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A first-principles scheme for the dynamical simulation of matter based on time-dependent density-
functional theory is presented and used for the prediction of the properties of bulk sodium. In contrast
to the Car-Parrinello method, the scheme does not require the imposition of orthonormality constraints
in the electronic equations of motion, resulting in algorithmic simplification. The execution times of the
two methods are comparable. Difficulties associated with electron-ion equilibration in metallic systems
are found to be a consequence of the suppression of spontaneous emission in the underlying quantum-
classical model, and thus differ in fundamental nature from analogous numerical problems encountered
in the Car-Parrinello method. The direct calculation of nonequilibrium electronic properties is present-

ed as a remoter application of the scheme.

I. INTRODUCTION

In recent years schemes for the dynamical simulation
of matter from first principles have been developed on the
basis of the Car-Parrinello method,? in which electronic
wave functions evolve according to artificial dynamics, in
such a way as to adiabatically follow ion motion and pro-
vide a fully quantum-mechanical description of the forces
mediated by the electrons. We present here an alterna-
tive approach which uses time-dependent density-
functional (TDDF) theory3 as a starting point, and intro-
duces Schrodinger-like equations for the time evolution
of the electronic wave functions.* The scheme is similar
to those used by Fois er al.>° and Kalia et al.,” but with
a different emphasis: the authors of Refs. 5 and 7 have
studied the behavior of one or a few electrons in nonme-
tallic systems, in simulations where the ion-ion interac-
tion is overwhelmingly determined by a classical pair po-
tential, which is not calculated on a first-principles basis.
On the other hand, we aim for a fully self-consistent
description of electron-ion motion.

Two advantages result from the TDDF approach: (1)
if used for the adiabatic evolution of the electronic wave
functions, as in the Car-Parrinello method, the TDDF
scheme avoids explicit orthonormality constraints in the
equations of motion, resulting in algorithmic
simplification, and (2) because electron dynamics are now
allowed, direct computation of at least some electronic
transport properties becomes possible.” We present here
results for the bulk properties of sodium at various tem-
peratures, principally in the solid phase, using the TDDF
scheme to achieve quasiadiabatic electron evolution, and
with local pseudopotentials to model the ion cores. Re-
sults for the radial distribution functions, the velocity au-
tocorrelation functions, the phonon spectrum, and the
melting temperature are found to be in reasonable agree-
ment with experiment, and comparable to those obtained
using the Car-Parrinello method.® The computer times
required to achieve these results also appear comparable.
Equally accurate results for sodium in the liquid phase,
including calculation of the self-diffusion coefficients,
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were presented in a previous paper,” where only the
liquid state was considered.

The simulations of sodium under the TDDF scheme
exhibit over time an irreversible transfer of energy from
the ionic to the electronic degrees of freedom which if un-
checked leads to physically meaningless results. While a
similar process is observed in simulations using the Car-
Parrinello method, and signals the breakdown of adiaba-
ticity of the artificial electronic dynamics in response to
jon motion, the origin of the phenomenon in the TDDF
scheme is markedly different. It can be traced to the
suppression of spontaneous emission in the system, a
consequence of the “mixed” nature of the model, which
combines classical ions with quantum-mechanical elec-
trons.

In what follows, we present the algorithmic formula-
tion of the TDDF scheme, the simulation results, and a
discussion in some depth of the breakdown of adiabatici-
ty and its relation to the quantum-classical model. While
no new physical results are recovered from the present
simulations of sodium, they provide a rigorous ‘“test bed”
for the TDDF approach in the context of a nontrivial ap-
plication. We plan to strongly pursue other applications
in the near future.

II. TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY

We shall briefly summarize time-dependent density-
functional theory, which forms the basis of our electronic
quantum-mechanical calculations. In what follows we
use atomic units (a.u.), so that with m, denoting the elec-
tron mass and e its charge, length is given in units of the
Bohr radius a,=#%/m,e*=0.529 A, energy in units of 1
hartree=e2/a0=27.2 eV, and time in units of #/1 har-
tree=2.42X10"17s.

