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The one-electron excitation spectra of ferromagnetic nickel have been obtained from a first-principles
calculation of the self-energy operator within the so-called GW approximation. The dielectric matrix,
needed to form the screened potential W, is computed within the random-phase approximation. The
quasiparticle energies are in very good agreement with angle-resolved photoemission data. The bottom
of the d band is raised by about 1 eV resulting in band narrowing as observed experimentally and the
quasiparticle widths are also in favorable agreement with experiment. The exchange splittings, however,
are the same for most cases as those given by the local-density approximation in density-functional
theory. The satellite at 6 eV is not reproduced. Instead, we found a significant contribution to the spec-
tral weight from quasiparticle peaks around that energy. We discuss the success and the shortcomings of

the GW approximation in the light of our results.

I. INTRODUCTION

Measurements of one-electron excitation spectra by
high-energy photoemission and inverse-photoemission ex-
periments on crystalline solids show in most cases the
presence of well-defined although broadened peaks at cer-
tain energies. These peaks are called quasiparticle peaks.
In some cases, we may get additional peaks arising from
many-body interactions, but they are usually weaker and
we refer to them as satellite structures. When the posi-
tions of the main peaks are plotted as a function of the
momenta of the emitted electrons, we obtain what are
termed the band structures of the solids.

A theoretical tool for calculating the positions and
widths of the quasiparticles is provided by a many-body
perturbation theory in which the Green function is the
basic quantity.! To obtain the Green function, we require
knowledge of the electronic self-energy or mass operator
which is in general nonlocal and energy dependent. The
self-energy operator acts like a potential in a
Schrodinger-like equation, known as the Dyson equation,
whose solution gives the Green function. Thus the self-
energy operator is a basic quantity needed in the calcula-
tions of one-electron excitation spectra.

In practice, the exact self-energy operators for real sys-
tems are impossible to compute and we always have to
resort to approximate forms. Perhaps the simplest ap-
proximation would be to replace the self-energy with that
of the homogeneous electron gas and neglect its nonlocal-
ity and energy dependence.? This approximation leads to
the so-called local-density approximation (LDA) of the
exchange and correlation potential, v*°, which is identical
to the local-density approximation in the density func-
tional theory (DFT).>* The exact v*® in DFT may also be
thought of as an approximation to the self-energy opera-
tor; it is a local, energy independent self-energy operator
that yields the exact ground-state density.

The LDA is very appealing because the local nature of
the v™° yields a set of single-particle equations which are
numerically much easier to solve than, e.g., the integro-
differential equations in the Hartree-Fock approximation.
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Due to its simplicity, it has been applied to a wide class
of systems and in many cases with surprisingly good re-
sults, particularly in simple metals but even in systems
with relatively localized electrons, systems which show
no resemblance to the homogeneous electron gas. This
suggests that for these systems, the self-energy operator is
short ranged, but the fact that it may be approximated by
an energy independent v*° is due to subtle cancellations
between the effects of the strong energy dependence and
of the nonlocality.

There are, however, cases where the LDA gives results
which differ considerably from experiments. Notable
among these is the so-called “band-gap problem” in semi-
conductors where the LDA yields band gaps which are
30-100% too small>® compared to the experimental
values. Even the exact DFT v*¥s are unlikely to
significantly reduce the discrepancies, as previous studies
on the exact v* for small atoms have shown.”® The
work of Godby, Schliiter, and Sham® on semiconductors
suggests that the large parts of the discrepancies are more
likely to originate from the discontinuity in the v* as a
functional of the particle number!®© than from the
difference between the LDA and exact v*°. If we do want
to use the LDA, a more sound procedure would be to
compute total energy differences between the N- and the
(N =*1)-particle systems.

The failure of the LDA indicates the importance of
nonlocality and dynamic correlations in describing quasi-
particles. A more realistic but relatively simple approxi-
mation to the self-energy, which takes into account both
nonlocality and dynamic correlations, was developed in
the early 1960s by Hedin,"!! known as the GW approxi-
mation (GWA). This approximation was originally de-
rived from a many-body perturbation theory as a first
term in the expansion of the self-energy in the screened
Coulomb potential W, rather than the bare Coulomb po-
tential v. The expansion is in general divergent, in the
sense that the second-order term is not necessarily small-
er than the first-order term. However, the use of the ap-
proximation is physically motivated if we view it as a
Hartree-Fock approximation (Gv) with the bare
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Coulomb potential
screened one.

Despite the theoretical simplicity of the GWA, its ap-
plications to real systems have been hampered by the
large size of the computations. Due to the progress in
computer technology, it is now feasible to apply the
GWA to some real systems. Recently, Hybertsen and
Louie,'>!3 Godby, Schliiter, and Sham,’ and von der Lin-
den and Horsch!* performed self-energy calculations for
semiconductors within the GWA with encouraging re-
sults: the large discrepancies in the band gaps are re-
moved.

The success of the GWA in semiconductors and
several other systems leads us to test it in systems with
more complicated electronic structures. An interesting
class of systems is one where a narrow band, resulting
from localized electrons, is imbedded in a free-electron-
like band. Transition metals form such a class and
among the 3d series, nickel provides the most anomalous
case. More extreme cases of this class are found in
heavy-Fermion systems where the f electrons form very
narrow bands.

As in the case of semiconductors, the LDA band struc-
ture of nickel'® deviates significantly from angle-resolved
photoemission data.

v replaced by the dynamically

The width of the occupied 3d band is 30% smaller
than that of the LDA (3.3 eV vs 4.5 eV).!617

The exchange splitting for states at the top of the occu-
pied band is half the LDA value (0.25-0.35 eV vs 0.6
CV).”'IS

A satellite at ~6 eV below the Fermi level which
resonates at the 3p threshold and shows no dispersion is
observed experimentally but entirely missing in LDA.!%!?

On the other hand, good agreement with experiment is
found for the ground-state properties such as equilibrium
lattice constant, bulk modulus, and magnetic moment,
with the exception of the cohesive energy where the LDA
value is about 1 eV too small.?

The above discrepancies clearly show the breakdown of
the LDA and necessitate the inclusion of nonlocality and
dynamic correlations in the self-energy operator. Anoth-
er indication of the importance of many-body effects in
nickel is demonstrated by the relatively large widths of
the quasiparticles—up to 2 eV at the bottom of the
band'®*—which imply short lifetimes. Generally speak-
ing, a long lifetime justifies the use of single-particle
theory where the many-body state is approximated by a
single-Slater determinant whereas a short lifetime implies
a strong interaction between the quasiparticle and the
rest of the system which changes the quasiparticle state
and results in its decay.

There are several features of nickel which may give a
qualitative explanation for the inadequacy of the LDA in
describing quasiparticle properties.

(1) Nickel is ferromagnetic with a fully occupied major-
ity spin channel and a partially occupied minority spin
channel giving a magnetic moment of 0.59u 5 /atom. '’

(2) The density of states around the Fermi level is very
large, about 1.7 states/eV.?°

(3) The d states are very localized, more than 95% of
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the states are confined to the muffin-tin sphere (Table I)
resulting in a narrow-band width (~3.3 eV).

