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Transient nonlinear optical phenomena in exciton-phonon systems
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Propagation of a light pulse in the bulk and hole bleaching in the absorption spectrum from a film of
polydiacetylene-toluene sulfonate are investigated in the transient regime. This polymer is treated as an
example of an exciton-phonon coupling system with only two phonon modes dominating the coupling.
For the propagation, we use the Maxwell wave equation to express the field in terms of the polarization
density, which is found microscopically from a set of optical Bloch-like equations in the semiclassical ap-
proximation. Phonon-mediated phenomena predicted in this work include the photon echo in a solid
and bistable behavior of both the absorption coefficient and refraction index. The absorption spectrum
is calculated for a thin filrn of an exciton-phonon system under a strong pump field and a weak probe
field from the optical Bloch-like equations only. Phonon-mediated bleaching of holes is obtained in good
agreement with experiments.

I. INTRODUCTION

In the study of nonlinear optical properties of solids, it
is sometimes useful to describe the solid by a simple mod-
el of electron-phonon coupling systems, provided that
there are only a limited number of phonon modes cou-
pled strongly to the electronic system. To name just a
few examples, we note that interesting results are found
by assuming the coupling to be between vibrational
modes localized near impurities in solids and the elec-
tronic transition of the impurity atom, or between the
localized phonon modes and the electron-hole system in-
stead of the impurity atom in solids. The vibrational
modes of the bond connecting admolecules to a solid sur-
face have been studied theoretically and experimentally,
and their coupling to the electronic transition in solids
has also been studied. It has been found in many poly-
mers that only a few phonon modes along the stretch of
bonds composing the backbone couple strongly with exci-
tons in the system.

In recent years, we have found many interesting phe-
nornena in the nonlinear optical response of polymers by
considering the polymer as an exciton-phonon coupling
system. Phonon-mediated optical bistabilities with
novel behavior are found with or without external feed-
back from the cavity or a solid surface nearby. Exciton-
phonon coupling is also found to be responsible for the
splitting of the optical susceptibility of polymers. ' Very
recently, we have investigated the coupling of an impuri-
ty electron with a localized phonon mode and calculated
the resonance fluorescence spectrum of the impurity
atom. "Novel structures are found at the sideband peaks,
and we have shown that the hole and antihole are direct

results of the electron-phonon interaction.
In this paper, we study the propagation of a light pulse

in an exciton-phonon coupling system and the transient
nonlinear optical response of this system. Light pulses
propagating in a near-resonant medium can produce a
number of interesting phenomena, most of which have
their origin in the transient response of the medium to
coherent pulsed excitations. Hence one of the most in-
teresting subjects in physics is the coherent transient in-
teraction between materials and optical fields. Studies of
transient and propagational optical effects are of particu-
lar importance to the development of coherent optical
spectroscopy as well as fast-response nonlinear optical
materials. We choose polydiacetylene-toluene sulfonate
(PTS) as our medium in this study because it is a typical
material with only a few phonon modes coupling strongly
with excitons. '

II. LIGHT-PULSE PROPAGATION
IN THE MATERIAL

It is well known that when light propagates in a ma-
terial it induces polarizations which, in turn, modify the
field of the propagating light. To treat the problem, we
first express the field in terms of the polarization density
from the Maxwell wave equation in which the polariza-
tion of the medium acts as the source. The polarization
is then expressed in terms of microscopic quantities
characterizing the exciton and phonons in the material.
These elementary excitations are treated as damped har-
monic oscillators, and the light field is regarded as the
driving force. Thus, both the field and polarization can
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be determined by solving the set of all these coupled
equations.

In general, the wave equation for the electric field in an
isotropic medium is

n 2
4~V' — E(r, t) = P(r, t),

c Bt c Bt
(la)

B2

Bx

"o B 4m B
2

E(x,t)=, , P(x, t) .
c Bt c Bt

(lb)

