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Static dielectric response of charged bosons
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The dielectric function of a charged Bose gas is determined from the response to an imposed static
sinusoidal electric field. Variational and diffusion quantum Monte Carlo simulations are used to calcu-
late the ground-state properties of the system with trial wave functions containing a parameter depen-
dent on the amplitude and wavelength of the perturbation. The induced charge is most efficiently ex-
tracted from the difference in ground-state energies at different magnitudes of the external field, rather
than directly from the expectation value of the density fluctuation operator. Results are compared to the
random-phase approximation for the weakly coupled fluid and to classical lattice values at low densities
where the system forms a Wigner crystal. The dielectric function is also calculated at intermediate fluid
densities and the transition from positive to negative response is found to occur in the metallic regime.

INTRODUCTION

The dielectric function provides a compact description
of electrical response properties such as screening, polar-
ization, and plasma oscillations. The physical quantity of
interest is actually the reciprocal 1/e(k, co), which gives
the causal response to a perturbation. The dielectric
function is defined in linear-response theory in terms of
the ratio between the induced charge density and an
external charge, which acts as a probe. The probe is as-
sumed to be sufficiently weak so that the response is
determined entirely by the properties of the unperturbed
system. Furthermore, each Fourier component is treated
as if it acts independently —a given potential P(k, co) in-
duces a density fluctuation of the same wave number k
and frequency co. The dielectric response may in princi-
ple be obtained by perturbation theory and the literature
contains a number of models for the dielectric function,
which approximately incorporate direct, exchange, and
correlation contributions.

This paper is concerned with electrostatic (co=0)
response at T =0. The dielectric function is obtained by
perturbing the ground-state system with a sinusoidal
external field A,„,cos(q r). The resulting induced charge
density is calculated directly as the expectation value of
the density-fluctuation operator and from the change in
ground-state energy as a function of the amplitude of the
applied field A,„,. The quantum Monte Carlo method is
particularly suited to the second approach, since it accu-
rately calculates total energies from first principles. The
algorithm has previously been applied to obtain ground-
state properties of charged bosons', fermions, ' and
solids. '

The simplest system that can be used for a meaningful
demonstration of this methodology for calculating the
dielectric function is one consisting of charged bosons.
Though not found except perhaps in astrophysical appli-
cations, the charged Bose gas is a useful model for super-
conducting systems and has an obvious relationship with
the physically important fermion electron gas. Quantum
Monte Carlo simulations of the boson ground state '1,4

have revealed three distinct physical regimes, defined in
terms of the dimensionless measure of the density
r, =ro/ao (where ro is related to the volume per particle
by 0/N =4trro/3 and ao is the Bohr radius). The Bose
gas is a weakly coupled fluid when r, && 1. At lower den-

sities, the system becomes a strongly coupled fluid and
eventually undergoes a zero-temperature phase transition
to form a Wigner crystal (r, & 160).

Previous calculations of the dielectric response of
charged bosons have been based on several approxima-
tions. In the high-density limit, expressions for the
dielectric function have been found to the next order to
the Bogoliubov prescription and in the random-phase
approximation (RPA). The perfect lattice response ob-
tained from classical dynamics has been used as a
reasonable model of the Wigner crystal behavior at
sufficiently low densities. The strongly coupled fluid is
difficult to treat by perturbation theory due to the ab-
sence of any small expansion parameter. For metallic
densities (1 ~ r, ~ 10), numerical solutions of the
hypernetted-chain equations have been used to obtain
approximate values for the static linear-response func-
tion. The quantum Monte Carlo approach described
here yields exact numerical values for the dielectric func-
tion within statistical error bars over the complete range
of densities.