In the derivation of the TDDF thf:ory,3 which can be
considered an extension to time-dependent systems of the
more familiar ground-state theory, it is first shown that
the equations of motion of a system of N, interacting
electrons can be entirely formulated in terms of the space
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and time-dependent density n(x,t), instead of the more
complex many-body wave function ®(x,X,,...,Xy,2).
e

A reference system of noninteracting fermions, with the
same density as the interacting electron system, is then
introduced, and it is shown that one can write the equa-
tions of motion in terms of a set of orthonormal, single-
particle, time-dependent Kohn-Sham orbitals. The orbi-
tals evolve according to the Schrddinger-like equations
(keeping the variable m, =1 explicit)

G _ 1
3 ¥;(x,1) am, (X, 8)Fog(x,t[n])Y;(x,2)

i=1,2,...,N,, (1

where the space- and time-dependent density n(x,t) is
given by
NE

S ly(x,01%, )

j=1

n(x,t)=

and where v 4(x,t[n])
self-consistent,
One can write

is an effective potential with a
functional dependence on the density.

Xc

dn(x,t) ’

where v(x,t) is the potential due to the ions or to external
forces, vy (x,t) the Hartree potential given by

Vgl X, t[n])=v(x,t)tog(x,t)+ —— (3)

n(x',t)
Ix—x"’

vy(x,t —ezfd3 ! 4)
and where the exchange and correlation part of the ac-
tion, A,.=A,.[n], accounts for all other interaction
effects.’> Because Egs. (1) provide an exact description of
the interacting system, the task of finding the exact form
of A, under all conditions is very difficult, as this term
should account for exchange and correlation when the
system is either in the ground state or at finite tempera-
ture, and should also be able to induce, through the mean
field potential v, all of the relaxation processes which
occur when the system is taken far from equilibrium.
Here, we adopt the simplest approximation for 4,
the so-called adiabatic, local-density approximation'®!!
(adiabatic LDA), in which one writes
t
ALDA n]=ft01dtfd3x n(x,t)e,(n(xt)), (5)
where €,.(n) is the exchange and correlation energy of a
homogeneous electron gas of density » in the ground
state. Equation (5) not only assumes locality in space, as
in the LDA of ground-state density-functional theory,
but also locality in time, and proximity to the ground
state in the space of wave functions. This approximation

is in fact sufficient if the scheme aims to achieve nothing
|

L=2d% zup,(xt v2

j=1 t

—fd3x n(x,t)e(n(x,t))+ 3 +M d
P

vi(x,t)—5 fdxdx’

2
ERk(t)l - 2

“ IR (1) —R,(2)]
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more, within the approximation afforded by the ground-
state LDA, than to adiabatically follow the instantaneous
electronic ground-state energy surface (the so-called
Born-Oppenheimer surface).”

III. EQUATIONS OF MOTION
OF THE ELECTRON-ION SYSTEM

Equations (1) for the N, valence electrons are coupled
to Newton’s equations for N; classical ion cores, the effect
of each of which is modeled by a local pseudopotential
denoted by v, (x). For simplicity we assume unpolarized
electrons, so that with double occupancy only No=N, /2
time-dependent Kohn-Sham orbitals fully describe the
electronic system. Here, we assume sodium ions, with
mass M and valence charge Z,=1, so that N,=N;. If
the ionic positions at time ¢ are given by {R, (1)},
k=1,2,...,N,, then the complete set of equations of
motion is given by (keeping the variables e =m,=1 ex-
plicit) (Ref. 5)

.0 _ 1
zst—zpj(x,t)—— 2m, (x,8)Ftvg(x,t,[n]Y;(x,1),
j=12,...,No=N,/2, (6
2
M%Rk(t)=Fk(t), k=1,2,...,N; )
where F, is the total force on the kth ion,
F,( \ e’
t)=—y'
) }} PR () —R,(2)]
— [d’x v [x—R,(D]Vn(x,0), (8)

and where with double occupancy of orbitals the density
is given by

NO
n(x,1)=2'3 Il//j(x,t)l2 . 9)

j=1

The effective potential can now be written

N,
ve(X,2,[n])= 3 v [x =R (1)]
k=1
+og(x,t)+p,(n(x,1), (10

where the Hartree potential vy(x,t) is given by Eq. (4),
and where the exchange and correlation term u,(n) is
the local derivative

=4
Py(n)= dn[nsxc(n)] , (11

where €, (n) is given by the ground-state LDA."> Equa-
tions (6) and (7) can be derived from an action principle
with the Lagrangian

2
x| n(x,t)n(x’,t)

eZ

N
— [dxn(x,t) 3 v [x—R,(0]. (12
k=1



12 992

The Lagrangian formulation is useful for deriving the
conservation laws stated in Sec. IIT A.

