Fig. 9, we have plotted N(q, a=O) vs q, at different
electric-field strengths, in the range 1 —50 kV/cm. Up to
10 kV/cm, Fig. 9(a) illustrates the above explanations:
the intensity of the peak centered at q =0.3 X 10 m ' in-

creases and the peak broadens. At higher electric fields
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Variations of N(q, a) vs q for n-type InP, TL =300
K, ND =10' cm ', E= 5 kV/cm, along a=0 (circles c) ),
a =~/2 (crosses + ), a =m (stars + ).

FIG. 9. Comparison of the variations of N(q, a=0) vs q

along the electric field for n-type InP, TL =300 K, ND=10"
cm ', at different electric-field strengths: (a) E = 1 kV/cm (stars

+); 2 kV/cm (crosses +); 5 kV/cm (circles 0). (b) E =10
kV/cm (stars +); 20 kV/cm (crosses +); 50 kV/cm (circles o).
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[see Fig. 9(b)], intervalley transfers from I to L increase
significantly, the maximum value of f (k) shifts towards
higher values of k (see below), hence, the peak in

N(q, a=0) shifts towards lower values of q due to the an-
isotropy of the LO-phonon scattering, which enhances
scattering processes at q;„as explained in Sec. VC1
above.

Finally, the influence of the carrier concentration is
shown in Fig. 10, where N(q, a=O) is plotted versus q, in

InP, at 300 K, E =5 kV/cm, for two-carrier (equal to
donor) concentrations ND=1X10' cm [circles (0) in

Fig. 10] and ND=2X10' cm [stars (s ) in Fig. 10].
Figure 10 demonstrates that the phonon distribution
strongly depends on ND, since the number of nontherrnal
phonons increases with increasing ND.

D. EfFect of hot phonons on the electron distribution

In the preceding section we showed that hot electrons
introduce important disturbances of the phonon distribu-
tion. The purpose of this section is to study the influence
of the phonon disturbances on the electron distribution
or, more precisely, to study the differences between the
hot-electron distribution computed assuming, as usual,
that the phonons are in thermal equilibrium, and the
electron distribution computed taking into account none-

quilibrium phonons.
We remember that our iterative process is such that, at

the first iteration, the electron distribution function is
computed for phonon equilibrium. Therefore, we should
study the difference between the electron distributions
obtained at the first and last iterations.

2
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FIG. 10. Comparison of the variations of N(q, a=0) vs q
along the electric field for n-type InP, TL =300 K, E=5
kV/cm, at different impurity (equal to carrier) concentrations:
ND=1X10' cm '(stars +) and ND=2X10' cm '(circles o).

1. Electron distribution function in the I valley

In Figs. 11(a)—11(fl, we have plotted, for various
electric-field strengths in the range 1 —50 kV/cm, the
electron distribution function along the electric field, that
is, f(k, )=f(k„=O,k =O, k, )=f(k, 8=0 and 8=m. ), vs

k, in the I valley. A comparison is made between f (k, )

computed, as usual, assuming the phonons to be at
thermal equilibrium (crosses), and f (k, ) computed tak-
ing into account hot LO phonons (circles), in n-type InP,

for TL =300 K and ND=1X10' cm . The kink in

f (k), which appears at k =1.3X 10 m ' in Fig. 6(b), is

also present in Figs. 11(a)—11(fl, but cannot be seen in

Figs. 11(a)—11(d), which are drawn using a linear scale on
the ordinate axis. This kink is always due to intervalley
transfers, and its position is thus independent of N(q).

At E= 1 kV/cm [Fig. 11(a)], the electron distribution

is not significantly disturbed by hot phonons, due to the
fact that the phonon disturbance is small [Fig. 9(a)]. A
significant deviation begins to appear at E =2 kV/cm

[Fig. 11(b)], with a decrease of f (k) at low k and an in-

crease at high k.
This effect increases and becomes quite important at

E =5 kV/cm [Fig. 11(c)]. The effect of hot phonons is

qualitatively the same as the effect of increasing the elec-

tric field. This can be explained in the following way.
At intermediate fields, where the energy relaxation of
electrons involves mainly LO phonons, electrons transfer

energy to the phonons, the average energy of which in-
creases (the "phonon temperature" becomes higher than
the lattice temperature). As a consequence, the electrons
relax less energy than if the phonons were at equilibrium
since, roughly speaking, the electron-energy relaxation is
proportional to the difference between the electron and
the phonon temperatures. So the average electron energy
is higher than if the phonons were at thermal equilibri-
um. Hence, the effect of hot phonons on the electrons is
qualitatively the same as the effect of increasing the elec-
tric field while maintaining the phonons at thermal equi-
librium.