DIELECTRIC RESPONSE

Maxwell's equations define the macroscopic longitudi-
nal response of charged systems in terms of the electric
field E, the displacement 0, and the external, induced,
and total electrostatic potentials P and charge densities p.
Written in Fourier space,

ik D(k. co) , k= $,„,(k—, to) =4vrp, „,(k, co),

ik E(k, co) = —k {b„„,(k, co)

—4~p„„,(k, co) —4m [p,„,(k, to) +p;„d(k, to) ],
(l)

and the reciprocal dielectric function is
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1 E(k, to) (t'tot 1(k tt3) P ot 1(k ~)
e(k, co) D(k, to) t)It,„t(k,o3) p,„t(k,td )

p;„d(k, co)=1+
p,„t(k, to)

'

1
1

Pind l
1 + 87Tze( )

e(q) p,„,(q) A,„,q'

2 N N12Z —iq.r, +
—iq r,.

2A,„t¹,q i=1

valid as long as the fields are small enough to neglect
higher-order terms. With suitable quantum statistical
definitions of the fields, potentials, and densities, the
above equations also define the microscopic response for
all k and co.

In order to determine e(k), the uniform background of
a system of charge density po(r ) = ZeN—/0 is
sinusoidally deformed according to the prescription
po(r)+p, „,(q)cos(q r), where N is the number of particles
of charge Ze in the volume Q. To first order this will in-
duce a change in the charge distribution of the same
form, po(r) +p;„d(q)cos(q r). The Hamiltonian can be
written in terms of the external field or potential creating
this deformation:

N
1 2 2Z2 N

H =Ho+H, „„Ho= —g —2V;+
i=1 Ps s i&j ij

(3)

H,„,= A,„, g cos(q r, )=Ze g t)Ii,„t(r, )

The dielectric response can also be calculated from the
change in ground-state energies at different amplitudes of
the applied field. The derivative of the energy yields the
induced density

dE( A,„,)

ext ext

Expanding the induced charge for small A,x, and using
the preceding equation to replace (pq) „ in terms of the
energy

d(Pq) „
&P, &~

—
&p, &o =A..

ext ext

Ze d E(A,„,)
A ext

dA z
ext

(throughout this paper energies are in Ry and lengths are
in ro=r, ao) The re. lation between the potential and
external charge is given by the Poisson equation

V' $,„t(r} q2 q2 A,„,
p,„,(r) = — = tI),„t(r)= cos(q r),

4m

k ext 1 d3 lk't e +e
4n. Ze (2~)3 2

2A,„tq
[5k +5k ] .

8~Ze

(4)

The induced charge is the difference between the expecta-
tion value of the charge-density operator in the perturbed
system I1(t„) and in the original system ltI(to)

p;„d(k}=—&p& Ipklt}l& &
—

&polpklgo&

= &Pk&. —&P"k&o

In a homogeneous system, (pk)o=0 as long as p,„,(k) =0
[and e(k, to}%0],but this is not true in general. For the
sinusoidal external field, p;„d is nonzero only for the wave
vectors +q by the assumption of linearity

Pind( } [&Pk&A &Pk&o)[5kq+5k, —ql

Hence, according to the definition, the dielectric function
1S

we obtain an alternative formula for the dielectric
response

1 8~(Ze)2 d E(A,„,)=1+
e(q) nq'

12Z' 1 d'E(A, .i)=1+
q~ dA~

The value for the second energy derivative is obtained as
twice the coefficient of the quadratic term in a polynomi-
al fit to E( A,„,).

QUANTUM MONTE CARLO METHOD

For any Hamiltonian H, the ground-state energy is the
minimum of the expectation value with respect to all pos-
sible trial functions Vr(R)

f tItr(R)Htilr(R)d R
Eo= min f Ie,(R)l'dR

where the integration is over the 3N particle coordinates
R=(r, , r2, . . . , riv). In variational quantum Monte Car-
lo, the Metropolis method is used to evaluate the in-
teg rais numerically by sampling an ensemble of
configurations R from the probability function

I+,(R) I'
P(R)= f I q, (R) I'd R

The configurations are generated so that the random
walk has an acceptance ratio of around 50%%uo. The energy
is given by the weighted sum
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Eo ~ E= g P (R, )Ei (R, ),
J

where EI =H+T(R)/VT(R) is the local energy and E is
a strict upper bound for Eo within statistical error bars.
The form of Vz. (R) is critical for convergence. The op-
timal choice is a trade off between computationally fast
analytic functions and more accurate but complicated
forms, which are slower to evaluate. Typically, the varia-
tional process is performed on a subset of trial functions
with the minimization used to fix any free parameters.