(4) The correlation strength measured in terms of the
ratio between the Hubbard U and the width of the band
is intermediate.

(5) The two lowest atomic configurations 3d°4s and
3d®4s? are almost degenerate, differing by only 0.025
ev.H

(6) The LDA eigenvalues for the d states are lower
than the experimental values, whereas in most cases the
LDA eigenvalues are higher than the experiment.!” '8

The localized nature of the d states suggests that we
may use an atomic picture in explaining the characteris-
tic properties of nickel, but on the other hand, de
Haas—van Alphen measurements?>?3 clearly show the ex-
istence of a Fermi surface. The itinerant character of the
d states should therefore be taken into account. This is
important when we consider screening of a hole left
behind during a photoemission experiment. In the
itinerant picture, electrons from neighboring atoms can
participate in the screening whereas there is no such pos-
sibility in the atomic picture. But in many cases, the
atomic picture should be sufficient and this is supported
by experiment on NiO,?* which is an insulator with local-
ized 3d electrons and which indeed shows similar features
as those of nickel.

The existence of the satellite at 6 eV below the Fermi
level and the reduction in the exchange splittings are at-
tributed in a Hubbard model?>?® to a two-hole bound
state which has a long lifetime due to the localized char-
acter of the d electrons and the presence of unoccupied
states just above the Fermi level.

Previous works on the self-energy of nickel have been
based mainly on Hubbard models, treated either with the
¢t matrix formulation?>?® or second-order perturbation
theory.?” These models are useful as a means of identify-
ing important physical processes responsible for band
narrowing, satellite structure, etc., but the existence of
the Hubbard parameters does not fully justify direct com-
parisons with experiments. On the other hand, the GWA
provides a more proper way for the calculation of the
exchange-correlation operator. The inclusion of dynamic
screening in the GWA should result in band narrowing,
whereas its ability to account for the satellite and the
reduction in the exchange splittings is doubtful if the
above explanation is correct. The purpose of the present
paper is to investigate the ability of the GWA to describe

TABLE 1. The self-energies at the X point in eV for majority
and minority spin (alternately). The charge of each state inside
the muffin-tin sphere is denoted by ‘“‘charge” and Z is given by
Eq. (43).

kn Charge 3xe v*e V4
X, 0.862 —24.7 —27.4 0.73
0.853 —23.7 —264 0.72
X, 0.936 —27.2 —30.6 0.64
0.932 —26.1 —29.7 0.63
X, 0.996 —34.38 —37.7 0.50
0.998 —34.1 —36.9 0.51
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systems with relatively strong correlations with nickel as
a prototype. In view of the above discussions, a first-
principle calculation of nickel self-energy within the
GWA has been performed. It also forms a preliminary
study for more complicated nickel compounds such as
NiO which has vanishingly small gap in the LDA.

To do a GW calculation, we start from a zeroth-order
Hamiltonian. Since we may view the GWA as a first-
order perturbation theory, it is natural to choose a start-
ing Hamiltonian which is as close as possible to the real
system. The LDA Hamiltonian is a reasonable choice
and this has also been used in previous works on semi-
conductors with good results.

Self-energy calculation of nickel is a major computa-
tional challenge. One of the main problems is choosing a
suitable set of single-particle basis functions for the
many-body perturbation calculation in the GWA. In the
case of semiconductors, plane waves provide a good basis
since the valence electrons can be described very well by
a pseudopotential. They are also a natural basis for the
Coulomb potential and the evaluation of matrix elements
becomes very simple. The large and important bare ex-
change part of the self-energy can then be evaluated with
high accuracy. In contrast, nickel has a strong potential
which rules out the possibility of using a pseudopotential.
Clearly, plane waves are not a good choice since a large
number of them is required to describe core oscillations.
Instead we have chosen to use a modified linearized aug-
mented plane-wave (LAPW) basis?® to do our perturba-
tion calculation. The advantage of this basis is that a rel-
atively small number of basis functions is needed because
they are constructed from radial wave functions which
are solutions to the Schrddinger equation inside the
muffin-tin sphere. The disadvantage, however, is that the
evaluation of matrix elements becomes complicated. We
have developed a simple but efficient method for evaluat-
ing these which is described in the previous paper.?®

The second computational problem is the k-space in-
tegration. In semiconductors only a few k points are
needed due to the absence of Fermi surface but in nickel
more points are required to take into account the Fermi
surface. Surprisingly we found that a relatively small
number of k points (20 in the irreducible wedge) is
sufficient to get an accuracy of 0.1-0.2 eV in the quasi-
particle energies. Since we are interested in the relative
quasiparticle energies rather than their absolute values,
this appears to be the result of a systematic cancellation
of errors.

The paper is organized as follows: theory and numeri-
cal procedure are described in Secs. II and III, respective-
ly. Results and discussions are presented in Sec. IV. Sec-
tion V is reserved for conclusions.

II. THEORY

The quasiparticles
The one-particle Green function is defined by?’
G(xt,x't")=—i{N|[T{Hxt)d (x"t)}]IN) ,

X=r,0. (1)
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The field operators are defined in the Heisenberg picture.
For ¢t >t' the Green function describes the motion of an
added particle from r’,¢’' to r,¢ with a possible spin flip o’
to o whereas for t <t' it describes the motion of an added
hole from r,¢ to r',t’, also with a possible spin flip o to
o’. The time ordering operator is simply a convenient
way of treating both particle and hole at the same time.

From the Heisenberg equation of motion for operators
it can be shown that the Green function satisfies the
Dyson equation

[0—H%x;0)]G(x,x";0)— [dx"3(x,x";0)G(x",x";0)
=8(x—x"). ()

A solution to the above equation may be obtained from
the classical theory of Green function.’® We define
g,(x;) to be the solution to

[E,(0)—H%x;0)]g,(x;0)— [ dx'S(x,x";0)g,(x";0)
=0. (3

The eigenvalues E () are in general complex and @ may

be treated as a parameter. The Green function is given

by

gs(x;a))g:(x’;w)
o—E (o) ’

where g;r are the corresponding “left-hand” eigenfunc-
tions. When the self-energy operator is Hermitian, g
and g: are complex conjugate of one another and the g,’s
are orthogonal, but in general they are not.

For crystalline solids, the Green function is normally
represented in some Bloch basis ¢,, which we assume to
be orthonormal. We form the spectral function

G(x,x";0)=3 4)

A(k,w)=—$zlmGnn(k,m), (5)

where G,,(k,) is the matrix element of G in the Bloch
basis. We note that since k is a good quantum number,
A(k,w) is independent of the Bloch basis. We now con-
sider Eq. (3) and suppose that at some w=w,, we find
that

o;=ReE (w,) . (6)

It follows from Egs. (5) and (4) that the spectral function
A(k,») has a peak at w=w,. We identify this peak as a
quasiparticle peak and define the wave function g(x;ew,)
as the quasiparticle wave function.