The disturbance of the electron distribution due to hot
phonons is largest (50% at the maximum) at E=10
kV/cm [Fig. 11(d)], which is the characteristic field in
InP where the steady-state velocity reaches its peak
value. At this electric field, intervalley transfers between
the I valley and the L valleys become important. Figure
11(e) shows that at E =20 kV/cm, the electron distribu-
tion function spreads widely in [k] space and is strongly
distorted, but the discrepancy between the two distribu-
tions is only 30% at the maximum off(k).

At E =50 kV/cm [Fig. 11(fl], the predominant mecha-
nism of electron energy relaxation is, by far, intervalley
scattering. LO phonons play no significant role, and
their disturbance has practically no effect on the electron
distribution, as can be seen in Fig. 11(fl.

2. Electron distribution function in the L valleys

In Figs. 12(a)—12(c) we have plotted, for various
electric-field strengths, the electron distribution function
along the electric field, that is, f ( k, )

=f (k„=O,k =0 k, )=f (k, 8=0 and 8=m ), vs k, in the
L valleys. A comparison is made between f (k, ) comput-
ed as usual assuming the phonons in thermal equilibrium
(crosses), and f (k, ) computed taking into account hot
LO phonons (circles), in n-type InP, for Tt =300 K and
ND=1X10' cm

At E =2 kV/cm [Fig. 12(a)], the distribution function
in the L valleys has a very regular shape. The effect of
hot phonons, as in the I valley, is to lower and broaden
the peak of the distribution function. We once more
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stress the great accuracy obtained with our method,
which had already been pointed out with regard to the
phonon distribution function, but is also remarkable for
the electron distribution: the maximum value of f (k) in
the L valleys, as shown in Fig. 12(a), is 3.5X10, as
compared to 1.5X10 in the I valley [see Fig. 11(b)].
So the distribution function shown in Fig. 12(a) concerns
only 2% of the electrons since, at E =2 kV/cm, 98%%u~ of

the electrons still populate the I valley.
In the I. valleys as well as in the I valley, the max-

imum effect of hot phonons occurs at E = 10 kV/cm [see
Fig. 12(b)]. It is remarkable that the relative changes of
[f(k)],„ for the two-electron distribution functions are
about the same in the I and L valleys for all fields [com-
pare Figs. 11(b), 11(d), and 11(e) to Figs. 12(a), 12(b), and
12(c)].Above the threshold field of 10 kV/cm the effect of
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FIG. ll. Electron distribution function f(k, )=f(k„=O, k =O, k, ) along the electric field vs k„ in the I valley of »&, «r
=3QQ Q and + = 1 X)Q" cm '. Comparison between f(k, ) computed assuming phonon equilibrium (crosses +) and f(k, )

computed taking into account hot LO phonons (circles o) at various electric-field strengths. (a) E = 1 kV/cm; (b) E =2 kV/cm; (c)
E = 5 kV/cm; (d) E = 10 kV/crn; (e) E =20 kV/cm; (f) E=50 kV/crn.
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hot phonons on the carrier distribution decreases in both
types of valleys [see Figs. 11(Q and 12(c)]: LO phonons
become less eScient as compared to intervalley phonons.

~ 0 006

~ 0 004
a$

&) Inp
TL 300 K

++ +E = 2 kV/cm
+ +
+ +

0.002

9 —1
(10 m )

0.12

0.08

00000

ID.P

TL =300K

E = 10 kV/cm

0.04

9
k2, (10 m )

& 0.4

0.3

cd

(c) InP
= 300 K

= 20 kV/cm

E. Effect of hot phonons on electronic transport parameters

In Sec. V D we have detailed how the electron distribu-
tion function is modified by hot phonons. As a conse-

quence, all electronic-transport parameters, being aver-
age values over the carrier distribution, are also modified.
The purpose of Sec. VE is to study the magnitude of
these modifications. Therefore, as was done in Secs.
VA —VD, we shall compare transport parameters com-
puted assuming phonon equilibrium with those computed
taking into account LO-phonon heating. Again, all cal-
culations were performed for n-type InP, TL =300 K,
ND =1X 10' cm, and for E 50 kV/cm. In the tables
of Appendix C, we summarize our numerical results,
which are also graphically displayed in Figs. 13-15.