The diffusion quantum Monte Carlo algorithm solves
the imaginary time many-body Schrodinger equation in
the short time-step approximation. Examination of the

I

formal asymptotic solution shows that the results con-
verge exponentially fast to the ground state and yield a
rigorous upper bound to the energy. The actual equation
solved is the Schrodinger equation written in terms of the
mixed distribution f (R, r)=ql(R, r)'Ilr(R),

N g2
[v',f—v, .(fv', inly l )]

i=1

+(El (R) Er—)f,
where the trial energy ET is a constant introduced for
computational efficiency. Interpreting f (R, r) as the
density of configurations R, the formal Green's-function
solution

f(R', t+r)= fdRG(R~R', ~)f(R, t), f (R,O)= l+T(R)l
(10)

4M
G (R~R', r) =

2m

—3N /2

exp

M2R' —R — v Inl@T(R)l
2m

4M
2m

I
—

w[ EL (,R ) +EL ( R' ) ]/2+ wET I

e

corresponds to a diffusion process with directed drift and
branching (birth and death) terms. Typically,
configurations generated by the variational algorithm are
taken as the starting point and new configurations are
generated using time steps chosen to give an acceptance
ratio in the 99th percentile. For bosons, spin statistics do
not limit the convergence and the diffusion method is
theoretically exact once time-step extrapolation to the
~~0 limit is performed. However, a good trial function
plays a critical role in importance sampling the diffusion
process in order to obtain rapid convergence and good er-
ror bars.

In diffusion simulations, expectation values are calcu-
lated on the mixed distribution 4T+. O'T affects only the
variance and not the expectation value of the energy and
Ed ~Eo. For other quantities, such as the density-
fluctuation operator, the diffusion process generates
mixed expectation values Od, which lie between the vari-
ational O„and the exact results Oo. Linear extrapola-
tion 00 =20d —0, can be used to obtain improved
ground-state values.

For bulk systems, the Schrodinger equation is solved
for a system of N particles in a periodic cell. The long-
range Coulomb interactions are evaluated using Ewald
sums which include the interactions between the simula-
tion box particles and all of their periodic images. Extra-
polation to the X~ ao limit is performed by simulating
systems of increasing size to determine the number
dependence.

The trial function used in the dielectric problem is a
perturbation of the ground-state solution, ' written
schematically as

=e '" " 1+y icos(q r;) Q P (r, ), (11)

2
RPA

(q +12Z r )'

(we omit the rather lengthy derivation).

(12)

RESULTS

In order to be consistent with periodic boundary condi-
tions, an integer multiple of the applied field wavelength
must exactly fit the simulation box. An additional con-
straint is that the charge variations not be too rapid for
accurate sampling —the maximum number of wave-
lengths per box is typically no more than three for
X &250. The amplitudes of the applied fields are chosen
as small as possible, consistent with obtaining statistically
meaningful energy differences. Linear-response assump-
tions are then tested by checking that the expectation
value of the density-Auctuation operator (pk) is zero
within statistics for values of k&+q and that the fits of
energy versus amplitude show only quadratic behavior.

The most accurate and computationally efficient
method of calculating the dielectric function is from Eq.