The local sodium pseudopotential is taken to be of the
form of Topp and Hopfield,?

0.1794[cos(1.224r)—1], 0=<r=<3
v (r)=

T —1/r, 3<r, (13)

which is derived by fitting the predicted atomic energies
to those of the ground state and first few excited states of
the sodium atom. The pseudopotential defined by Eq.
(13) is approximately norm conserving. The implementa-
tion of nonlocal pseudopotentials in the TDDF scheme is
discussed in Appendix A.

It is important to emphasize that while Egs. (6) and (7)
assume classical ions, they are not a consequence of the
Born-Oppenheimer approximation, because they allow
for time-dependent, excited electronic states and for tran-
sitions between these states. Thus the electronic system
is not tied to a ground state corresponding to the instan-
taneous ion positions, as would be required in the Born-
Oppenheimer approximation. Equations (6) and (7) are in
fact very similar in nature to the “classical-quantal” mod-
el of Schafer, Garcia, and Kwong14 or to the time-
dependent Hartree-Fock approach of Tiszauer and Ku-
lander."> In our model, the Born-Oppenheimer approxi-
mation is realized only if system parameters are such that
electron response to ion motion is adiabatic, and the ini-
tial electronic configuration is chosen to be the instan-
taneous ground state.

J
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A. Conserved quantities

The equations of motion (6)—(11) imply three basic
conservation relations. First, because Eq. (6) defines a set
of Schrodinger-like equations for the wave functions,
with identical potentials v, it follows from the unitary
nature of the resulting evolution that orthonormality be-
tween wave functions is automatically conserved, with
for all pairs (i, j) of orbitals

fd3x Y (x,)P;(x,t)=const=§,; . (14)
Equation (14) affords the important simplification that

orthogonality constraints need not be explicitly imposed
on the equations of motion.” Equation (14) also ensures

conservation of the total number of electrons,
dN (t)/dt =0, where
N()= [dx n(x,n=N, . (15)

Second, the total momentum of the coupled electron-ion
system is conserved, with dP(¢) /dt =0, where

N()
P(1)= ZM%RI(IHLZ S [dx grx =iV (x0) .
!

i=1
(16)

Finally, the total energy is conserved, dE(t)/dt =0,
where

E(=2[d 3 ¢}x,n vy n+1fdxd X'l On (X,
R 2m, 7 : |x—x'| ’ ’
d ’ e? N
3 1 3
+fd x n(x,t)e,.(n(x,t))+ 2}( M| R (D) |+ 2 R0-R,0) +fd xn(x,t)k2:1vps[x R,(1)].

We label the energy terms in Eq. (17), respectively, as fol-
lows:

E(t)=EggtEy+E,, tExe+E;+E,, (18)

where Eggp is the electron kinetic energy of the Kohn-
Sham orbitals, which is the kinetic energy of the nonin-
teracting reference system, Ey the electron Hartree ener-
gy, E,. the electron exchange and correlation energy,
E kg the ion kinetic energy, E;; the ion potential energy
due to ion-ion interaction, and finally E,;, the electron-
ion interaction energy. As usual, Eggg contains only
part of the kinetic energy of the interacting electrons, the
remainder being implicitly accounted for in E,; and E,_.
It should be emphasized that Eq. (17) does not contain
the ‘““fictitious” electronic kinetic energy term which is
essential to the formulation of the Car-Parrinello
method.?

B. Addition of a thermostat to the ionic equations of motion

The finite-temperature simulations are subject to an ir-
reversible and unphysical flow of energy from the ions to
the electrons, which is a consequence of the quantum-
classical nature of the model, and which will be discussed
in some detail in Sec. VI. As in Ref. 16, we resort to
thermostatting the ions by the Nosé method,'”'® and
periodically quenching the electrons back to the instan-
taneous ground state by steepest-descent minimization.
We use the thermostat formulation of Hoover,'® which
results in a more transparent form of the equations of
motion than in Nosé’s original derivation. Thus, through
the introduction of new variables £(¢) and s(¢), Eq. (7) is
modified to read

d? d

M= SRU(O=Fr(0—50M - Ry(1)

k=1,2,...,N,, (19
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to which are added the reservoir equations of motion