The refraction index no of the medium is assumed to
be unity throughout this paper. The electric field can be
written as

where E(r, t) is the electric field of the light, and P(r, t) is
the polarization density of the medium which represents
the dipole moment density of excitons. This polarization
P is excited by the electric field only and thus has the
same direction of the vector E. We may take the direc-
tion of propagation as the x direction and consider this
electric field to be of the plane-wave type with no trans-
verse variance. Assuming a linear polarization of this
field, we can write the wave equation in a one-
dimensional form as'

non mode with corresponding frequencies co„and cu,- and
decay rates y and y, , respectively. The exciton-phonon
coupling constant is I, , and the exciton dipole matrix ele-
ment is p, . EI '(x, t) is the positive frequency part of the
field E(x, t) defined by (2a). For PTS as our medium, we
only have to include the two phonon modes coupled most
strongly to excitons. ' '

Since we are not interested in any quantity that is sen-
sitive to the quantum number counting, we neglect quan-
tum fluctuations and deal with the mean values of the
relevant operators. Thus we define

u =Re(a ),
v =Im(a ),
q, =Re(b, ),

w, =1m(b, ) .

(5b)

(6a)

(6b)

With the non-Hermitian Hamiltonian (4), we find equa-
tions of motion for these mean values from the quantum
Liouville equation for dissipating systems. ' The essen-
tial elements of the theory are outlined in the Appendix.

In the rotating frame, (a ) is replaced by (a )e
and the equations of motion are

E(x, t ) =E (x, t)e 'I"' '+ c.c. , (2a) 2

u =Av+2 g k, q, v —y„u, (7a)
and consequently, the polarization density takes the form

P (x, t ) =p(x, t )e ' ' "'+c.c. , (2b)
2

v= —bu —2 g A, , q;u —y„v+f1, (7b)

(k —ko )E =4vkoRep,

k + =2vrko2I~,BE ko BE
Bx c Bt

(3a)

(3b)

where ko=co/c. Two more equations are needed to
determine the complex amplitudes completely. In what
follows, we attempt to find the polarization density from
microscopic considerations. A set of optical Bloch-like
equations is obtained to find p in terms of the field, and
Eqs. (3) then determine E fromm. .

By modeling both the exciton and phonons as damped
oscillators, we write the Harniltonian for the medium as

H =Ho+ V,

Ho =(cv —iy, )a a+ g(cv, —iy, )b, b,

(4a)

+ gA, , a a(b, +b, ), (4b)

V= —[pa E'+I(x, t)+h. c. j, (4c)

where we have used the rotating-wave approximation'
(RWA), which is valid as long as the field is nearly on-
resonance with the excitonic transition. '

The operators a (a) and b, (b, ) stand for the creation
(annihilation) operators for the exciton and the ith pho-

where E and+ are the amplitudes, cv the frequency, and k
the wave vector of the field. Since the envelope of the
field varies slowly on the scale of the carrier wave, we
have cvE ))E, kE )&VE, cop »p, and kp »Vp. Insert-
ing Eqs. (2) into (lb), we obtain

q,
= —y;q;+co;w;

w; = —y;w; —
cv;q; —

A, ;(u +v ),
(7c)

(7d)

&=Np(a ),
where N denotes the exciton density, Eqs. (3) and (7) form
the closed set of equations from which the problem of
light propagation can be solved. In terms of u, v, and Q,
Eqs. (3) become

(k —ko)0=47rkoN~p~ u,

2k@( (,k

(9a)

(9b)

Evidently the set of coupled equations (7) and (9) can-
not be solved analytically. Assuming that there is no ex-
citon and phonon initially, we consider for simplicity a
square pulse of the initial laser field in our numerical
solution. In the case of light with square pulses interact-
ing with a two-level atom at resonance, a pulse of area vr

just "inverts" the atom.
To understand this, let us start with the Hamiltonian

in the RWA for the interactions of a two-level atom with
a classical electric field,

t&7f l &d2E

H =co bo, —(p,E~e - o. +. +p E2e cr

where we have defined the Rabi frequency A=pE and
detuning A=co„—cv, and have made use of Eq. (2a). As
the polarization density in the rotating frame is given
b l3'l5
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pE2
P, (t) =sin t (upper level), (12a)

pE2
Pb(t) =cos t (lower level),

2
(12b)

Here ~,b is the transition frequency between the two lev-

els ~a & and ~b &; p is the dipole moment element of the
atom; E2 and co2 are the amplitude and frequency of
the field, respectively; and the spin operators are
o.+=o. +in, where o.„, o.„, and o., are the Pauli ma-
trices. Suppose that the atom is initially in its lower level
~b &. The state vector for this atom can be written as

~y(t) &=c.(t) ~a &+Cb(t) ~b &,

where C, (0)=0 and Cb(0)=1. By using the Schrodinger
equation i g= H Q and the orthonormality of the states
~a & and ~b &, we find from Eqs. (10) and (11) the probabil-
ities for the atom to be in its two levels,

ishes quickly as x increases, and the two lines coincide al-
most entirely for x )5.