It may happen that Eq. (6) has no solution which im-
plies that Eq. (3) has no solution either. In this case, we
find o=w; that minimizes |w;,—ReE (w,)| and we
should still find a peak in the spectral function around ;.
We identify o, as the quasiparticle energy and define the
corresponding quasiparticle wave function to be that g,
which satisfies Eq. (3) with o, as the eigenvalue. For real
systems, however, such a case is unlikely to occur. In the
nickel case, we did not encounter any difficulties in
finding solutions to Eq. (6). A practical way of finding
the quasiparticle energy, however, is provided by Eq. (11)
below.
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The quasiparticle concept may be understood in a
more physical way by considering an exact expression for
the one-electron spectral function (Ref. 1):

Ax,x50)=3 f,(x)fI(x)80—¢,) , (7)
where

fi(x)={(N|¢yp(x)|IN+1,s) ,

e=Ey,—Eyfore zpu, ®

fix)=(N—1,5]9(x)|N) ,

e,=Ey—E,_ fore <pu. ©

g, are excitations energies of the (N—1)- and (N +1)-
particle systems. We consider a noninteracting Hamil-
tonian H® which may be chosen to be the LDA Hamil-
tonian and form the following quantity:

2 k,0)= 3 [ e, Y280 —c¢,) . (10)

Without the self-energy correction, one of the functions
fi’s say f,, is identical to the Bloch state iy, and the
above expression reduces to a 8 function centered at the
LDA eigenvalue ¢, =¢fPA. If we now take into account
the self-energy correctxon, the function f, is no longer
identical to 1,,. Consequently, the matrix element
(f,| ¥y, ) is reduced from unity since other f’s will give
nonzero matrix elements, resulting in the broadening of
the 8 function and we might even get a satellite structure.
Provided ¥, is a good starting wave function, we expect
that the broadened & function is still centered around o,
and we identify the peak as the quasiparticle peak. If we
sum over the index n in Eq. (10), we get the spectral func-
tion, identical to that in Eq. (5).

In terms of the noninteracting Green function and the
self-energy, the spectral function is formally given by

A(w)=—1‘|ImG(w)|
T

1 Im=(w)|
7 |Re[(G”) ™ Nw)—2(w)]]2+ [ImZ(w)|?

(11)

Thus the imaginary part of the self-energy is proportional
to the lifetime of the quasiparticle. For materials with
Fermi surface (metals) the number of excited states can
be shown from phase-space argument to vary like
~ (g, —p)?* which in turn is proportional to Im=. Thus
quasiparticles close to the Fermi surface, if they exist,
have a long lifetime unless when there is a van Hove
singularity at the Fermi level which can make the imagi-
nary part of the self-energy behave linearly.

The spectral function 4(w) in metals can be measured
by means of photoemission experiments. Provided the
final states of the photoelectrons are plane waves, i.e., the
photoelectrons are completely decoupled from the solid,
the spectral distributions of the holes left behind do cor-
respond to the theoretical spectral functions if we neglect
electron-phonon coupling and extrinsic effects which
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cause energy loss of the electron on its way to and
through the surface. The presence of well-defined peaks
in the spectral function indicates the existence of long
lifetime excitations or quasiparticles.

The screened interaction
The screened interaction takes the form
f d’r"e Yr,1"

Wi(r,r';w) ;o[ —r'|) . (12)

The dielectric matrix needed in forming the screened po-
tential W is given by

e rrw)=8r—r)+ fd3r"v(Ir—r"I)X(r",r';co) ,
(13)

where Y(r,r’;w) is the Fourier transform of the time-
ordered density-density response function

=i {{O|T[p(rt)p(r't")]I0) — (p(r)){p(r'))} ,
(14)

x(rt,r't’)

which is computed in the random-phase approximation
(RPA):*!

X:X0+XOUX' (15)

In RPA particle number is conserved and therefore the
f-sum rule is satisfied. ¥° is the time-ordered density-
density response function for noninteracting electrons
which may be written in its spectral representation

f d,S(rrw) , (16)

e, 0)
o—o' +iv'd

where the spectral function S° is proportional to the
imaginary part of y°

So(r,r’;w)=—i—ImXO(r,r';a))sgn(w) (17

and is given explicitly by

0OcCC unocc

2 2 1bl(n r)wkn

kn k'n’

S%r, ' 0)=

Yo AT)

X g (r")8(w—gy

The physical meaning of the RPA is that the electrons
respond to the external and induced field as if they were
noninteracting. The Bloch states and eigenvalues
{¥yn-€xn] correspond to a zeroth-order noninteracting
Hamiltonian chosen to be the LDA.:

H=T+VHi+0},, , (19)

vt En) . (18)

where T is the kinetic energy operator, ¥ is the Hartree
potential, and v{}4 is the local-density approximation for
exchange and correlation potential.

The self-energy

The self-energy is approximated by the first term in its
expansion in power of the screened potential W,!
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E(r,r’;a))=if%%G(r,r';a)+a)')W(r,r';w')ei8“".
(20)

It is convenient and physically appealing to divide the
self-energy into the frequency independent bare exchange
(Fock) term and the frequency-dependent correlated part
which contains the dynamical effects of correlation:

=343
=Gv+GW°*, @

where W=W —v. The GWA is similar in form to the
Hartree-Fock approximation. One can think of the
GWA as a Hartree-Fock approximation with a dynami-
cally screened interaction rather than as a perturbation
theory.

Like y, the quantities W° and 2¢ obey the Kramers-
Kronig relations

B(w')

f d Iw o' +io's ’ @2
zf(m)=f_“wdm'w_w,i(i‘;’a:,_#)a , (23)
where
B(w)=—$lmW‘(w)sgn(w) , (24)
F(w)=—$lm26(w)sgn(w—,u) . (25)

In the above equations the space variables r,r’ have been
suppressed for simplicity.

The Green function G in W and X is in principle a
self-consistent G obtained from the Dyson equation

G=G°+G’3G . (26)

To calculate the self-consistent G is beyond our present
computational capability so that in practice we use in =
the zeroth-order Green function G° with its spectral
function given by

Ao(r,r’;w)=kZzpk,,(r)tl:{,,(r’)S(w—ak,,) . (27)
With G=G?° the spectral function of the self-energy is
given by [ =T"+T° where
THr, ' 0) = (;icwk,,(r)lllf,,(r’)B(r,r’;ek,, — )8y, — ) ,

o=p, 28

Pnr,0)= 3 G (EWE (F)B(r,Fs0— 6y, 00—ty )
kn

o>p . (29)

I'* and T'¢ denote the hole and electron parts, respective-
ly. We note that the GWA is a conserving approxima-
tion provided we have a self-consistent G.>>33 With the
approximation G =G?° particle number is still conserved
but energy and momentum ar not necessarily conserved
anymore.
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III. NUMERICAL PROCEDURE

We start with a self-consistent LAPW band structure
calculation of spin polarized nickel within the local-
density approximation.’* 3¢ The resulting self-consistent
potential is then used to construct the basis functions
which are described in detail in a previous paper.?® These
basis functions are subsequently used to solve the secular
equation to generate a set of orthonormal Bloch states
with a corresponding set of eigenvalues: {,,,e.,}. An
energy cutoff of 9 Ry is used giving on average 40 Bloch
states. These together with the nine core states
(1s125'2p335'3p3) represent the zeroth-order approxima-
tion in our many-body perturbation calculation and form
the basis for the representation of € !, W, and 3.

