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It is shown that by exploiting auxiliary or projector-basis functions as a local representation of plane
waves, highly efficient implementations of several band-structure techniques can be obtained. Examples
are nonlocal pseudopotential methods with (1) plane-wave and (2) mixed (plane waves plus local orbitals)
basis sets, and the all-electron (3) linearized-augmented-plane-wave and (4) extended linearized-
augmented-plane-wave methods. The computation in all of the proposed techniques scales as N ln(N),
where X is the number of atoms in the unit cell. Early calculations are presented for the plane-wave and
mixed-basis approaches.

INTRODUCTION

Local-density-approximation electronic-structure cal-
culations have made very substantial contributions to the
understanding of many problems in condensed-matter
physics. The range of problems that can be treated
directly using these techniques is, however, limited by the
fact that the computational requirements increase rapidly
with the number of atoms in the unit cell. With the ex-
ception of the Car-Parrinello (CP) (Ref. 1) and related
techniques (discussed below), the computing time for
these calculations scales as 0 (N ), where N is the num-
ber of atoms in the unit cell. The CP method, which uses
fast-Fourier-transform (FTT) techniques to achieve an
improved scaling of O(N /1nN), has permitted calcula-
tions for larger and more complex unit cells than could
be treated using conventional algorithms. Unfortunately,
because the CP method requires the use of a pure plane-
wave basis set, its application to systems containing
transition-metal and rare-earth atoms is restricted.
Moreover, in most implementations, if a nonlocal pseudo-
potential is used, the scaling reverts to O(N ). Here we
present a method that permits mixed-basis and
linearized-augmented-plane-wave (LAP W) calculations to
be performed with a computational effort comparable to
plane-wave-only CP calculations with a similarly sized
basis. Since mixed and LAP% basis functions are nor-
mally more efficient than plane wave (meaning that a
smaller basis set may be used), this represents a substan-
tial improvement.

As discussed by Soler and Williams, the generic ad-
vantage of the CP approach lies in the fact that optimiza-
tions are performed simultaneously rather than hierarchi-
cally. In performing a geometry optimization using con-

ventional methods, three optimizations are being per-
formed in a hierarchical fashion. These are (1) the optim-
ization of the geometry, which uses calculated forces and
energies from self-consistent electronic-structure calcula-
tions along the path to the minimum, (2) the iteration to
self-consistency which involves exact diagonalizations of
the secular equation at each step, and (3) the individual
diagonalizations, which may be regarded as optirnizations
of the eigenvectors. In conventional electronic-structure
calculations at a fixed atomic geometry, two optimiza-
tions (self-consistency and diagonalizations) are per-
formed hierarchically. On the other hand, the CP
method exploits the fact that in the early stages of a
geometry optimization, approximate forces and energies
would be sufficient and that in the iteration to self-
consistency, approximate eigenvectors would be sufficient
in the initial iterations. In particular, each step of the CP
iteration consists of a refinement of approximate eigen-
vectors using an iterative method, a refinement of the
charge density using the refine eigen vectors, and a
refinement of the geometry using approximate forces cal-
culated from the non-self-consistent charge density.
Thus, as the calculation proceeds, the three optimizations
are performed simultaneously.

These ideas have been exploited to some extent in cal-
culations using augmented-plane-wave and LAPW basis
sets that are appropriate for transition-metal systems.
However, the resulting reductions in computing time,
while significant, have been much less dramatic than the
speed-up of the CP method compared to conventional
plane-wave-based methods for sp-bonded materials. This
can be understood in terms of the computational require-
ments of refining the eigenvectors in an iterative diago-
nalization. Several such schemes are available. Since
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they have been reviewed elsewhere, only the salient
features are discussed here. The key component of an
iterative diagonalization is a calculation of the operation
of the Hamiltonian on approximate eigenvectors x. This
is required, for example, in the calculation of the residual
vectors R (x),