The average electron energy is plotted versus E in Fig.
13. The full lines are the results obtained for phonons as-
sumed to be at equilibrium and the circles represent re-
sults obtained by taking into account hot phonons. The
effect of hot phonons is clearly to increase the average en-
ergy of the electrons, as explained above. It is diScult to
investigate in detail the increase in electron energy due to
hot phonons, since this increase depends on the origin
taken: for example, in the L valley, the increase of 8 meV
(from 658 to 666 meV) at 1 kV/cm (see Appendix C)
represents only 1.2% with reference to the bottom of the
I" valley, but represent 80%%uo with reference to the thermal
energy of 648 meV of the electrons in the L valley. The
energy increase due to hot phonons reaches 50% of the
electron average energy at 10 kV/cm.

One might think that the increase in the electron ener-
gy, in particular, in the I valley, due to hot phonons,
would result in an increase of F-L intervalley transfers,
and thus would enhance the population of L valleys.
This is, in fact, not so simple, as shown in Fig. 14 where
the populations of the valleys are plotted versus the elec-
tric field: in that figure, too, the full lines are the values
obtained assuming the phonons to be at thermal equilibri-
um, and the circles are the values computed taking into
account hot phonons. This figure, using the numerical
values of Appendix C, shows that at low electric field, hot
phonons keep electrons in the I valley, and that only
above 7 kV/cm hot phonons increase I -to-L transfers
and enhance the population of L valleys. This is due to
the fact that the populations of the valleys are a result of
a balance between I -to-L and L-to-I transfers.
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FIG. 12. Electron distribution function f(k, )=f(k =0,

k~ =0,k, ) along the electric field vs k, in the L valleys of InP
for TL =300 K and ND=1X10' cm . Comparison between
f(k, ) computed assuming phonon equilibrium (crosses) and
f (k, ) computed taking into account hot I.O phonons (circles) at
various electric-field strengths. (a) E=2 kV/cm; (b) E=10
kV/cm; (c) E =20 kV/cm.
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FIG. 13. Variations vs the electric field of the average elec-
tron energy in InP for TL =300 K and ND = 1 X 10' cm, com-
puted assuming the phonons to be at thermal equilibrium (full
line), and taking into account hot LO phonons (circles).
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At low field, 2 kV/cm, for example, the effect of hot
phonons in both valleys [see Figs. 11(b) and 12(a)] is to
decrease the number of carriers of low k and to increase
the number of carriers of high k, hence in the I valley to
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FIG. 15. Variations vs the electric field in Inp for TL =300 K
and ND = 1 X 10' cm of the average electron velocities, com-
puted assuming phonons to be at thermal equilibrium (full line)
and taking into account hot LO phonons (circles and crosses).
(a) Mean velocities in the I and L valleys. (b) Drift velocity and
mobility.

FIG. 14. Variations vs the electric field of the proportions of
electrons in the I and L valleys in Inp for T=300 K and
ND = 1 X 10" cm ', computed assuming the phonons to be at
thermal equilibrium (full line}, and taking into account hot LO
phonons (circles).

enhance I -to-I. transfers, and in the L valley to enhance
L-to-I transfers. It turns out that at this field the latter
prevails over the former, due to the fact that I -to-L
transfers are produced only by the very few electrons in
I with an energy higher than =610 meV, a number that
increases very little due to hot phonons at low fields.
Conversely, a small increase of the number of carriers in
L valleys at every k, and even at low k, enhances L-to-I
transfers. As a consequence, at low fields, the increase of
the number of carriers due to hot phonons in the I val-
ley, occurring mostly at energies lower than 610 meV,
produces very few additional I -to-L transfers, although
the increase of the number of carriers at low k in the L
valleys, due to hot phonons, increases significantly the L-
to-I transfers; hence, additional L-to-I transfers dom-
inate additional I -to-L transfers due to hot phonons at
low fields, thus increasing the number of carriers in the I
valley. Nevertheless, a decrease in the population [i.e. , of
the integral of f (k)] in the L valleys remains consistent
with an increase of the average energy [i.e., of the integral
of ef (k)] in this valley, due to the weighting factor s
roughly proportional to k .