The next step is to calculate the inverse of the dielec-
tric matrix € . For details the reader is referred to an
earlier work.?® The main quantity to be computed is the
spectral function S° which in the Bloch-state basis is
given by

0cc unocc

=3 3 (ql,knlk+qn’)

kn n'

Su' q,o

X (k+qn'lkn,ql’)
X8(w =€t gn T Eky) - (30)

The computation of the matrix elements
(q,Lkn|k+aqn")= [ d* vk, Vs qn (31)

forms a major computational effort. A simple scheme
has been developed for a fast and accurate evaluation of
these matrix elements.”® Brillouin zone integration is
done with trapezoidal rule. The § function is replaced by
a Gaussian with a width of 0.1 Ry and the numbers of
points in the irreducible wedge is 20. Convergence test
shows very little change in the energy loss function
€ !(q;») when the number of k points is increased to 89
and the width of the Gaussian is changed up to 0.3 Ry.
For the purpose of obtaining the self-energy this is more
than adequate since the screened potential W=¢"'v is
convoluted with the Green function G. Experience with
semiconductors shows that even plasmon pole approxi-
mation gives very good self-energy.!* The Hilbert trans-
form in Eq. (16) is found to converge with a frequency
mesh of 0.04 Ry.

Once we have obtained the screened potential W, we
are in a position to calculate the self-energy. The self-
energy is divided into the bare exchange =* and the
correlated part 2¢. We first describe the evaluation of =€,
In the Bloch-state basis, the spectral function for the
self-energy in Eqgs. (28) and (29) is given by

oce
I(qe)=3 3 (ql,k—qnlkm)B,,, (k;o—g_g,)

kn m,m’

X{km'|lk—qn,ql")

X0(eg_gp —@) (32)
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Ci(gw) 3 3 (ql,k—qnlkm)B,, (k;o—g,_g,)

kn m,m’

X (km'lk—qn,ql’')

XO(w—gg _g,) - (33)

Comparison with Eq. (31) shows that the evaluation of '
involves an extra summation over the band and the fre-
quency o extends to twice the maximum energy cutoff.

J

occ

0y, (DY, (1) g (1) o —ila—kIR
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The real part is obtained by Hilbert transform as in Eq.
(23). Brillouin zone integration is done with 20 points in
the irreducible wedge and a change of less than 0.1 eV is
observed when the number of points is increased to 89.

Numerical evaluation of 2* presents some difficulties
due to its magnitude which is typically 5-10 times larger
than 2¢ This means X* must be computed with one
significant figure more than X°. Direct evaluation of 2*
in the Bloch-state basis is numerically prohibitive as may
be seen below:

3l
Sta==33 [ d'r [ &’ Ya

iy Ir—r'+R]|

where R is a lattice vector and (Q is the unit cell volume.
The summation over R may be carried out with the
Ewald method but the summation over k and n makes
the computation disproportionately large.

A simple way of avoiding the summation over R would
be to express v in the Bloch state basis

p(r='D=" Y (D0 (KU (35)

knn’

so that we obtain
q)=—3 (ql,k—qnlkm)v,,, (k)
kn

Xkm'lk—qn,ql’') . (36)

However, a significant error (as large as 1 eV) in the sp
band is introduced due to the finite number of basis func-
tions. This arises from the different nature of the cancel-
lations of errors between the localized d states and the ex-
tended sp states. We can of course increase the number
of basis functions but this is computationally disadvanta-
geous. To improve on the bare exchange, we use the fol-
lowing procedure: we write

o(le—=r')=v(r—r'H+Av(jr—r1']), Av=v—7, (37)

where 7 is given by Eq. (35). We then expand Av in a set
of plane waves and use it to calculate the correction to
the bare exchange which results in

occ

A3F(q)=3 3 (ql,k—qnlk+G)Avse(k)

kn GG’
X{k+G'lk—qn,ql’) , (38)
where
477666'
Avg k)= ———7
o (k+G)’
— 3 (k+Glkn)v,, (k){kn'[k+G") . (39)
v,,(k) are the matrix elements of v in the Bloch-state

basis. With this exchange correction, the sp band is in
much better agreement with experiment.

) (34)

Having obtained the self-energy, the quasiparticle ener-
gies are easily found:

Ekn :Ekn+A2nn(k;Ekn)

0AZ,, (gy,)
= TAZ, (ke ) H(Ey, ~8) 3 >
(40)
where
3. (k)= (kn|ZXw)+Z(w)—v*|kn ) . (41)
The self-energy correction is given by
Agy, =Ey, — &,
=Z .02, (kigy, ), (42)
where
Zn= \1——8A2""(k;8“") 71<1 . 43)
dw

IV. RESULTS AND DISCUSSIONS

We first present the results and describe their main
features. Later we will discuss and attempt to give a
unified explanation for the results

The real and imaginary parts of the correlated part of
the self-energies for the I'js state, X state, and L) state
are shown in Figs. 1-3. The imaginary parts show a par-
abolic behavior around the Fermi level which is in accor-
dance with theory and typical of a Fermi liquid. The
two-peak structure about 20 and 30 eV below the Fermi
level originates from a similar structure in the imaginary
part of the inverse dielectric function.?® These two peaks
are most likely to be the plasmon peaks. Estimate of the
plasmon frequency from the electron gas formula
a)f,,asm0n=41rn with the density n taken to be the average
valence density gives @pmon=30.8 €V, in close agree-
ment with the position of the large peak in the screened
potential. The little peak just below the Fermi level origi-
nates from the first peak in the dielectric function around
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FIG. 1. (a) The real and imaginary parts of the correlated
part of the self-energy for the minority spin state I'ys. (b) The
real and imaginary parts of the correlated part of the self-energy
for the majority spin state I'3s.

5-6 eV and may be associated with transitions from a
relatively large number of s states about 5-6 eV below
the Fermi level to states just above the Fermi level. But
as we will discuss later, the peak is not strong enough to
produce a satellite structure.

The large frequency behaviors of the imaginary parts
appear to be rather similar for both the hole and particle
parts. As a consequence, most of the contribution to the
real parts, which are the Hilbert transform of the imagi-
nary parts, comes mainly from frequency regions 50 eV
below and above the Fermi level, since the large frequen-
cy parts of the hole and particle parts cancel one another.
This is in agreement with the physical picture, where the
most important contribution to the self-energy comes
from the energy region below the plasmon frequency.
This can be viewed as a justification for the use of energy
cutoff of 9 Ry in the basis functions.