R (x)=(H —eO)x,

where H is the Hamiltonian, 0 is the overlap, and e is the
eigenvalue (usually approximated by the expectation
value of H on x). In a plane-wave basis set, 0 is diagonal
and may be neglected. With a local potential the opera-
tion of H on a single eigenvector can be computed in
0(N lnN) time as follows. The operation of the kinetic
energy T on a wave function g is performed in reciprocal
space (where it is diagonal) in 0(N) time and the opera-
tion of the potential V is performed in real space also in
0 (N) time. The limiting step is the transformation of the
wave functions to real space (where the operation of the
potential is applied) and the subsequent back-
transformation of V1(. This is done using fast-Fourier
transforms (FFT's), which take 0(NlnN) time. [Note
that in most iterative diagonalization procedures there is
an orthogonalization of the eigenvectors, which takes
0 (N') time; for practical system sizes this is not the lim-

iting step. ] With other basis sets, FFT's have not been
exploited in this way, and, as a result, in general, calcu-
lating the operation of H on a wave function requires
0(N ) computation and thus a total-effort scaling as
MN, where M is the number of bands. Since M scales
with the size of the system, these are N methods; this ex-
plains the relatively small gains in efficiency when itera-
tive diagonalization schemes are used with non-plane-
wave basis sets.

Here we describe real-space techniques that use an
auxiliary or projector-basis set for obtaining 0 [N ln(N)]
scaling for plane-wave and mixed-basis calculations with
nonlocal angular-momentum-dependent pseudopotentials
and for the all-electron LAPW (Ref. 6) and extended
LAPW methods. The key idea is to construct a local
representation of the plane-wave sectors of the basis sets,
in which matrix elements can be rapidly and accurately
evaluated. We emphasize that although the use of the
projector basis bears some relationship to the technique
that Kleinman and Bylander used to construct separable
pseudopotentials, the present plane-wave technique does
not require a separable form for the pseudopotential.

PLANE-WA VE BASIS
WITH NONLOCAL PSEUDOPTENTIAL

In order to perform the operation of the nonlocal pseu-
dopotential in real space, we note that the nonlocality
may be confined with a cutoff radius r, and explicit
methods for constructing such pseudopotentials are well
known. ' Thus, the operation of the nonlocal part of
the pseudopotential in the real space only depends on the
wave function inside r, . In order to exploit this fact, we

define a set of local projection-basis functions f around
each atom, where j labels the function and the atom in-

dex has been suppressed. The explicit form of the projec-

tor basis is not particularly important, except that it must
be sufficiently flexible to represent the wave functions in-

side r, accurately. In our implementation, we use an an-

gular momentum representation of polynomials up to
some cutoff power /, „,

f (r)=r~YrM(r), L =0, . . . , 1

p=L, . . . , 1,„, M= —L, . . . , L,
where the real spherical harmonics Y~M are used to avoid
complex arithmetic. This is a flexible basis provided that
the number of functions is comparable to the number of
Fourier-transform mesh points, needed to represent the
wave function, that lie inside or close to r, .

We define a local matrix A z for each atom, which

maps from the Fourier-transform mesh points (index k)
within and near r, to coefficients of the projector basis
functions (index j). This matrix is constructed using the
standard least-squares method if the number of functions
is smaller than the number of mesh points, or using an in-
terpolation with a smoothness criterion" if the number of
projector functions is larger than the number of mesh
points. Note that the size of the matrix 2 and the cost of
constructing it depends on the number of projector func-
tions and the density of the Fourier-transform mesh.
Neither of these quantities depends on the system size.

Next, we construct the matrix elements, V ', of the
projector basis functions with the nonlocal pseudopoten-
tial. Note that with the choice of f (r) above, these re-
quire a small number of simple one-dimensional integrals
for a conventional I-dependent pseudopotential V
(where NL denotes nonlocal). Finally, we construct the
matrix T defined by

T=A VA .