N,
0L e=S MR, ?—3NkyT,, , (20)
dt k=1
4 ns(n=c(r) 1)

dt

where T, is the reservoir temperature and §(¢) is a
time-dependent dynamical friction (an effective collision
frequency, which may be positive or negative) which cou-
ples the ionic system to the reservoir, of dynamical mass
Q. The reservoir is represented by the single generalized
coordinate s(t), determined by integration of Eq. (21).
Within the extended, microcanonical system represented
by Egs. (19)-(21), the ionic subsystem behaves as if part
of a canonical ensemble at temperature 7. In thermal
equilibrium, §(¢) assumes values according to the proba-
bility distribution'®

o
2mkp T o

172

P(&)= exp(—Q&*/2kpT,), (22)

and the characteristic oscillation frequency o, of £(¢) is
found to be

w0 =3N;kpT, s /Q)"/* . (23)

In general, one chooses the dynamical mass Q so that
W™~ @0, Where oo, is a typical frequency of the ionic
system.'® To start the simulations, we choose £(0) at ran-
dom from the distribution of Eq. (22), and set s (0)=1.

With the modifications implied by Egs. (19)-(21), it is
now the total energy of the extended system,

Eo()=E()+1081)+3N;ky T, lns (1), (24)

res

where E (t) is the energy of the electron-ion system [Eq.
(18)], which is a constant of the motion, and which thus
provides a check on the accuracy of the numerical in-
tegration schemes.

IV. METHOD OF SOLUTION

In order to numerically solve Egs. (6) and (19)-(21) we
use a scheme in which the wave functions ¢j(x,t"), the
ionic positions {R;(¢")}, and the dynamical friction &(¢")
are defined at integral times t"=nAt, n =0,1,2,...,
while the ionic velocities {v,(¢"*!/2)} and reservoir
coordinate s(t"7!/2) are defined at the midpoints
t"T12=(n 4+1/2)At. Given all data at t =t", the ions
are moved according to the time-centered scheme

1—Atg(t") /2
1+AtE(t") /2
1 At
+———F——F,(t"),

1+AtE(t™ /2 M K7
R (1" TH=R, (" " H+Atv, (" *17?) (26)

for k =1,2,...,N,, while the dynamical friction £(¢) and
the auxiliary variable £(¢#)=Ins(¢) are evolved according
to

vk(tn+1/2)= (tn—‘l/Z)

(25)
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g(tn+l)=§(tn)+_ [EM[vk(tn+l/2)]2
Q k=1
- 3Ni kB‘ Tres s 27
é-(tn+1/2)=§(tn—l/2)+At§(tn) . (28)

The reservoir coordinate is at all times given by
s(t"T1/2)=exp[£&(t"T1/2)]. In Eq. (25) the force on the
kth ion is explicitly given by

2
e
F,t"M=—3'
k 2, IR, (") —R,(t")]

— [dPx v [x—R(t)]Vn(x,t") . (29)

Equations (25) and (28) are order At> accurate. In the ab-
sence of the thermostat, they reduce to the familiar Ver-
let algorithm?

vk(z"+‘/2)=vk(t"*1/2)+9—’Fk(t"), (30)
M
R, (t"TH=R,(t" ")+ Atv, (" *1?), (31)

fork=1,2,...,N,.

We assume a cubelike simulation region with periodic
boundary conditions in all directions. In Eq. (29), the
ion-ion force terms are evaluated from a tabulated high-
order fit to the Ewald potential sum, while the electron-
ion force term is computed using a fast Fourier transfor-
mation (FFT) to evaluate the integral sum in Fourier
space.

We now consider the numerical integration of the
Schrodinger equations given by Eq. (6). The effective po-
tential occurring in the equations is straightforwardly
determined from Eq. (10), where the Hartree term is most
easily found from Poisson’s equation,

Vg (x,t)=—4meln(x,t) , (32)

solved using a FFT method.

To evolve the wave functions according to Eq. (6), we
must account for the nonlinearity implicit in the func-
tional dependence v g=v.[n]. To maintain order At
accuracy in the presence of nonlinearity, we use a two-
step Runge-Kutta scheme, in which we first obtain an ap-
proximation to the value of v4(z, + At /2) by evolving all
the wave functions through a half step, and using as an
effective potential the already known value of v.g(t").
We then proceed with the full step by evolving all the
wave functions from ¢ to t"+At, using for v the ap-
proximation to v.(¢, +At/2) obtained from the half
step.