I

where the p (r, ) are single-particle orbitals. The
r, = lr; —r.

l
term is the Jastrow factor, which takes into

account two-body correlations as well as the cusp condi-
tion for zero particle separation required by the singulari-
ty in the Coulomb potential. The single-particle boson
orbitals are chosen to be the lowest-energy (k=O) plane-
wave states at fluid densities and Gaussian functions cen-
tered on the lattice sites for the crystal phase. The cosine
term in Eq. (11) is the simplest form of the linear
response to a sinusoidal external field of wave vector q.
It is written as an exponential to ensure that the wave
function is everywhere positive. y is a parameter that de-
pends on the amplitude and wave vector of the applied
field and may be found by variational minimization or
solved for analytically in the RPA
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FIG. 1. Plot of variational (circles) and diffusion (squares) en-

ergies vs amplitude of the applied field at r, =100, N =64, and

q =0.97444. Error bars are smaller than the symbols. Energies
are in Ry, and wave vectors in units of 1/ro. The curves are the
quadratic fits.

(7), since the quantum Monte Carlo method yields exact
ground-state energies. An example is shown in Fig. 1 for
r, =100, N =64, and q =0.97444. (Energies are in Ry,
lengths in ro, and wave vectors in 1/ro )The .solid lines
are fits of the variational (circles) and diffusion (squares}
points

E(A,„,)/N =—0.015 321(1)+4.38(1)A,„, ,

E(A,„,)/N—=0.015 440(1)+4.36(1)A,„, ,

with the error in the last digit given in parentheses.
=1— f dr( T,p(q, r)p( —

q, 0) )
e(q) q'ft

(13)

There is no evidence of higher-order contributions to the
fits over this amplitude range. The variational and
diffusion results agree within statistics (compare the
coefficients of A,„,}, confirming that a reasonable choice
for the trial wave function has been made. The error bars
decrease as more field strengths are used in the fit, but
typically dielectric values quoted in this paper were ob-
tained using only the ground state and three amplitudes
of the applied field.

The dielectric function can also be obtained from the
expectation value of the charge density-fluctuation opera-
tor. Table I shows results for r, =10 and q =1.948 89 in
the columns labeled p, with the superscripts indicating
variational ( V), diffusion (D), and extrapolated (X)
values. The results are divided by appropriate constants
to allow direct comparison to the second derivatives of
the energy, which are also given in the table. All but one
of the extrapolated values agree with the derivatives
within statistics. However, to obtain converged values of
(p» ) „ofthe same accuracy as the energies in general re-
quires considerably longer simulations or an improved
choice of the trial wave function. For average length
runs, the charge fluctuation values for different ampli-
tudes of the applied field typically do not agree within er-
ror bars and, at RPA densities, it is not possible to obtain
statistically meaningful results. This reflects the diSculty
in obtaining accurate mixed expectation values, exacer-
bated in this case since the weak perturbation is not
strongly selected by the Monte Carlo procedure. A
differential Monte Carlo scheme to obtain all field values
simultaneously ran into related convergence problems,
since the energy differences and differential weights re-
quire an accurate determination of (p» ) z.

The fluctuation dissipation formula

TABLE I. Induced charge and second energy derivatives at r, =10 and wavevector q =1.948 89 for several amplitudes A,„„and
different numbers of particles N in the simulation box. The energy derivatives quoted for each A,„, are obtained using all field ampli-
tudes up to and including that value. The columns labeled p» give the value of Q(pq)/ZeNA, „„with the superscripts V, D, X indi-

cating variational, diffusion, and extrapolated estimators, respectively. Errors in the last digit are indicated by the value in

parentheses. Energies are in Ry.