This is a square matrix of dimension equal to the number
of mesh points in the sphere n& and moreover, to the ex-
tent that the projector-basis functions are flexible enough
to mimic the plane waves inside r„

(4)

where the 4's are the wave functions, and on the right-
hand side of the equation the i(('s are the real-space repre-
sentations, i.e., vectors of length n& containing the values
of the 4's on the local mesh points. The operation of T
in the calculation of Eq. (4) may be understood as follows.
The 3 matrix on the right-hand side operates on the ket,
yielding a representation as a linear combination of pro-
jector functions. Similarly, the 2 on the left-hand side
operates on the bra, transforming it to the same represen-
tation. Then V operates in this space. Further, we note
that this requires a mesh that can represent a single wave
function and map it (via A ) onto the projector basis so,
for the operation of the nonlocal pseudopotential, we

may use a mesh that is less dense (by a factor of 2 =8)
than the mesh used for the local potential, which needs to
be capable of representing products of wave functions.
Such a sparser mesh can be used for the operation of V
even though V " may have high-Fourier components,
because its operation is performed in the space of projec-
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tor basis functions to arbitrary precision; V is never
represented in plane waves or on an FFT mesh, nor is
V "4 (which would also require a denser mesh). Rather,
as discussed above, the calculation implied by Eq. (4),
with the T matrix is equivalent [by the associative
property of matrix multiplication, (g; A ) V( A f& )

=P,*(A VA)P. ] to the following sequence of operations:
(1) transform VJ. to a linear combination of projector
functions using the matrix A; (2) transform 4,' to a linear
combination of projector-basis functions using the matrix
A; and (3) operate V " in this space using the matrix V.

Thus the plane-wave method proceeds as follows. The
matrices T (one for each atom) are precalculated. The ki-
netic energy is diagonal in momentum space and so it is
applied there. Next a real-space representation of the
wave functions is obtained using FFT's. The local part of
the potential, V, is then applied in this real-space repre-
sentation as in the Car-Parrinello approach, and V " is
applied by gathering the elements of the vectors P (and
multiplying by a phase factor for calculations at general
points in the Brillouin zone), operating on them with the
matrices T (one for each atom), and then scattering (and
removing the phase if necessary) the vectors TP. In or-
der to obtain the momentum-space representation of the
operation of the Hamiltonian on 4, we apply FFT's to
the real-space representations of V 4 and V 4 and add
the kinetic-energy term, which is already in momentum
space. For this step, two FFT's are required, one on the
usual mesh and one on the sparser mesh, which is used
for the operation of V ". Note, however, that the FFT
on the sparse mesh is approximately an order of magni-
tude faster than that on the denser mesh, so that this is
not a real disadvantage.

Since the size of the matrices T is independent of 1V,

the computation required to operate V on a single
wave function in real space scales as N (there are N ma-
trices T). The computation required for the FFT's, how-
ever, scales as Nln(N). Thus, the method scales as
MN ln(N). Since the number of bands M scales with the
number of atoms, this is N ln(N) scaling. We have im-
plemented this technique; numerical results are presented
below. Finally, we remark that the functions f~ are inter-
nal to the construction of the matrices T and do not ap-
pear elsewhere; hence, the term projector basis.

MIXED-BASIS TECHNIQUE

In this section we show how the projector basis may be
used to produce a mixed-basis nonlocal pseudopotential
technique that also has N ln(N) scaling. It is expected
that this approach and the LAPW approach described
below will be useful for systems with hard pseudopoten-
tials such as first-row and transition-metal materials.

The basis we adopt consists of plane waves and strictly
localized basis functions (described below). These local-
ized functions are similar in spirit to the functions used
by Lang et al. ,

' but we propose an alternate construc-
tion. The approach described below is, however, com-
pletely general and could be applied to any mixed-basis

technique using plane waves and strictly localized orbit-
als.