It is noted that in every case we have studied it always
takes some time for the phonon effects to show up. In
other words, the solid lines do not deviate from the corre-
sponding dashed lines right away at t =0 because there is
initially no phonon in the system, and phonon modes are
excited only indirectly via excitons. At large distances,
the strong absorption effect greatly reduces the pulse in-
tensity, so that no exciton and hence no phonon can be
excited. For the zero m. pulse, our calculations show no
phonon inAuence at all, indicating the importance of the
pulse power in the phonon creation process.

When the pulse duration is longer than the lifetime of
both phonons and excitons, the amplitude of the light
field is approximately constant. Hence, it is possible to
apply the steady-state results of the optical Bloch-like
equations (7). The standard algebraic procedure then
leads to the exciton variables

where we have assumed the resonance interaction, or
co,b=co2. Evidently, at time t =m. /pE2 the atom has
completed the transition to the upper level ~a &, i.e.,
P, (m/pE2)=1 and Pb(n/pE2)=0. In other words, the
atom is "inverted. " A "pulse" characterized by this
value of pE2 for an interval of t is sometimes called a m.

pulse because pE2t =m. Similarly, when a square pulse
of light interacts with an exciton as in the present case,
our numerical calculation indicates that a pulse of area
1.77 excites an exciton in the system. Thus, a n pulse
means in this paper a pulse of area 1.77. By the same to-
ken, an nm pulse means a pulse of area 1.77n. For con-
venience we fix the duration of the pulse to be 1.77
throughout this paper and change the area by varying the
value of E. Here and throughout this paper, we adopt y„
( =0.05 eV) as the energy unit, y„' as the time unit, and
10 A as the length unit. The parameters employed in
our numerical work are tv„=40, N~ p ~

= I/2m, to,
=5. 16,X) =2,co2=3.68,A2=1.66, y) =y2=0.0 .

Figure 1 shows the propagation of a 6m pulse at a dis-
tance x inside the material under consideration. For the
sake of comparison, we also plot dashed lines represent-
ing results for the hypothetical case in which the ex-
istence of phonon modes is completely ignored. At short
distances as in Fig. 1(a) for x =0.05, it is seen that a
square 6~ pulse evolves into several groups. The first
three are shown in the figure. Each consists of three nar-
row pulses and occupies a time interval of roughly 1.77.
This is a complicated phenomenon of photon echoes. A
group of pulses passing a point in the material at which
the initial pulse is located is followed by several sets of
pulses. On the other hand, if there are no phonon modes
present in the material, there is no echo. It is, therefore,
clear that the novel phenomenon is phonon mediated.

As the pulse propagates deeper inside the material, all
the peaks become smaller because of the strong absorp-
tion, and the interesting phenomenon gradually disap-
pears. The situation at x =5.0 is depicted in Fig. 1(b).
The evolution of a m. pulse at different distances in the
material is shown in Fig. 2. The difference between re-
sults for cases with and without phonon modes dimin-

u =(6—A~n)Q/[(6 —A~n) +y„], (13a)

v=y„A/[(b, —
A, n) +y„],

where n =u + v is the mean number of excitons deter-
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FIG. 1. Time evolution of an on-resonance 6n. laser pulse
propagating in PTS with A.;%0 (solid lines) and A, ; =0 (dashed
lines) (a) x =0.05, (b) x =5.0.
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mined by

n. 2—b An . +(b, +y„)n —
~Q~ =0 (13c)

Eqs. (9b) and (13b)

(14)

and

2

A,~=2 g A, ;co;/(co, +y ) (13d)