At higher field (E ~7 kV/cm in InP), electrons in the
I valley are strongly heated by the field, their k values
spread around the energy of 610 meV, allowing I -to-L
transfers; hence, hot phonons increase the number of
electrons at energies above this value. Thus, the effect of
hot phonons is to enhance I -to-L transfers more than L-
to-I transfers, this being reinforced since there are more
electrons in I than in L. At 10 kV/cm, 10% of the car-
riers populate the L valleys taking into account hot pho-
nons, although only 6% populate the L valleys if one as-
sumes the phonons to be at thermal equilibrium (see Ap-
pendix C). At very high fields, as explained above, LO-
phonon scattering becomes negligible with respect to in-
tervalley transfers, thus hot phonons have no effect on
the valley populations.

The mean steady-state carrier velocity (drift velocity) is
the most important transport parameter, since it can be
measured experimentally. Our theoretical results are
plotted versus the electric-field strength F. in Fig. 15.
Figure 15(a) shows the average I - and L-valley velocities,
and Fig. 15(b) the overall mean velocity (drift velocity).
Full lines are results obtained with phonons at thermal
equilibrium, while circles take into account hot phonons.
Hot-phonon effects cause significant changes in the drift
velocity at fields below 10 kV/cm: the variation induced
by hot phonons reaches 44% at 1 kV/cm, 42% at 2
kV/cm, and 28% at 5 kV/cm.

The Ohmic mobility, which was found to be 3075
cm /Vs with phonons at thermal equilibrium, reaches
4200 cm /Vs taking into account the phonon distur-
bance (see Appendix C). Here it is the displacement of
the phonon distribution in q space that leads to reduced
frictional effect of the LO phonons on the carrier drift.
These results (phonon-drag effect) confirm the very simi-
lar theoretical predictions for n-type GaAs within the
carrier-temperature and Monte Carlo approaches. It
should be noted that, at such low fields as those investi-
gated for the Ohmic mobility study (E =10 V/cm), one
should inake sure that the mesh in [k] space is small
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enough; otherwise, important errors may occur. For ex-
ample, with 20 steps along k, the Ohmic mobility is found
to be 2870 cm /Vs; it reaches the value of 4200 cm /Vs
only when the number of steps becomes larger than 40.

VI. CONCLUSION

In the present paper we extended the matrix method,
which had previously been used for theoretically deter-
mining the non-Ohmic steady state for phonon equilibri-
um, to the solution of the three coupled Boltzmann equa-
tions for the I - and the L- valley electrons and the LO
phonons. We devised an iterative process, enabling us to
construct first the electron distribution function with
phonons at thermal equilibrium, which is the usual way
of investigating hot-carrier behavior, and from there to
converge towards the steady-state distribution functions
of both hot electrons and nonequilibrium LO phonons.

In this way, the departure of the phonon distribution
N(q) from thermal equilibrium was studied in detail.
The main features are the following.

(i) N(q) departs from the thermal-equilibrium distribu-
tion NL due to the departure of the electron distribution
function f (k) from exp( elks TL

—).
(ii) At weak fields, along the directions where

f(k)&exp( s/ksT—L), N(q) is larger than Nz, and
along the directions where f (k) (exp( c/k+T—L ), N(q)
is smaller than NL.

(iii) A departure off (k) from equilibrium at a higher k
value results in a departure of N(q) from equilibrium at a
lower q value.

(iv) At all fields, even very weak ones, a narrow peak in
the phonon distribution develops at low q values
(q =0.6X 10 m '}. It is caused by the distortion, at high
k values, of the electron distribution due to the combined
action of carrier heating, by the field, of LO-phonon
scattering and of intervalley transfers; this latter effect,
producing a kink in the electron distribution function at
k =1.3 X 10 m ' corresponding to the I -L energy sepa-
ration (610 meV), is mainly responsible for that narrow
peak in the phonon distribution. At intermediate fields
(below the threshold field E= 10 kV/cm), the phonon dis-
tribution exhibits a second and wide peak due to the
overall heating of the electron distribution. As the elec-
tric field increases, this latter peak broadens, then merges
with the former one, and at high field (E & 10 kV/cm)
shifts towards lower q values. At the same time, the
departure of N(q} from NL increases.