By strictly localized, we mean confined within some ra-
dius r, . The use of strictly localized basis functions en-
sures that matrix elements involving local orbitals associ-
ated with different atoms are zero. Here we propose
modified muffin-tin orbitals, since it is known that the
muffin-tin orbitals uL (r) YIM(r) provide an efficient basis.
The muffin-tin orbitals are defined by

[T'+( V (r)),„+VL (r)]u&(r)=EL ul (r),
where T' is the kinetic-energy operator (including the
centrifugal term), V is the local part of the potential,
VP is the nonlocal pseudopotential, ( ),„s denotes an an-
gular average, and the EL are energy parameters chosen
in the valence-band region as in, for example, the LAP%
method. The modification consists of the subtraction of a
tail function to bring the local basis functions smoothly
to zero at r, . In order to avoid degrading the basis
through this subtraction, the tail functions must be
smooth, i.e., they must be representable in terms of the
plane-wave sector of the basis. In the present approach,
we subtract a constant and two smooth Gaussians from
the muffin-tin orbitals in order to make the value and the
first two derivatives zero at the sphere boundary.

We now show how to construct an N ln(N) method
from this basis using projector functions. First, separate
the potential into two components, a soft local potential,
and a possibly hard, nonlocal component which is
confined within r, . Here the "nonlocal component" in-
cludes not only the nonlocal pseudopotential, but also
contains the hard parts of the Hartree and exchange-
correlation potentials and of the local pseudopotential.
The potential-generation step must, therefore, be con-
structed to handle hard potentials. The techniques used
in the dual-space representation of the LAPW method
can be adapted to this purpose. '

Next we construct matrices T, as in the plane-wave
method above, that provide the operation of the hard
part of the potential on the real-space representation of
the plane-wave sector of the wave functions. In operat-
ing the Hamiltonian, however, we will construct extend-
ed representations of the wave functions inside the
spheres consisting of the P vectors described above, aug-
mented by the coefficients of the local orbitals within the
atom in question. We denote these extended vectors P'.
We thus need an extended matrix T' that will operator in
the 1Y space. The upper diagonal block, which operates
in the plane waves, is the T matrix. The lower diagonal
block operates in the local orbitals and is just the matrix
elements of the hard part of the potential in this space.
The off-diagonal blocks 8 and B (because both the local
orbitals and projector functions are real, T' will be real)
are constructed using the projector functions as follows:

where A is the matrix that transforms the real-space rep-
resentation of the plane waves into the projector basis as
above and elements of Q are the matrix elements between
the projector-basis functions and the local orbitals. In
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practice, we modify Q and the lower diagonal block of T'
to include the soft part of the potential as well, since
these terms need to be included.

Unlike the pure plane-wave case, the basis functions
are not orthogonal with a mixed basis. Thus, it is neces-
sary to construct the (initially, identity) overlap matrix.
This can be done using the same procedure. We con-
struct an 0' matrix that operates on the vectors g'. The
upper diagonal block is the identity matrix, the lower di-
agonal block is the overlap matrix for the local orbital
sector of the basis, and the off-diagonal blocks are con-
structed identically to B and B, except that the overlap
between projector functions and local orbitals is substi-
tuted for the Q matrix.

Thus, the method proceeds exactly like the plane-wave
method described above, except that instead of gathering
the vectors f for each atom and operating with T, we
gather extended vectors f' that include the local orbital
coefficients for the atom in question and operate with T'
and O'. Thus, this is also an efficient method with
N ln(N) scaling. Finally, we remark that the additional
(compared to the pure plane-wave method) back-Fourier
transform arising from the presence of an overlap matrix
is on the sparse mesh. Moreover, this additional cost is
expected to be more than compensated by the reduction
in the number of plane waves and, thus, the sizes of the
Fourier-transform meshes and local matrices in this
method and the ones that follow. Numerical results ad-
dressing the efficiency of the mixed basis and the accura-
cy of using the projector basis to couple the local orbital
and plane-wave sectors are presented below.