0.03

g0.00-

—0.03 r r r r r ~ r r ( r r r r ~ ~ r ~ [ r r r r r ~ r r rr r r ~
~

r r r r r ~ ( ~ r r r

3 4

The third-order algebraic equation (13c) may have three
distinct roots for n, implying the possible existence of
bistable behavior for u, v, and n. It is such bistable be-
havior that results in novel phenomena of nonlinear na-
ture. As BQ/Bt =0 in the present case, we have from

with I =0, and the absorption coefficient2

a=4vrN~p~ (ko/k)y„/[(b, —
A~n) +y ]

The index of refraction follows directly from Eqs. (9a)
and (13a),

n„=l+4mN~p~ (5—
A, n)/[(b, —

A, n) + ] (16)

In Figs. 3 and 4, we plot the absorption coefficient and
refractive index, respectively, as functions of the intensity
I. The bistable behavior is clearly seen in parts (b) of
these plots. The bistability loop for the absorption in Fig.
3(b) is like the normal one, while it is an inverted loo
Fi. 4ig. (b) for the refraction index. These bistabilities are
apparent results of the nonlinear interaction between the
li hig t and virtual excitons with the mediation of phonon

6=0
modes. In the case of light interaction with real excitexci ons,

and no phonon mediation is needed. Results shown
in Figs. 3(a) and 4(a) do not show any feature of bistabili-
ty. On the other hand, the absorption becomes saturated
for sufficiently strong excitation, no matter if the exciton
is real or virtual.

The index of refraction depends very much on the de-
tuning. When 6 &0 or the pulse light frequency is higher
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FIG. 2. 2. Time evolution of an on-resonance m pulse propaga-
ting in PTS with A.;NO (solid lines) and k; =0 (dashed lines). (a)
x =0.5, (b) x =2.0, (c) x =5.0.

FIG. 3. Absorption coefficient vs intensity of the laser field of
constant amplitude, where a is in the unit of ko /k. (a) 5=0, (b)
6=5.
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field changes only the first two of the equations of
motion, namely

2

u =h„v+2 g A., q,.v
—y„u+Q, sin(b, ,t), (7a'}

—0.5-

2
v= —h„u —2 g A, q, u —y„v +Q~+Q, cos(h, t), (7b')

—1.0:

—1.5
0

1.0

5 10 15 20

where we have defined the detunings 5, =co, —cop,
co cop and the Rabi frequencies Qp f pEp f As

E, is much weaker than Ep, we treat it as a small pertur-
bation and write the solutions as Q Qp+5Q U Up+5U,

q, =q,,+5q, , and w, =w, o+5w, .
Substituting into Eqs. (7), we have the unperturbed

equations of motion

0.0

I -0.5

0 5 10 15 20

2

0 xuo X iqi0 0 yx 0

2

uo = k~uo 2 g Aiqivuo yxuo+Qp

q;p= —y;q;p+co; N;p,

i0 yi i0 ~iqiO i(u0 "0} ~

and to first order in the perturbation,
2

5u =6„5v+2 g A, , (q,05v+u05q, )

(17a)

(17b)

(17c)

(17d)

FIG. 4. Index of refraction vs intensity of the laser field of
constant amplitude. (a) 6=0, (b) 6=5. —y„5u+ Qsi (nb„t), (18a)

than that of the exciton, n„& 1 and hence the wave veloc-
ity in the material is always greater than c, the velocity of
light in vacuum. When 5 &0, virtual excitons are excited
and coupled to phonon modes. The refraction index may
be larger or smaller than unity depending upon the inten-
sity of the light field. If the field is strong enough to ex-
cite a number of excitons so that 1, n )b„ then n, &1.
Otherwise, 6&ipn and n, &1, resulting a propagation
velocity in the material smaller than c.

III. ABSORPTION SPECTRUM

V= —
IiMa (E e ~ +E e ' )+h.c.], (4c'}

where E (E, ) stands for the amplitude of the pump
(probe) field with frequency cu (co, ). In the rotating
frame of the pump field, it is easily shown that the probe

To study the absorption, we consider a slab of PTS ma-
terial with thickness far smaller than the light wave-
length. ' The absorptive part of the optical susceptibility
is prepared by the pump field and then monitored by the
probe field. Since the propagation has no effect on the
material at a distance much shorter than the wavelength,
we only have to solve the optical Bloch-like equa-
tions. ' ' The Hamiltonian in this case is the same as
Eqs. (4), except for the probe field which interacts with
the exciton as the pump field does. Thus we replace Eq.
(4c) by

2
50= —b,„5v—2 g A, ;(q;05u+u05q, o)

—y„5u+ Q, cos(h, t),
5q, = —y;5q;+a);5m;,

5w, = —y, 5w, —
co, 5q; —2A, , (u05u+ v05v) .