216 0.000
0.010
0.015
0.020
0.030

0.000
0.010
0.015
0.020
0.000
0.010
0.015
0.020

E v

N

0.121 12(1)
0.121 31(1)
0.121 550(9)
0.121 873(9)
0.122 80(1)

0.121 73(2)
0.121 90(2)
0.122 15(2)
0.122 48(2)
0.127 59(2)
0.127 79(2)
0.128 03(2)
0.128 30(2)

1 d'E'
N dA, „,

3.75(6)
3.72(3)

3.8(1)

3.6(2)

Pq

3.25(3)
3.26(2)
3.28(1)
3.275(9)

3.21(5)
3.30(3)
3.31(2)

3.3(1)
3.37(6)
3.28(5)

ED

N

0.121 469(5)
0.121 644(5)
0.121 891(5)
0.122 220(6)

0.122 073(9)
0.122 276(8)
0.122 490(9)
0.122 841(8)
0.127 87(1)
0.128 07(1)
0.128 33(1)
0.128 64(1)

1 dE
N da,'„,

3.78(4)

3.80(6)

3.88(8)

pq

3.48(3)
3.52(2)
3.50(1)

3.51(4)
3.57(3)
3.48(2)

3.65(7)
3.62(5)
3.55(3)

pq

3.71(5)
3.78(2)
3.72(3)

3.81(7)
3.84(5)
3.65(3)

4.0(1)
3.87(9)
3.82(7)
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derivative approach are listed in Table II for several wave
vectors at five different densities. Results for each q are
from a single N value and from a fixed time step rather
than v.~0 extrapolated values in the case of diffusion, un-
less explicitly noted. Results for E(q) obtained by direct
evaluation of the density-fluctuation operator are given
where converged and are useful both as a consistency
check and for confirmation that we are operating in the
linear regime. Cases for which the variational and
diffusion results differ significantly must be treated with
caution, since they indicate convergence problems and
the breakdown of the importance sampling trial wave
function. We first discuss the two extreme density re-
gimes, where analytic results exist for comparison.

09—

02—

High-density weakly coupled Suid

In the weak-coupling regime r, (( 1 numerical
difficulties require that the system be simulated by scaling
the density r, and charge Ze by factors of a according to
the prescription

rscALE=Ar (ZscALE)2=Z2yc
S $7

The system of charge Z at density r, and ap-
plied field Aegg Agxt/a then gives the energies in
units of E " =a Ry for the corresponding system of
charge Z and r, and external field A,„,. To test the algo-
rithm, we performed a few simulations at r, =2.5 X10
(a=400). The trial function with y" is expected to be
a very good approximation to the exact solution and, in
fact, the variational and diffusion energies are identical
within statistics. Results for the dielectric function are
also in excellent agreement with the analytic expression
derived by Hore and Frankel in the RPA limit (see Table
err), '

OA)
0.0 0.2 0.4 0.6

q (1/ro)
1.0

FIG. 3. Inverse dielectric function vs wave vector at
r, =0.0025. The solid line shows the RPA solution of Hore and
Frankel. Variational points are indicated by circles, diffusion
values by squares, and error bars by vertical lines.

due to the inhomogeneous nature of the crystal phase.
The induced charge includes components at all wave vec-
tors q+G, where G is a reciprocal lattice vector of the
crystal. However, the directionally dependent macro-
scopic response, which neglects all fluctuations due to the
reciprocal lattice vectors giving the induced charge only
at the applied wave vector q, ' can be obtained using
the external field method.

Table II and Fig. 4 show the results from quantum

4m co 12r
e(q, T=O)=1+ =1+

ri'q4 q'

where ro~ =4rrNe IQm, =3e2/m, ro3,

shown by the solid curve in Fig. 3.

Low-density strong-coupling regime

(14)

0.0

-0.5—

-1.0—

For r, & 160, the Bose gas forms a Wigner solid and the
usual definition of the dielectric function does not apply

-1.5
U'

-2.0

TABLE III. Comparison of RPA dielectric function and
quantum Monte Carlo results at r, =0.0025 for several wave
vectors q. The superscripts V, D, RPA indicate variational,
diffusion, and RPA values, respectively. The + indicates values
obtained from a single applied field. Errors in the last digit are
indicated by the value in parentheses. Energies are in Ry and
lengths in ro ~