We showed that, in turn, the electron distribution
function is strongly affected by nonequilibrium LO pho-
nons. The effect of the phonon disturbances is to enhance
hot-carrier effects, at fields lower than 10 kV/cm, by
lowering the momentnm and energy relaxation of the
electrons as consequence of the increasing phonon
amplification. The perturbation of the electron distribu-
tion is highest at 10 kV/cm and reaches 50% at the max-
imum value of f (k). At high fields ( & 20 kV/cm), hot
phonons do not significantly affect the electron distribu-
tion function, since intervalley scattering is by far the
dominant carrier relaxation process.
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APPENDIX A: PHONON EMISSION OPERATOR Cph

We use polar coordinates with polar axes along q (see
Fig. 1) so that k= j k, g, u ] and

f(k)=f (k, g, u),

&(k—q) —[e(k) ficoLo]=H, (k—, q, g),

G(k —q, k)=G(k, q, g) .

Equation (12a) is then written as

0 „N( )= [N(q)+1]
(A2)

where

As a consequence of the nonequilibrium-phonon-
induced perturbation of the electron distribution, elec-
tron transport parameters are significantly modified. At
low fields, hot phonons enhance more L-to-I than I -to-L
transfers; hence, the proportion of electrons in the L val-
leys is lowered due to hot phonons, but at higher field
(E & 7 kV/cm) this effect is reversed; hence, hot phonons
increase the proportion of carriers in the L valleys. At
every field the average energy of the carriers is increased,
e.g., by 47% at 10 kV/cm.

The carrier drift velocity is also significantly modified.
The peak velocity is shifted towards lower electric fields,
and in the range 0—10 kV/cm the velocity is increased by
hot-phonon effects, up to an amount of 45%. The Ohmic
mobility is also strongly modified, changing its value
from 3075 cm /Vs for phonon equilibrium, to 4200
cm /Vs when nonequilibrium LO phonons are taken into
account, representing an increase of 37%.

Two important consequences arise from the present
work.

(i) We have presented a method which allows one to
calculate coupled steady-state hot-phonon and hot-
electron distribution functions with an accuracy far
beyond other existing methods.

(ii) Taking into account LO-phonon disturbances
significantly modifies electron distribution functions and
electron transport parameters, in particular the carrier
drift velocity. As a consequence, a new set of carrier-
phonon coupling constants should be derived by fitting
the curves to experimental results.
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I, = f k dk f du f G(k, q, g)f(k, u, g)

X5[H, (k, q, g)]singdg .

Limitation of the integration domain ouer k. Since
so =cosgo, one should have so ( 1, which, carried into Eq.
(A12), yields

With cosg=s, Eq. (A3) can be written as

k'dk J du,

with

(A3)

(A4)
$2 2

w2 2m 6)gQ

4a*A

2m

k —kminc

k,„c=[ B—+KB 4A—C ]/(2A),

(A14a)

(A14b)

(A14c)

+1
J, = G(k, q, s)f (k, u, s)o[H, (k, q, s)]ds . (A5)s= —1

m 'coLQ

Aq +a Aa)~Q
2m coLQ

(A14d)

Since H, is an increasing function of s, Eq. (A5) can be
written as

2
'2

fiq +a AcoLQ 1
2m coLQ

(A14e)

thus,

G(k, q, s)f (k, u, s)5[H, (k, q, s)]
iaH, /as

/

(A6)

G (k, q, so)f(k, u, so)
I, = k dk du, (A7)

u =0 k =0 BH~ /Bs
0

with so such that H, (k, q, so)=0. We shall now deter-
mine the various quantities involved in Eq. (A7).

Determination ofso. By using the dispersion relation q —qmin toLo+2 a'm' . (A15)

These equations show that k;nc is a function of q,
which depends on the valley through m * and a'. It is
then possible to plot k;„c vs q in valley I and valley L,
which was done in Fig. 2 [circles (0) and horizontal
crosses (+)] for InP.

Equation (A14b) requires that B 4AC)—0, which
gives a condition on q, obtained from Eqs.
(A14c)—(A14e). The calculation is tedious but straight-
forward and yields

AkE(k)[1+a*a(k)]=
2m*

1
E(k) =

2a

one gets, solving the second-order equation (AS),
1/2

—1+ 1+4a*
2m

(AS)

(A9)

This relation can be demonstrated geometrically as fol-
lows: for a given k vector, the value hk =q =iqi is
minimum when the vector k' =k —q, after the collision, is
parallel to k. Then, a minimum value of q corresponds to
each k vector. The absolute minimum is reached when
the variation Ak corresponding to the energy loss is
minimum, which is obtained at high energy. Then,

1

2a

1/2

—1+ 1+4a*
2m

Carrying Eq. (A9) into (Al) gives so=cosgo as a solution
of *2 &'

2E(1+a'e)=a'E = k
Zm'

Ak
E, =

(2a'm ')'
(A16)

1

2a

1/2
, A'k—1+ 1+4a*

2m
—A'to„o (A 10)

When c varies by the amount Ac=Aco „then k varies by
the amount b, k =q;„,and Eq. (A16) gives

with

(k —q) =k +q
—2kq cosgo =k +q

—2kqso .