THE LAPW METHOD

In view of the relationship between the LAPW method
and nonlocal pseudopotential methods, which has been
elucidated by Goedecker and Maschke, it is perhaps not
surprising that the projector-function technique is useful
in the LAPW method as well. The LAPW method, how-
ever, is an all-electron technique. In the following, we
show how the LAPW method can be transformed into an
N ln(N) technique using projector-basis functions. We
expect that this method will be useful for systems where
the frozen-core approximation and, hence, the use of
pseudopotentials, is not adequate, and for calculations of
properties such as electric-field gradients that depend on
an accurate treatment of the wave functions near the nu-
clei.

In the LAPW method, space is divided into nonover-
lapping atom-centered spheres of radius r„and a dual
representation of the potential and wave functions is
used. For simplicity, we consider a single atom. The po-
tentia1 Vis given by

V(r)= V (r)[l —8(r —r, )]+V, (r)8(r —r, ),
where 0(x) is one for negative arguments and zero for
positive arguments, V is the interstitial representation of
the potential (which is expanded in plane waves), and V,
is the sphere representation of the potentia1 (represented
in terms of lattice harmonic coefficients tabulated on a ra-
dial mesh). As mentioned, a dual representation is also

used for the wave functions tII,

ql(r) ='P (r) [1 8(—r r,—)]+%,(r)8(r r—, ),
where the interstitial representation is plane waves

@I(r) ~ i(k+g)r
I

I
and the sphere representation is given by

'p, (r) = y [ ~I.Mul. (r)+&r.Mul. (r)] &L,M(r),
LM

where ul (r) is defined by Eq. (5) but with a local, all-

electron potential, uL(r) is the derivative of uI (r) with

respect to EL, and again we use real-spherical harmonics
to avoid complex arithmetic. The coefficients c are the
coefficients of the LAPW basis functions and the ALM
and BLM coefficients depend on them through the con-
straints that the value and first derivative of the wave
function be continuous at r, . In the following, the
projector-basis functions are used as a local representa-
tion of the plane waves, from which the matching
coefficients are constructed.

In order to construct an N ln(N) method using this
basis, we will take V (r) as the local potential analogous
to that in the plane-wave method described above and
construct two local matrices T and 0",which
operate on the g vector (see below) to reproduce the
remaining terms in the Hamiltonian and overlap. Thus,
we begin with a plane-wave basis extending over all space
and with the smooth (plane-wave) interstitial Hamiltoni-
an. We then construct local matrices T"' and 0'",
which remove the contributions to the plane-wave Harn-
iltonian and overlap from the interiors of the spheres. Fi-
nally, we construct local matrices T' ' and 0' ', which
add the effect of the Hamiltonian and overlap inside the
spheres acting on the LAPW wave functions.

First we consider the terms that are subtracted to ac-
count for the fact that the plane waves are prevented
from extending into the sphere by the action of the step
function on 4 . We denote the resulting matrices
(operating on g) as T"' for the Hamiltonian and 0'" for
the overlap,

T"'=3 H A

and

where H and R are the matrix elements among the pro-
jector functions of the interstitial Hamiltonian (kinetic
energy plus V ) and overlap matrix, respectively. As
mentioned, T' "and 0"' are used to account for the fact
that in the LAPW method, the plane-wave sector of the
basis does not extend into the sphere and, accordingly,
the integrations for the matrix elements are restricted to
r &r, .

In order to calculate the matrices T' ' and 0' ' that
arise from the augmentation, it is convenient to construct
a matrix U that maps from the space of projector func-
tions fj to the space of AIM and BIM coefficients. Thus,
the first dimension of U is the number of 3 and B
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coefficients [2(l,„+1) ] and the second dimension is the
number of projector functions. This matrix can be readi-
ly computed from the value and derivative of each pro-
jector function at r„and the LAPW matching condi-
tions. Having done this, it is straightforward to con-
struct these matrices:

(13)

and

0"'=W 'U'D") U~, (14)

where H' ' is the Hamiltonian matrix in the space of
muffin-tin orbitals and D' ' is the corresponding overlap
matrix. The overlap in the muffin-tin-orbital space,
denoted D' ', is diagonal if, as in most implementations
of the LAPW method, the u' functions are orthogonal-
ized to the u functions.