The real parts of the self-energies show large deriva-
tives around the Fermi level. Self-consistency is therefore
important and we should take the derivatives into ac-
count when computing the quasiparticle energies. A typ-
ical Z value is between 0.5 and 0.7, which is of similar
magnitude as in simple metals, semiconductors, and the
electron gas at metallic densities. This range of values
appears to be material independent.

In Table I we present the self-energies at the X point
which are representative for other points in the Brillouin
zone (BZ). The self-energies were calculated without the
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exchange corrections as described in Sec. III. The charge
inside the muffin-tin sphere is a measure of the degree of
localization of the state. We see a clear relationship be-
tween the 2 and the degree of localization: the more lo-
calized the state the higher the effect of exchange and
correlation. This may be understood in terms of the
local-density picture where the exchange-correlation po-
tential varies like ~n!/3. A similar relationship holds be-
tween Z and localization. The quantity 1/Z gives the
effective-mass ratio: the more localized the state, the
flatter the band and therefore the larger the effective
mass.

The average band structure of the up and down spin
along the I'X and T'L is plotted in Fig. 4. The bottom of
the d band along the I'X has a deviation from experiment
ranging from nothing at the I' point to the 0.4 eV at the
zone edge. One might attribute the discrepancy to the
Bloch state being inaccurate but, on the other hand, the
starting eigenvalue is very accurate and therefore the cor-
responding Bloch state should be accurate too. We post-
pone for the moment a possible explanation for this
discrepancy.

The band structure of the d states is quite complicated
and as may be seen in Fig. 4, the self-energy correction is
strongly state dependent. For example, the self-energy
correction to the I'js state is positive whereas at the L)
state it is negative. This point has been brought up be-
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FIG. 2. (a) The real and imaginary parts of the correlated
part of the self-energy for the minority spin state X;. (b) The
real and imaginary parts of the correlated part of the self-energy
for the majority spin state X.



13 058
0.5
(a) Lo .
minority spin - L.7»
= ImZ|
=z
vl «":" Y B A N
0.0 f— e .
"""""""" N N
s v ‘\\n‘,:
Re X
-10.0 0.0 10.0
W (a.u.)
0.5
(b) Lo .
majority spin L5
3
s
B IImX |
5 A e
“\J’ \ STONG T
0.0 f—— f o
\\\\\ e ¥ ".~..‘.
Re Z

-10.0 0.0 10.0
 (a.u.)

FIG. 3. (a) The real and imaginary parts of the correlated
part of the self-energy for the minority spin state L5. (b) The
real and imaginary parts of the correlated part of the self-energy
for the majority spin state L).

fore by von der Linden and Horsch'* against the state-
ment by some authors that the self-energy may be ap-
proximated by a scissor operator, i.e., a uniform shift
across the Brillouin zone. Although the statement may
be true in semiconductors except at a few states, it is cer-

E (eV)

experiment
.......... LDA
e GW

FIG. 4. The band structure along the I'X and 'L directions.
The solid curves are the experiment and the dotted curves are
the LDA, both taken from Ref. 37. The filled circles are the
quasiparticle energies in the GWA. The unit is in eV and the
energy is measured with respect to the Fermi level.
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tainly not true in the case of nickel.

In Table II we present the quasiparticle energies at
high symmetry points for the occupied states and com-
pare them with experimental values when available. The
numerical error is estimated from convergence test to lie
between 0.1 and 0.2 eV. Since the splitting is small, the
experimental quasiparticle energies are the average of the
up- and down-spin channels. Only states near the Fermi
level are resolved, but states which lie further away from
the Fermi level have larger quasiparticle widths and
therefore the up- and down-spin channel are unresolved.
Due to experimental difficulties in determining the Fermi
level, absolute comparison of the quasiparticle energies is
not very meaningful. We have found, however, that the
data obtained by Martensson and Nilsson®’ fit well with
our calculations without adjustment, whereas a down-
ward shift of 0.3 eV of the data of Eberhardt and Plum-
mer'® appears necessary for comparison. Indeed, it has
been pointed out that the latter data are too high by
0.2—0.4¢eVv."’

With the fore-mentioned shift, agreement with
Eberhardt and Plummer data is in most cases very good
except for the following states.

(1) X, state: the experimental point appears too low.
That this is the case is confirmed by comparison with two
other sets of data.!”>3’

(2) X, state: the experimental point appears too high.
Again comparison with two other sets of data confirms
this. Here, the calculated quasiparticle energy is not in
very good agreement with the other two sets of data but
still it is unlikely that the self-energy correction should be
as large as 1.5 eV.

(3) W35 and Wj: the discrepancies are not large and no
other experimental data are available. It is difficult to
judge what the correct values should be.

In Table II we also give the full width at half maximum
(FWHM) of the quasiparticle energies obtained from the
imaginary parts of the self-energies and compare them
with experiment. The agreement is very favorable. The
widths vary from zero at the Fermi level to about 2 eV at
the bottom of the band which corresponds to a lifetime of
~7X10"'° sec and a scattering length of / =v,7~4 A if
we take v, to be the group velocity of the free-electron
band.

Inclusion of transitions from the core states in the
response function has little effect on the quasiparticle en-
ergies, apart from an almost uniform upward shift of
~0.1 eV. Since we are interested in relative eigenvalues,
this shift is not of much importance and the core elec-
trons may therefore be neglected in the computation of
the response function. On the other hand, the core elec-
trons should be included when we are interested in the
high energy spectrum.

The exchange splittings are not improved from their
LDA values to the accuracy of the computation. In some
cases they are improved by 0.1 eV or at most 0.2 eV. In
fact, when the LDA splitting is small, the GWA tends to
increase it marginally. The decrease in the exchange
splittings mainly occur at the top of the band. It has
been suggested that the splittings may indeed increase
with the distance from the Fermi level.'"® Since the exper-
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imental exchange splittings are only about 0.3 eV, we
might argue that they lie outside the computational accu-
racy which is between 0.1 and 0.2 eV. But judging from
the uniformity of the results across the Brillouin zone and
the good result for the quasiparticle energies, it seems
that the discrepancy is not due to numerical inaccuracy
but rather to the inadequacy of the GWA itself. The ex-
change splitting seems to be closely related to the ex-
istence of the 6-eV satellite which we turn to in the next
paragraph.