-2.5—

-3.0—

-3.5
0.0 0.5 1.0 1.5 2.0

q (1/ro)
2.5

l

3.0 3.5

0.974 44
0.773 42
0.613 8

0.968(3)
0.94(1)
0.80(6)

0.9681(6)
0.925(6)
0.84(2)

1

RPA

0.9678
0.923
0.83

FIG. 4. Inverse dielectric function vs wave vector at r, =200.
The solid line shows the classical lattice solution of Bagchi in
the [100] direction. Variational points are indicated by circles,
diffusion values by squares, and error bars by vertical lines. The
triangles are the metastable diffusion values.
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Monte Carlo calculations of the dielectric function at
r, =200. The signer crystal is treated by explicitly bind-
ing the bosons to bcc lattice sites using Gaussians with a
width parameter determined by variational minimization
of the energy. The bosons are not very localized, the op-
timal width being on the order of the interparticle spac-
ing. The difference between the variational and diffusion
results is due in part to incomplete convergence of the
variational runs and in part to the less optimal nature of
the trial wave-function form at this density. We did not
feel it worthwhile to carry out extensive number-
dependence simulations, since localization reduces
boundary effects. Comparison with the ideal lattice
confirms that the quantum Monte Carlo results show no
significant time-step or finite-size effects.

At such low densities, statistical contributions are ex-
pected to be small compared to Coulomb effects, so the
classical system should provide a good starting point for
examining boson (and fermion) ground-state properties.
Using the harmonic approximation, Bagchi derived the
classical longitudinal macroscopic dielectric function of a
crystal in the long-wavelength static limit

2

e(q)~ 1—,(aq) ((co
a q

where a is defined in terms of the small q dispersion rela-
tion

co —co aI p

The bcc lattice dispersion relations have been calculated
for specific directions in reciprocal lattice space by
Coldwell-Horsfall and Maradudin. " Taking their value
for a for the [100] direction used in our simulations, we
obtain the perfect lattice dielectric function valid for
small q

2/3

chosen trial wave-function form, so the numerical values
must be treated with some caution. For comparison,
note that the classical lattice model exhibits the behavior
e~0, 1/e~ —~ at reciprocal lattice wave vectors (i.e.,
q =3.093 67 in the [100]direction).

Strongly coupled fluid

We performed simulations in the intermediate density
regime 1 & r, & 160 to study the transition from weak to
strong coupling. Quantum Monte Carlo results are given
for three densities in Table II: r, =l (metallic fluid),
r, = 10 (low-density fiuid), and r, = 100 (partially localized
fluid), where the physical classification is based on an ex-
amination of the pair correlation functions g (r) shown in
Fig. 5. The trial function used in the simulations was the
perturbed Quid form with the parameter y determined by
the RPA solution and checked by variational minimiza-
tion. Time-step and number-dependence checks were ex-
plicitly carried out at all three densities.

Figure 6 plots results obtained at r, =1. The values
show a high degree of correspondence with the RPA
solution of Hore and Frankel (solid line), despite the fact
that interactions can no longer be considered negligible.
This is not completely unexpected, however, since it has
been noted that the condensate fraction of the Bose gas
remains close to one even at r, =2, so that Bogoliubov
(and RPA) theory is not a bad approximation for typical
metallic densities.

The dielectric function at r, =10 is plotted in Fig. 7.
Comparison with Fig. 6 shows that a qualitative change
in dielectric behavior from positive to negative response
has occurred. In fact, the quantum Monte Carlo results