Thus, we have

TLAP%' T(2) T( 1) (15)

and

g LAPW g (2) g (1) (16)

These matrices then may be applied in the same way as in
the mixed-basis method above except that, since there are
no localized orbitals, they operate in the f space rather
than the f' space.

We remark that at no point was the strong-sphere
Hamiltonian H, applied to anything except the muffin-tin
orbitals. The projector functions are used only as a local
representation of the plane-wave sector extended into the
spheres. We also note that the result of our transforma-
tion of the LAPW method has some similarities to the re-
sult of the transformation of Goedecker and Maschke,
except that our transformation is to the N ln(N) plane-
wave method described above, but with an overlap, and
theirs is to a form analogous to a conventional separable
pseudopotential, again with an overlap component. The
advantage of our approach is that we achieve N ln(N)
computational complexity. We speculate that this im-
proved scaling, together with the capability of calculating
atomic forces in the LAPW method (see Ref. 2 and Yu,
Singh, and Krakauer, Ref. 13), may lead to practical
dynamical simulations for open-shell transition-metal sys-
tems.

EXTENDED LAPW METHOD

There are some situations in which all-electron calcula-
tions are needed and in which the linearization of the
LAPW method is undesirable. Examples are systems
with extended core states and materials with very narrow
(e.g., 4f) bands. It has been shown that an extension of
the LAP W method, in which specially constructed,
strictly localized orbitals are added to the basis, can be
quite useful. ' In the present section we combine the
ideas of the preceding two sections to obtain N ln(N) be-
havior for this approach, as mell. We do this by con-
structing two matrices T and 0 analogous to the T'
and 0' matrices of the mixed-basis method. They will

operate on vectors g' consisting of the mesh representa-
tion of the plane-wave sector of the LAPW basis aug-
mented by the coefficients of the local orbitals on the
atom in question. The upper diagonal blocks are the
T" and 0 matrices of the preceding section and
the lower diagonal blocks are the matrix elements among
the local orbitals. In order to construct the off-diagonal
blocks, we first transform to the projector basis, then to
the Az~ and BzM coefficients, and then use matrix ele-
rnents between the muffin-tin orbitals and local orbitals.
Thus,

B =Q UA,

where B and Q are analogous to B and Q, and U and
A are as in the preceding section.

ACCURACY AND COMPUTATIONAL EFFICIENCY:
NUMERICAL RESULTS

Of course, it is not sufficient to show that a method has
a desirable scaling. It is also necessary that the proposed
approach be sufficiently accurate for the intended pur-
pose and that the prefactor that governs the relationship
between the computational scaling and the actual cost of
calculations be sufficiently small. So far, we have only
completed the implementation of the pure plane-wave
technique and, as a result, we can only present self-
consistent numerical results for that method. (Non-self-
consistent calculations testing the mixed-basis approach
are also presented. ) We note that the only additional ap-
proximation in the other three methods as compared to
the corresponding conventional techniques (which are
well established) is the use of projector functions as a lo-
cal representation of the plane-wave sector of the basis
sets. This approximation is the same in all four methods,
and so its adequacy for the plane-wave method is a strong
indication that it will be adequate for the other three
methods as well, and non-self-consistent mixed-basis cal-
culations that support this are presented below.

In order to test the adequacy of the projector-function
representation, we present early calculations for dia-
mond. This material was chosen as a a test because of its
hard nonlocal pseudopotential (in contrast with the soft,
nearly local silicon pseudopotential). We also present
non-self-consistent calculations for diamond using the
mixed-basis method. In order to demonstrate the compu-
tational efficiency of our approach, we present timings for
a well-converged calculation on K3C6O.