The spectral function A(w)=-—(1/7)ImtrG(w),
where the Green function is obtained from the Dyson
equation, is plotted in Figs. 5 and 6. The main spectral
width is about 3.5 eV with a shoulder structure extending
to 4.5 eV. This shoulder structure comes mainly from
the X, and L, states, both at the zone edges with high
density of states. Between 5 and 6 eV we see a satellite-
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like structure. This structure, however, originates from
quasiparticle peaks corresponding to the lowest valence
states at k around (0.5, 0.25, 0.0) and (0.5, 0.25, 0.25).
When contributions from these two states are taken out,
the peak disappears as shown in the figure. A similar ob-
servation has been made before®® and the conclusion is
that the weight of the satellite coming from many-body
effects may not be as large as it is assumed to be. We
would like to emphasize that this does not imply that
there is no satellite structure resulting from many-body
correlations. On the contrary, the resonance at the 3p
threshold clearly indicates the presence of many-body
effects.

At lower energies (Fig. 6) we find two peaks at —24
and —34 eV which we believe are due to plasmonlike ex-
citations. These two peaks may be traced back to the two
large peaks in the dielectric function at about the same

TABLE II. Quasiparticle energies in eV at high symmetry points for majority and minority spin (al-
ternately). eLPA is the LDA eigenvalue calculated with our modified LAPW method (Ref. 28). (E,, ) is
the average quasiparticle energy. The experimental data are taken from Ref. 18 and those in the
parentheses from Ref. 37. The experimental data from Ref. 18 have been shifted down by 0.3 eV for the

purpose of comparison.

FWHM

kn efPA Ey, (Ey,) Expt. GW Expt.
r, —9.26 —9.0 2.1

—9.24 —9.0 —9.0 —9.1+0.2 2.1 1.8
s —2.35 —17 0.8

—1.76 —1.1 —1.4 —1.410.2 0.4
Ty —1.23 —0.9 0.3

—0.59 —0.3 —0.6 —0.7%0.1 0.2
X, —4.93 —43 2.9

—4.54 -39 —4.1 —3.6%£0.2(—3.8) 2.5 1.25
X, —4.28 -35 22

—3.80 —29 —3.2 —3.1£0.2(—2.8) 1.5 1.4
X, —0.60 —-0.5 0.1

+0.07 +0.2 —0.3 —1.15£0.1(—0.2) 0.1
L, —4.95 —43 2.5

—4.60 —4.0 —4.1 —3.9+0.2 2.0
L, —2.44 1.9 1.0

—1.86 —13 —1.6 —1.610.1 0.6 0.9
L, —0.74 —1.3 0.02

—0.73 —1.3 —1.3 —1.31(—1.0)0.1 0.02
W —4.00 34 22

—3.58 —3.1 —33 —2.91+0.2 1.9
W, —3.09 —26 1.4

—2.61 —-2.0 —23 —2.0+0.2 0.8 1.3
W, —1.40 11 0.8

—0.79 —0.5 —0.8 —0.95+0.1 0.2 0.8
K, —4.18 —3.6 2.4

—3.76 —3.2 —3.4 —3.41+0.2 2.0 1.3
K, —3.80 —32 1.9

—3.36 —2.6 —-2.9 —2.85+0.1 1.2 1.0
K, —2.13 —1.8 0.4

—1.65 —1.2 —1.5 —1.2+0.2 0.8 0.8
K; —1.14 —1.0 0.3

—0.51 —0.4 —0.7 —0.75+0.1 0.2
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positions.?® They are not as large as in simple metals be-
cause the d electrons in nickel are very localized and
tightly bound as indicated by the small bandwidth and
the large charges inside the muffin-tin sphere (Table I).
Moreover, the plasmons in Ni merge with single-particle

i

1 ImZ,, (k,w)
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excitations so that their widths are broadened and their
strengths are consequently reduced.

We have also calculated the spectral function from the
following expression:

and found little difference between this and the spectral
function obtained from the full Green function, as may be
seen in an example shown in Fig. 7. This is because the
off-diagonal elements of the full Green function are small,
which means that the quasiparticle wave functions do not
differ much from the LDA wave functions. A similar re-
sult has been obtained by Hybertsen and Louie'’ in their
GW calculations of semiconductors. The numerical im-
plication is quite significant since, to a very good approxi-
mation, only the matrix elements of the self-energy taken
between the valence states are required instead of the
whole 50 X 50 self-energy matrix.

The quasiparticle energies may also be determined
from the peaks in the imaginary parts of the Green func-
tion. The results agree to within the accuracy of the
computation with the results obtained from the formula
in (42).

We summarize the main results: the quasiparticle
band structure as well as the quasiparticle widths are
given very well by the GWA but the exchange splittings
remain significantly large and the satellite structure at 6
eV is not reproduced in our calculation. We will try to
give a unified explanation for the discrepancies between
the GWA and experiment. In short, the satellite and the
correction to the exchange splittings are not contained in
the screening but rather in the so-called vertex correc-

Total Spectral Function :"
of Nickel \ :

theory (dashed)

experiment (solid)

1.O}

A () (states/eV atom)

0.0 *
-10.0 -5.0 0.0

w(eV)

FIG. 5. The total spectral function of nickel. The solid curve
is the experimental result taken from Ref. 17 and the dashed
curves is the theoretical result within the GWA. The dashed-
dotted curve corresponds to the case when two quasiparticle
peaks at around 5-6 eV are taken out.

m % [0—&, —ReZ,, (k,0))*+[ImZ,, (k,0)]?

(44)

I

tions, i.e., beyond the GWA.

We first mention some facts about the 6-eV satellite.
The satellite does not appear to arise from any feature in
the single-particle band structure and shows no disper-
sion in the angle-resolved photoemission spectra.'®2* At
67 eV incident photon energy corresponding to the bind-
ing energy of the 3p level, it shows a Fano-type (asym-
metric) resonant enhancement in intensity and at the
same time the main 3d emissions show a strong antireso-
nance.’® It has also been found that the satellite is spin-
polarized near resonance.*

The commonly accepted explanation for the existence
of the satellite is the following:>>?® during a photoemis-
sion process, a d electron is emitted out of the solid and
another at the same atomic site is excited to an empty d
state just above the Fermi level. In the atomic picture,
this corresponds to the configuration 3d 745? which is
separated from the main band (3d 845) by more than 6
eV, but metallic screening should reduce this value, mak-
ing it closer to the observed value. The created two holes
multiple scatter by Coulomb interaction and form a vir-
tual bound state at 6 eV. Or in a simple single-particle
picture, the photon energy is used to take one d electron
out and to excite another into an empty d state so that
the emitted electron appears to have a lower binding en-
ergy corresponding to the satellite energy. Due to selec-
tion rules, electrons at the bottom of the d band, which
hybridize with the s-p band, have the largest probability
of being excited to the empty d states. As a consequence,

High-energy Spectral Function of Ni

0.1

A () (states/eV atom)

—36.() -20.0 -10.0

w(eV)

0.0
-40.0

FIG. 6. The spectral function of nickel at high energy with
two plasmon peaks at —24 and —34 eV and a shoulder struc-
ture at —16eV.
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FIG. 7. The spectral function at the X point for the minority
spin. The solid curve is obtained from the full Green function,
calculated from the Dyson equation, and the dashed curve is ob-
tained without including the off-diagonal elements of the self-
energy matrix [see Eq. (44)].

the spectral weight that goes to the satellite mainly comes
from the bottom of the band which then results in band
narrowing.