Equation (A10) can then be easily solved, giving

(A 1 1)

One can show that

m Ct)LQ
sp= + [1+a*(E'+E)]

2k Akq

with {A13)

1/2
m a MLQ m coLQ, Ak

Sp= + 1+4a*
2k kq Akq 2m*

(A12)

~qmin
%CO LQ (2a'm ')' (A17)

which is Eq. (A15). In practice, of course, one is not able
to investigate k up to infinity; k has to be limited to an
upper value k,„chosen such that f(k,„) is negligible.
In practice, one may limit oneself to k,„=1.6X10
m '. The corresponding value c. ,„=c.{k,„)determines
the values q;„and q,„as given in Eq. (21) of Sec. III A.

Finally, one should note that k should be such that
k ~ k;nc, and also such that c, ~ AcuLQ. In fact, one can
show that the latter is automatically satisfied provided
k —kminc'

Determination of ~BH, /Bsi, , From Eq. (Al), with
0

s =cosg and g=(q, k), we get

c'= c(k —q) = E —RcoLQ,

thus sp )0.
BH, 0 {k—q)

Bs Bs
{A18a)
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and from Eq. (A9)

1 4a*A
s(k —q}= —1+ 1+

2a 2'
1/2 '

cos8= cosg cosa —sing sina cosu .

Therefore

cos8p =socosa —( 1 —s p )
' sina casu .

Finally, with 8p=8p(u) given by Eq. (A21), one gets

(A21)

X(k +q —2kqs}

With Eqs. (A18a) and (A9) this gives

Akq 1

Bs m ' 1+2a*s(k—q)

(A18b)

(A19)

(A22)

fk,„G( k, q, sp )f( k, u, sp )fX .=o k=k. ,„, iaH, Zasi, ,

f (k, u, sp)=f[k, 8p(u)] .

Expression for Czz. Equation (A7} can be written as

[N(q) 1 ]

q

Determination of Gk, q, sp). From Eq. (12c), the deter-

mination of G (k, q, so) is that of cospp with g=(q, k) and

p=(k, k —q) (see Fig. 1). Simple algebra gives, with

sp =cosgp~

k qs0
cosgp=

(k2+q2 2kqs )I/
(A20)

q

Then (see Fig. 1), with a=(E,q) =(z, z') =(x,x'),

k=(k singcosu )x'+(k sin(sinu )y'+(k cosg)z',

where

x'=x cosa —z sina; y'=y; z'=x sina+z cosa .

The identification of k, gives

Determination of f(k, u, so). The electron distribution

f(k) is determined in polar coordinates with polar axes
along the electric field E, since it is symmetric around E.
Then f (k) =f(k, 8}has to be expressed in the axis relat-

ed to q. More precisely (see Fig. 1), one defines two sets
of axes: the axes (T)= [x,y, z J with axis z along E, and
(T')=[x',y', z'] with axis z' along q. Since we have

great freedom in our choice of axes [x,y, x',y'], we

choose y =y' perpendicular to the plane Iz, z'] (see Fig.
1). This determines the axes x and x' (x and x' lie in the
plane [z,z' j }. We label x, y, z, x', y', z', the unit vectors
of the axes x, y, z, x', y', z'. lf the subscripts (T) and
(T'} refer to coordinates with respect to axes (T) and

( T'), one has

k k

k, n= 8 k~r ~=

Xk dkdu . (A23)

C' „N(q)=2 2C,

Xg
G(k, q, sp)

k 'dk»=k..., iaH ga i

X f f(k, u, sp)du .

This equation holds for q;„(q ~q,„,where

q;„=k (s,„)—k (e,„—A'tot o),
q,„=k(e,„)+k(s,„—fico„o) .

(A24)

(A25)

In practice, this value q,„ is very large; we limited our-
selves to q,„=1.5X10 m

Finally, carrying into Eq. (A24) the results of Eqs.
(12b}, (12c), (A20), and (A19), one gets Eqs. (14), (15),
(16), and (17) of Sec. III B.

k;„c is given by Eqs. (A14), and k,„ is chosen such that
f(k,„)is negligible.