2.00-

16m 3

1.486 Sm

1

q 1.75—

To get an idea to what degree the Bose gas approxi-
mates the classical system, note that the static energy of
the bcc lattice is Eb„=—1.79186lr, = —0.0089593,
while our ground-state energy values range from—0.0080 to —0.0081 Ry, depending on X. The 10%
difference indicates that quantum effects will be small but
not negligible. Bagchi's classical function is plotted as a
solid curve in Fig. 4 and shows good agreement with our
results for small q, particularly in the case of diffusion,
confirming the dominance of localization effects. The
quantum Monte Carlo values diverge from the curve for
q & 1.5, not surprisingly, since the classical formula is
valid only for q ((2.8636 by the criterion given above.
From an examination of the sum rules for the classical
lattice, Bagchi concluded that e should in fact be nega-
tive for all q. At all wave vectors we examined for the
quantum crystal, the induced charge is indeed of opposite
sign from the external perturbation and becomes several
times greater in magnitude as q approaches the charge-
density wave vector associated with the Wigner crystal.
The 1arge discrepancy between the variational and
diffusion values for such q indicates the breakdown of the
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1.25—
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FICi. S. Pair-correlation function for %=128 at the five r,
densities for which dielectric functions were obtained. The dot-
ted line is r, =0.0025, the dashed line is r, =1, the dot-dashed
line is r, =10, the double-dotted-dashed line is r, =100, and the
solid line is r, =200. Note that the length scales are different for
the five curves.
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correspond with the classical Bagchi prediction for the

[100]direction at longer wavelengths (plotted as the solid
line) even though the fluid does not exhibit much
localization —the pair-correlation function in Fig. 5 has a
hole near r =0, but only the barest trace of the peaks
characteristic of the crystal.

Although early workers argued from stability con-
siderations that e must always be positive, the Kramers-
Kronig relations show that the actual restriction on the
inverse dielectric function' ' is [1/e(q)] ~ 1, which does
not preclude the existence of negative static dielectric
values at nonzero q. For the fermion electron gas, the
change in sign of the response occurs at r, =5 and is asso-

ciated with a change in sign of the compressibility. This
transition density is much higher than that at which the
system becomes unstable with respect to the (charge-
density wave) crystal state. Our results indicate that for
bosons, negative response also appears somewhere in the
metallic regime (1(r, (10). However, examination of
the Bose equation of state shows that this transition is
not related to a change in sign of the compressibility.

The r, =100 values are plotted along with the classical
dielectric curve in Fig. 8. The fluid at this density exhib-
its considerable localization, with strong peaks at dis-
tances related to the lattice spacing of the Wigner crystal
(compare the r, =100 and 200 curves in Fig. 5). Despite
the fact that we are using fluid trial functions, the dielec-
tric response is basically indistinguishable from the
Wigner crystal case as can be seen by superimposing the
curves, recalling that lengths are scaled by rp ~ In fact,
the crystallization transition is not sharply marked
for the bosons as reflected by the small binding energy of
the solid.

As a check, we calculated the dielectric function of the
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FIG. 7. Inverse dielectric function vs wave vector at r, =10.
The solid line shows the classical lattice solution in the [100]
crystal direction. Variational points are indicated by circles,
diffusion values by squares, and error bars by vertical lines.

metastable fluid at r, =200 and the metastable crystal at
r, =100. The values obtained are listed in Table II, with
the difFusion results plotted as triangles in Figs. 4 and 8.
Within statistical accuracy it is not possible to distinguish
between the localized and delocalized states at either of
the two densities.
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FIG. 6. Inverse dielectric function vs wave vector at r, = l.
The solid line shows the RPA solution. Variational points are
indicated by circles, diffusion values by squares, and error bars
by vertical lines when they are larger than the symbols.
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FIG. 8. Inverse dielectric function vs wave vector at r, = 100.
The solid line shows the classical lattice solution in the [100]
crystal direction. Variational points are indicated by circles,
diffusion values by squares, and error bars by vertical lines when
they are larger than the symbols. Triangles are the metastable
diffusion values.
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In summary, we have performed calculations of the
dielectric function of the charged Bose gas over the entire
range of interesting densities. The algorithm is currently
being extended to treat the fermion electron gas. The pri-
mary difticulties to be resolved concern the form of the
perturbed trial function, extrapolation to the bulk limit,
and improvement of the statistical accuracy of the re-
sults.
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