The main source of band narrowing, however, comes
from screening, whereas contribution from the hole-hole
interactions is secondary. The band narrowing seems to
show that the screening mechanism in nickel is quite
different from that in iron, cobalt, or copper. Due to the
localized character of the d states, a d hole is also local-
ized. The hole is screened by the surrounding d electrons
in the same atomic site as well as electrons from neigh-
boring atoms, mainly s electrons but also d electrons to a
lesser degree. The hole then travels with the screening
cloud from site to site, forming a quasihole which turns
out to have a heavier effective mass than the correspond-
ing screened LDA state, resulting in band narrowing. In
terms of perturbation theory, the screening is associated
with the excitations of electrons from below to above the
Fermi level. The largest contribution comes from excita-
tions of 3d electrons to the empty states just above the
Fermi level. This is evident when we look at the imagi-
nary part of the noninteracting response function where
the main peak lies below 5 eV.2® These excitation pro-
cesses are very much energy dependent and their effects
on the quasihole energies are embodied in the energy-
dependent, nonlocal self-energy operator through the
density-density response function.

The resonance at the 3p threshold is attributed to an
Auger process where a 3p electron is excited to fill the
empty d states followed by a super-Coster-Kronig decay
which in atomic configuration interaction picture is given
by

3p%3d%s+hv—3p33d'%s -3p©3dB4s+el . (45)

The 3p resonance indicates that the presence of unoccu-
pied d states is indispensible in explaining the narrowing
of the band. Indeed, in the case of Cu with a filled d
band, LDA is known to give a reasonable bandwidth.

The reduction in the exchange splittings may also be
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explained by the same model. For simplicity we consider
a single-band model with a fully occupied majority chan-
nel and a partially occupied minority channel. A hole in
the majority channel can excite an electron in the minori-
ty channel to the unoccupied states, resulting in two
holes. On the other hand, a hole in the minority channel
cannot excite an electron from the majority channel since
there is no empty state to go into. This means that there
is no contribution to the satellite from the minority chan-
nel. This implies in the real case that the majority chan-
nel has a larger band narrowing, resulting in a decreasing
in the exchange splittings.

The above physical mechanism is modeled by Penn?’
and Liebsch?® with a Hubbard Hamiltonian. The self-
energy arising from the hole-hole interaction is calculated
in the t-matrix formulation,*' assuming that there is at
most one electron in an unfilled d state because the num-
ber of such states is small. The self-energy diagrams for
this model are drawn in Fig. 8. The ¢ matrix is given by
t=U/(1+UG,), where U is the Hubbard parameter and
G, is the two-hole Green function evaluated with the
Hartree-Fock eigenvalues. The ¢ matrix gives the
effective hole-hole interaction. The denominator of ¢
represents the multiple scattering shown in Fig. 8 and a
pole in ¢ corresponds to the satellite binding energy. In
the Penn model, the d orbitals are assumed to be degen-
erate whereas in the Liebsch model the multiplets are
taken into account. The latter has the advantage that it
goes over to the atomic case in the limit of no overlap be-
tween neighboring atoms.

To investigate the discrepancies between the GWA and
experiment, we look for physical processes which are left
out in the GWA. We may do this by making a compar-
ison between the Hubbard model and the GWA. Direct
comparison between the two is not straightforward for
several reasons. The GWA is a first-principle theory
whereas the Hubbard model is, as the name implies, a
model of a physical system with an adjustable Hubbard
parameter U which contains the effect of screening to all
orders in perturbation theory. U is a hard-core, contact
interaction whereas W is a screened Coulomb potential
which is softer and nonlocal as well as frequency depen-
dent. But for the purpose of identifying physical process-
es responsible for the presence of the satellite and the
reduction in the exchange splittings, it is reasonable to
make a diagrammatic comparison between the GWA and
the Hubbard model.

N

FIG. 8. The self-energy diagrams in the Hubbard models
used by Penn and Liebsch.
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From the point of view of the GWA, the correlation
between the hole created during the photoemission pro-
cess and the rest of the system is described by the dia-
grams in Fig. 9. The hole interacts with the rest of the
system through virtual creation and annihilation of
electron-hole pairs (polarization) which amounts to
screening the Coulomb interaction. Polarization process-
es whereby another d electron is excited to an unoccupied
state just above the Fermi level are included in the dia-
grams. However, ladder diagrams shown in Fig. 8
representing repeated hole-hole scatterings are absent in
the GWA approximation. These processes which lead to
the virtual two-hole bound state are important for the
description of the satellite and the exchange splittings.
Therefore the GWA is not expected to be able to describe
the satellite and give the correct exchange splittings as
our calculation has shown.

The discrepancy in the band structure for the bottom
of the d band may also be explained by the absence of
hole-hole interactions in the GWA. As discussed earlier,
the weight of the satellite mainly comes from the bottom
of the d band and this satellite arises from the hole-hole
interactions. Since these interactions are missing in the
GWA, we expect discrepancies in the quasiparticle ener-
gies at the bottom of the d band. In Fig. 4 we see the
discrepancy for the lowest d band increases as we move
from the I" point to the X point.

The GWA, on the other hand, takes into account in-
teratomic interactions which, as shown by Kanamori,*
can increase the effective intra-atomic Coulomb interac-
tions by as much as 30% in the Hartree-Fock approxima-
tion. The interatomic interactions in any case should be
of much less importance than the intra-atomic ones due
to the very localized nature of the d states.

We might still argue that the virtual excitations of elec-
trons from the d band to unoccupied states just above the
Fermi level would give a large contribution to the
response function due to the small energy denominator
and consequently a satellite peak in the spectral function.
But inspection of the inverse of the dielectric function®®
shows no such strong peak at around 6 eV both experi-
mentally and theoretically. In RPA the screening is
affected by excitations of particle-hole pairs which
through inversion of Eq. (15) may conspire to form col-
lective excitations (plasmons). The full response function
x is in general very different from the noninteracting
response function Y° since the latter contains no

FIG. 9. The self-energy diagrams in the GWA.
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plasmons. The 6-eV satellite does not correspond to
plasmon excitations of the 3d electrons since such
plasmon peaks are absent in the imaginary part of y. It is
clear that the existence of the satellite is not a direct
consequence of screening effects but due rather to vertex
corrections in the self-energy which in this case takes the
form of the ladder diagrams shown in Fig. 8. The effects
of the self-energy corrections on the exchange splittings
are probably not contained in the screening either since
W is spin independent.