(18b)

(18c)

(18d)

The absorptive part of the optical susceptibility experi-
enced by the probe field is given by'

y, =%AM 6v+ /0, . (20)

Differential transmission rates are usually measured in
pump-probe experiments, and the differential absorptive
part of the optical susceptibility dominates in these pro-
cesses when the film is thin compared to the wave-
lengths. ' We are interested in the absorptive part of the
susceptibility that is induced solely by the pump field,
that is,

6(lmg, . ) = Imp, ~ z ~0
—Imp, ~ n

P P
(21)

The calculation is carried out numerically. All the exci-
ton and phonon parameters are the same as before, and

First-order corrections 5rt (rl=u, v, q;, w;) due to the
weak probe field are known from numerical analysis' to
be oscillating around their unperturbed values with the
frequency 6, . Thus we have

(19}
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APPENDIX

The cc&assical one-dimensional dam dampe armonic oscil-
or of unit mass is normally described b t

ump, t at is

X —P (Al)

(A2)
O0
CI

0.2—

where 2y is the damping constant and 0 the free
tor frequency. For & 0

d t e reeoscilla-

formal coordinate'
or y & d, we can introduce a corn 1ex

0.0

(A3)q =[p+(y ice )d]x—/+co„,
where md= 0d

—y ] . From Eqs. (Al) and (A2), we

find that q obeys the equation of motion

0.03 q= —yq —icodq . (A4)

0.02 -.

0.01E
I. =—q'q —qq') —(cod iy )q'q, — (A5)

It can be shown th
16

hat Eq. (A4) follows from the Lagrang-

0.00:
from which the canonical mom
defined as

momentum ~ conjugate to q is

BI
'7T (A6)

—0.01
0. 1 O2 03~„—u, ev

p 4.

Fra. 6. (a)~ . ) Differential optical densit mea~ . ) y sured as a function
e . . (b) Absorption part of the "

ceptibility calculated from the resep
H =Ho+iI (A7)

The generalized equation of motion for an arbitrary func-

Consider a dissi
complex Hamiltonian

'ssipative system described b th 1y e c assical
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tion F (tr, q) can be written as'

F=[F,Ho} +i [F,I }+, (A8)

(A10) become

[q,F]=i' F,
where the symbols [ }+ stand for Poisson and anti-
Poisson brackets defined by [tr, F]= if—i F .

(A13)

au aU aU a~
Bq r)tr Bq t)&

(A9)

[qF} = F,= a

(A10)

It can be shown from the fundamental Poisson bracket

Taking the function F to be the Hamiltonian, we find
after a little algebra that Eq. (A12) becomes

p= —A' [tr, [q, H]p ]+Pi [p[H, rr j,q], (A14)

which is the quantum Liouville equation. In a similar
fashion, we obtain in the k-dimensional phase space

k

p= — g [[n;, [q, ,H jp]+[p[Ht, tr,. j,q, ]} .

Hamilton's equations of motion are then

aa*
Bq

(Al 1)

In this paper, both the exciton and phonon modes are
taken as damped oscillators. If we choose fi= 1 and set
k =i + 1, we find that Eq. (A14) reduces to

p= i [a—, [a,H]p]+i [p[H, a ],a]

i g—[[b;,[b;,H]p]+i[p[H", b; ],b, ]}, (A16)

Bp
Bt t)q Bm'

+ (qp)+ (pt'r) =0 . (A12)

For a quantized system, the Poisson brackets are re-
placed by the corresponding commutators. Thus Eqs.

The classical density function p satisfies the equation of
continuity where we have made use of the definitions a =q/v'2,

a = i &2'—r, b; =q;+, /&2, and b, = i &2m—;+, E.qua. -

tion (A16) is the basis on which the equation of motion
for the mean value ( A ) of any quantity A is derived. In
other words, ( 3 ) =Tr(Ap), and Eqs. (7a)—(7d) are ob-
tained exactly this way.
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