For diamond, we generated a nonlocal pseudopotential
using the Troullier-Martins' scheme, the Hedin-
Lundqvist exchange-correlation functional, ' and a core
radius of 1.15 a.u. For the construction of the matrices
we include all mesh points within 1.1r„and chose the
l =2 component to be the local pseudopotential. The A
matrix for these calculations, which are presented in
Table I, was determined using least squares with l,„=7.
This yields 204 projector-basis functions. The choice of
r, yields 459 FFT mesh points in each sphere at the ex-
perimental structure, although this number varies with
both the lattice parameter and the frozen-phonon ampli-
tude. The fact that the physically important l =0 and 1
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TABLE I. Calculated properties of diamond. The band gap
0

and width are at the experimental lattice parameter of 3.567 A.
The lattice parameter is calculated by total-energy minimiza-
tion. LAPW denotes the previous all-electron calculations of
band energies in Ref. 17. The LAPW lattice parameter and
optical-phonon frequency (coTo) are from additional calcula-
tions.

Property

Direct band gap
I -X, band gap
Valence-band width
Lattice parameter

To (10' Hz)

This study

5.54 eV
4.71 eV

21.31 eV
3.52 A

39.8

LAPW

5.51 eV
4.68 eV

21.06 eV
3.53 A

38.6

components are not taken as the local potential means
that any errors in the handling of the nonlocal part of the
pseudopotentials will have large effects on the band struc-
ture. The calculations were performed using an energy
cutoff of 72 Ry, which yields a basis of approximately 800
plane waves and is well converged for this pseudopoten-
tial. Self-consistently was obtained with Brillouin-zone
samplings consisting of ten special points in the irreduc-
ible wedge for the band structure and five special points
for the frozen-photon calculation. ' As may be seen from
Table I, the calculated band energies are in quite satisfac-
tory agreement with LAPW calculations (agreement with
experiment is not expected for local-density-functional
calculations).

The optic-phonon frequency coTO was calculated at the
0

experimental lattice parameter (3.567 A) using the
frozen-phonon approach. Total energies were calculated
for nine distortions, with a maximum displacement of
0.058 a.u. , corresponding to a maximum energy
difference of approximately 6 mRy, and fit to a cubic po-
lynomial. The resulting frequency is in good agreement
with LAPW calculations and the experimental frequen-
cy' of 3.99X10' Hz. The lattice parameter, obtained
by total-energy minimization, is also in very satisfactory
agreement with standard LAPW calculations and experi-
ment. The agreement of the coTO with standard calcula-
tions is particularly significant because of the small ener-

gy differences involved and the fact that FFT mesh points
enter and leave the spheres used to operate V during
this calculation (the number of points varied between 459
and 489 for the range of distortions used). This is an in-
dication of the stability of the procedure. As a further
test, we performed parallel calculations of the band struc-
ture of diamond, varying the number of mesh points used
in the operation of V and the number of projector-
basis functions. The results were found to be very stable,
as is illustrated in Table II. In the table, results of self-
consistent calculations (using two special k points) are
shown. In the first calculation, 459 points were used to fit
204 projector-basis functions as in the calculations dis-
cussed above. In the second, 650 projector-basis func-
tions (1,„=11)were used to interpolate 429 points (all
points up to 1.05r, ). The largest difference is 2.5 meV in
the valence-band width. The calculated total energies

TABLE II. Calculated band energies of diamond with (I) 459
mesh points and 204 projector-basis functions, and (II) with 429
points and 650 projector-basis functions.

Property Difference

Direct band gap 5.5328 eV 5.5319 eV —0.0008 eV
I -X, band gap 4.6995 eV 4.7015 eV 0.0020 eV
Valence-band width 21.3177 eV 21.3153 eV 0.0025 eV

TABLE III. Band eigenvalues (in eV) for diamond using a
pure plane-wave basis and a mixed basis (see text) with a cutoff
of 23.3 Ry. LAPW denotes converged LAPW eigenvalues with
the same potential. The energy zero has been adjusted to the
valence-band maximum obtained in the LAPW calculation.

State Plane wave Mixed basis LAPW

r,
I2s
I is

Xl
X4
Xl

—21.32
2.03
7.26

—12.27
—5.17

4.97

—21.52
0.02
5.48

—12.74
—6.42

4.56

—21.54
0.00
5.48

—12.76
—6.43

4.55

agree to better than 0.2 mRy. These results show that
our approach is very stable.