Adding vertex corrections to the GWA is unfortunate-
ly no simple task, both from numerical and theoretical
points of view. Theoretically, there is a difficult problem
associated with conservation laws. The GWA with self-
consistent Green function is conserving in particle num-
ber, energy, and momentum, but with the zeroth-order
Green function it is only particle-number conserving as
has been stated before. Energy and momentum conserva-
tions are important when we are interested in transport
properties which involve rates of change of energy and
momentum, but for ground-state properties such as total
energy, it should be a good approximation to replace G
with G% A general prescription for constructing a con-
serving approximation has been given by Baym.** Pro-
vided the self-energy is expressed as a functional deriva-
tive with respect to G of some scalar ®[G], the approxi-
mation is conserving. There are two practical problems:
the first is the choice of ®[G] and the second is self-
consistency. ®[G] is a functional of the self-consistent
Green function which in practice is very difficult if not
impossible to obtain. Very little progress has been made
in this field so far.

The reason for the success of the GWA in predicting
the quasiparticle energies is not entirely clear. For the
core-electron case, the following model Hamiltonian***

H=H,+e% b+ vob' (46)

yields the same core-electrons energy as in the GWA. H,
is the Hamiltonian of the valence electrons which include
valence-valence and valence-core interactions, V is the
potential experienced by the valence electrons when a
hole is created, and b,b* are the annihilation and
creation operators for the core electrons. For the valence
and conduction electrons, the situation is less clear. In
the case of nickel, the band narrowing (from the corre-
sponding LDA band) has a main contribution from dy-
namic screening and to a lesser extent from hole-hole in-
teractions which may be thought of as vertex corrections
(going beyond the GWA).

We finish this section with discussions on the numeri-
cal aspects of the calculation. We first consider the basis
functions. A question may be raised whether the number
of basis functions used in the calculation is sufficient to
describe the screened potential and the self-energy. We
have used basis functions which are eigenfunctions of the
zeroth-order Hamiltonian (LDA) and which should be
rather close to the quasiparticle wave functions. Al-
though the basis functions are not complete, they form a
suitable space for describing the physics at low energy.
The zeroth-order Green function G°, for instance, is ex-
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actly represented in the basis as long as we do not go
beyond the energy cutoff. In contrast, a large number of
plane waves would be required to represent G°. Al-
though absolute convergence may not be obtained with a
finite basis, we are interested in relative quasiparticle en-
ergies and their variation in k space so that systematic er-
rors that may arise tend to cancel one another.

To substantiate our argument, we list the following nu-
merical facts. (1) The f-sum rule

® eoy=— [~ g e) =" y2
fo do o Ime(q;o)= fo doolme™ (q;o)= zwp 47)
is satisfied to 90% for a number of q’s.
(2) The Coulomb potential
(qlvlq)= 3 {(qlgn)v,,(q){qn’lq) , (48)

nn'

where v,,(q)={qn|v|qn’), differs from the exact value
of 41/q? by less than 3%.

(3) The high-frequency regions of the imaginary parts
of the self-energies shown in Fig. 3 are of similar magni-
tude for the hole and electron parts. When performing
the Hilbert transform to obtain the real parts of the self-
energies, the hole and electron parts tend to cancel one
another so that the high-frequency regions are of little
significance. Most of the contribution to the real parts
come from frequency regions =5 Ry. The second numer-
ical aspect concerns the integration over the BZ. Consid-
ering the complicated structure of the Fermi surface in
nickel, one would expect that a large number of k points
is required to get convergence. Surprisingly, the real
parts of the self-energies are found to differ by only ~0.1
eV when the number of k points is increased from 20 to
89, suggesting that the integrands in k space are a slowly
varying function of k. In Egs. (31), (32), and (33), it is the
matrix elements 31 that determine the structure of the in-
tegrands in k space. Provided we have a correct band la-
beling, these matrix elements should be a slowly varying
functions of k since the wave functions should not change
character dramatically except in some exceptional cases.

V. CONCLUSIONS

We have performed a first-principle calculation of the
self-energy of nickel in the GWA starting from a self-
consistent LDA Hamiltonian with LAPW basis. The
quasiparticle energies are in very good agreement with
experiment except at the bottom of the d band where a
discrepancy of 0.3-0.4 eV remains. Consequently, the d
band is narrowed by ~1 eV. The widths of the quasipar-
ticles are also in favorable agreement with the observed
values, in particular the unusually large widths at the
bottom of the d band. The exchange splittings, however,
remain essentially unchanged to the accuracy of the com-
putation. In some cases, mostly at the top of the band, a
reduction of 0.10-0.20 eV is found.

The core electrons have little effect on the quasiparticle
energies. They merely give an almost uniform upward
shift of ~0.1 eV. Only when we are interested in the
high energy spectrum is it necessary to include core elec-
trons in the response function.
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A satellitelike structure is found between 5 and 6 eV
but this comes entirely from quasiparticle peaks, not as a
result of many-body shake-up. Experimental evidence
strongly suggests many-body effects as the origin of the
satellite; the resonance at the 3p threshold is particularly
convincing. The theoretical result shows, however, that
the single-particle contribution to the satellite weight is
quite significant as has been suggested before.*® It seems
clear that the satellite peak and the reduction in exchange
splittings are due to the two-hole bound state as model
calculations have shown. The two-hole interactions are
absent in the GWA and therefore it is not surprising that
the GWA does not give the satellite and the reduction in
exchange splittings. In the case of nickel we may identify
two contributions to the band narrowing: the largest
comes from screening or polarization processes and a fur-
ther contribution arises from the two-hole interactions
mainly for states at the bottom of the d band.

It is also found that the spectral function obtained
from the full G differs very little from that obtained from
G°. This suggests that the quasiparticle wave functions
do not deviate much from the LDA wave functions. For
most purposes, it is then sufficient to compute the diago-
nal components of the self-energy corresponding to the
states of interest instead of computing the whole self-
energy matrix.

Since the quasiparticle energies are in good agreement
with experiment, one would expect that the charge densi-
ty and magnetic moment obtained from the Green func-
tion should improve those of the LDA or at least main-

tain the good results of the LDA in these two quantities.
To calculate a quantity like a magnetic moment, howev-
er, requires a self-consistent calculation and a larger
number of k points, which are beyond our computational
capability.

The domain of applicability of the GWA appears to be
larger than one might anticipate from a relatively simple
many-body theory. The strength of the theory is that it
contains the essential physical processes, in determining
quasiparticle properties, which are common to a large
class of materials. Qualitatively, it is the dynamical
screening of a hole or particle with the formation of a lo-
calized polarization cloud which determines the effective
mass of the quasihole (particle) as it moves from site to
site. Quantitatively, we do not know the exact reasons
for the success of the GWA in predicting quasiparticle
energies. Only in the case of core electrons do we have a
clear explanation but the situation is still obscure for the
valence and conduction electrons. It is our hope that the
work we have presented in this paper serves as a further
guide in understanding the fundamental mechanism
behind the theory.

The good results for nickel encourage further applica-
tions to even more strongly correlated systems such as
NiO. It would be useful, however, to do a preliminary
study in the form of model calculations in order to identi-
fy what physical processes are responsible for the widen-
ing of the gap. Controversy around the validity of per-
turbation theory like the GWA to systems like NiO is
difficult to settle until numerical calculations have been
performed.
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