The double integral (A23) has no analytical solution.
The electron distribution function is tabulated at the k;
and 8i values of the mesh in [k] space through the nu-

merical solution of the electron Boltzmann equation.
The first numerical integration of Eq. (14) is performed
over u, from 0 to ~ instead of 0 to 2m, taking into account
the symmetry of Eq. (19). Since Eq. (A19) shows that
iBH, /Bs i does not depend on u, Eq. (A23) can be written
as

APPENDIX 8: MATERIAL PARAMETERS USED FOR InP
(Values for Xvalleys have not been used in the present work)

General characteristics:

Quantity

Mass density
Sound velocity
HF relative dielectric constant
Static relative dielectric constant

Symbol

P
S

Unit

g/cm
m/s

Value

4.83
5160

9.56
12.3
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Band parameters:

Quantity Symbol Valley I Valley L Valley X
Relative eff'ective mass
Nonparabolicity factor
Gap referred to I minimum
Number of equivalent valleys

(eV)
eV

0.08
0.627
0
1

0.4
0.621
0.610
4

0.4
0.204
0.80
3

Intravalley scattering parameters:

Quantity Symbol Unit Valley I Valley L Valley X
Acoustic deformation potential
Piezoelectric constant
TO phonons:

Deformation potential
Energy

LO phonons:
Energy

E„
P;

16')TO

ACOz o

eV/m
Cb/m

eV/m
meV

meV

7
0.0131

43.20

12
0.0131

6.7 X 10'
43

43.20

11
0.0131

43.20

Intervalley phonon 1:

Energy %co; (meV)

Intervalley scattering parameters:

Deformation potential
E;, (10 eV/m)

r
L
X

33.7
33.7

L
33.7
33.7
33.7

X
33.7
33.7
23.9

r
L
X

137
125

137
56
84

X
125
84
99

Intervalley phonon 2:

Energy %co; (meV) Deformation potential
E,, (10 eV/m)

r
L
X

6.8
8.4

L
6.8

X
84
6.8
12.8

r
L
X

14
7.5

L
14

19.4

X
7.5
19.4

1.0X10 4

APPENDIX C: EFFECT OF HOT PHONONS ON ELECTRONIC TRANSPORT PARAMETERS
Electrons in InP, T =300 K, ND = 1 X 10' cm

1. Transport parameters without taking into account hot phonons

The following results were obtained after solving the Boltzmann equations for the electrons in the I and in the L val-
leys with the parameters given in Appendix B for the electrons, assuming that the phonons are in thermal equilibrium.

Field Velocity Velocity
E I valley L valleys

(kV/cm) ( 10 cm ') ( 10 cm ')

Drift
velocity

(10 cm ')

Energy
I valley

(meV)

Energy
L valleys

(meV)

Average
energy
(meV)

% electrons
in L

valleys

0.01
1

2
5

10
20
50

0.003 075
0.281
0.546
1.25
2.21
2.10
1.59

0
0.0092
0.0182
0.0484
0.100
0.205
0.427

0.003 075
0.281
0.543
1.23
2.07
1.51
0.933

40.5
40.8
44.3
66

161
341
436

652.5
658
657
659
654
657
671

40.9
42.3
47.4
75.8

192
440
569

0.0624
0.3
0.5
2
6

31
57
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2. Transport parameters taking into account hot phonons

The following results were obtained after solving the coupled electron-LO-phonon Boltzmann equations, with the
parameters given in Appendix B for the electrons, and with ~0=16 ps, yielding ~L =5.8 ps at 300 K.

Field
E

(kV/cm)

Velocity
I valley

(10 cm ')

Velocity
L valleys

(10 cm ')

Drift
velocity

(10 cm ')

Energy Energy
I valley L valleys

(me V) (me V)

Average
energy
(meV)

% electrons
in L

valleys

0.01
1

2
5

10
20
50

0.004 234
0.402
0.769
1.51
2.16
1.988
1.64

0
0.001 40
0.002 87
0.062 2
0.121
0.207
0.424

0.004 234
0.402
0.769
1.500
1.91
1.34
0.933

40.6
45.8
47.7
86.2

237
375
460

652.5
666
666.8
668.7
667
668
681

40.9
45.8
47.6
91.8

289
482
589

0.10
0.17
0.30
1

11.9
36.4
58.2
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