In order to test the mixed-basis approach, we have per-
formed non-self-consistent calculations for the band
structure of diamond using a charge density obtained
from a conventional LAPW pseudopotential calculation'
with a Kerker pseudopotential. We used a sphere radius
of 1.45 a.u. (this defines the extent of the local orbital sec-
tor of the basis; the pseudopotential core radius is 1.15
a.u. ). The calculations were performed using the iterative
diagonalization, discussed above, with a plane-wave
cutoff of 23.3 Ry (corresponding to 137 plane waves at
the 1 point and 150 at X) and a minimal set of local or-
bitals consisting of one s and three p functions per atom,
for a total of eight local orbitals per cell. The least-
squares algorithm was used to couple the plane-wave and
local sectors, with 1,„=8, yielding 285 projector-basis
functions. Band energies at I and X are given in Table
III along with results using only the plane-wave sector of
the basis. For comparison, well-converged LAPW eigen-
values are given for the same potential. As expected, the
pure plane-wave calculation is far from convergence with
a 23.3-Ry cutoff. The results show, however, that the
mixed-basis sector adds sufficient variational freedom to
bring the eigenvalues quite close to their converged
values. The agreement between the mixed-basis and
LAPW calculations demonstrates that the projector-basis
technique is sufficiently accurate to couple the local orbit-
al and plane-wave sectors in our approach.

As mentioned, K~C6o is used to investigate the
efficiency. We use the same pseudopotential with a
plane-wave energy cutoff of 64 Ry and a 120X 120X 120-
FFT mesh. This yields approximately 42000 plane-wave
basis functions and vectors g with approximately 350 ele-
ments. The timings were obtained on a single processor
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of an IBM 3090 computer. ' Using two iterations of the
iterative scheme of Ref. 3, and computing 180 bands, we
use approximately 6500 sec of processor time per k point.
Of this, approximately 4700 sec was spent on the FFT's
and 270 sec on the multiplications with the T matrices.
This is quite encouraging, particularly in view of the fact
that our codes are not yet well optimized.

SUMMARY AND CONCLUSIONS

The key problem in efficiently performing electronic-
structure calculations with techniques that use plane
waves and local quantities (nonlocal pseudopotentials, lo-
cal sectors of the basis or augmentations of the plane
waves, for example) is finding efficient ways of coupling
the plane waves to the local quantities. This has been
recognized for some time, and in the case of the pure
plane-wave basis with nonlocal pseudopotentials, there
has been some recent progress. Trou11ier and Mar-
tins ' suggested using a local real-space representation of
the pseudopotential, but did not provide a scheme for
constructing such a representation. King-Smith, Payne,
and Lin implemented a scheme for performing real-
space projections of separable pseudopotentials and have
presented encouraging results for silicon. The advantages
of real-space techniques and mesh-based representations
have also been exploited in non-plane-wave contexts.
Further, there has been significant recent progress in gen-
eralizing separable pseudopotentials to reduce the num-

ber of plane waves needed to represent the wave func-
tions and, thus, computational requirements of standard
Car-Parrinello codes.

The approach presented here differs from previous
work in that (I) we have presented explicit prescriptions

for the construction of the required operators and (2) the
projector-basis technique is generally applicable to prob-
lems involving coupling between plane waves and local
functions and, as a result, can be applied to plane-wave
calculations with conventional I-dependent pseudopoten-
tials, as well as a variety of methods using other basis
sets.

We have shown how four electronic-structure tech-
niques can be implemented in a computationally efficient
way using projector functions. We have implemented the
plane-wave method and obtained early numerical results
using it. We are in the process of implementing the
remaining three methods, and expect them to be among
the fastest electronic-structure techniques for large sys-
tems.

Note added in proof. The functions defined in (2) in-
clude irregular functions in addition to polynomials. Im-
proved fits are obtained if these are removed by restrict-
ing p and L to be both even or both odd.
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