With a given value of v.g, the actual solution of the
Schrédinger equation is accomplished with a split-step
method?!"?? combined with fast Fourier transforms. For
instance, for the full step we use the decomposition
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¥;(x,t" ") =exp Vel X, ¢

—i—
2

n+1/2)]

Xexp[ —iAt(—V?2/2m,)]

tn+l/2)

X exp —iéziue,f(x, ¥i(x,1")  (33)

and similarly for the preceding half step. The effect of
the operator exp[ —iAt(—V?/2m,)] is computed using
three-dimensional fast Fourier transformations, while the
effect of exp[ —i(At/2)vq(x,t"*1?)] is found from
direct multiplication in real space. A total of four three-
dimensional FFT’s are needed per complete time step,
two for the extrapolating half step, and two for the final
full step. For a fixed physical evolution time the scheme
is O (At?) accurate, and the overall speed of execution is
almost proportional to the speed of execution of the indi-
vidual three-dimensional FFT. Because of the real-space
evaluation of the nonlinear terms such as v or the ex-
ponential operators exp[ —i(At /2)v4], the scheme em-
bodied in Eq. (33) can be considered of the ‘“pseudospec-
tral” type.?

Because Eq. (33) is explicitly unitary, it conserves norm
and orthogonality to roundoff. On the other hand,
momentum and energy are not exactly conserved by Egs.
(25)-(29) and (33), and thus the changes of total energy
and momentum over time provide a check on the accura-
cy of the overall scheme. In Appendix B we discuss the
accuracy of Eq. (33) in more detail.

V. SIMULATION RESULTS

A. Numerical parameters

We have performed simulations of a system of 54 sodi-
um ions and 54 valence electrons under periodic bound-
ary conditions, at the density of the liquid at freezing
(p=0.932 gem %, T,, =371 K). The ion-sphere radius
was r,=4.05, and the simulation region was a cubical
box with side L =13.06 A. The electronic wave func-
tions were defined on a grid n, Xn,Xn, =25X25X25,
with a maximum energy resolution of 5.50 hartree, and
strictly periodic boundary conditions were imposed, so
that the electronic states were only sampled at the I
point. The ion-electron interaction was modeled by the
local pseudopotential given by Eq. (13). In all cases the
ions were initialized at the positions of the bcc solid, with
27 two-ion unit cells occupying the simulation box, and
the electronic wave functions were initialized in a “Fermi
cube” of 27 plane waves. With the ions fixed, the elec-
tronic energy was then minimized by a steepest-descent
method.> The simulations were started by assigning the
ions random velocities chosen from a Maxwellian distri-
bution and temperature was maintained by the applica-
tion of the Nosé thermostat. The value of the time step
was At=0.2 a.u.

Evolving Egs. (6) and (7) with the physical sodium ion
mass M =422280m, is not feasible, because of the ex-
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treme disparity in electronic and ionic time scales which
results. We drastically reduce the ion mass to a simula-
tion value M, =10m,, a procedure well known in the
field of plasma simulation:?* while much smaller than the
real ion mass, M, is nonetheless large enough to ensure
approximate adiabaticity of electron motion in response
to the ionic displacements. Physical ionic frequencies ®
are recovered by the extrapolation formula
o=(M,,../ M) 0., where oy, denotes the simulation
result, and, with rescaling, each time step At is equivalent
to 3.14X 107 '® 5 of physical time. A formally equivalent
approach to rescaling the ion mass is to rescale time in
the one-particle Schrddinger equations; this approach is
briefly discussed in Appendix C.

The computer simulations presented typically span 104
time steps, for an elapsed physical time of about 3.1 ps.
For the system of 54 sodium ions, integration of a single
time step requires 3 s of CPU time on a single processor
of a Cray-2 computer, with 90% of execution time spent
in three-dimensional fast Fourier transformations.

The electron wave functions are quenched to the in-
stantaneous ground state by steepest descent every 200
time steps, corresponding to an elapsed time of 0.06 ps
between quenches. The energy which is removed from
the electronic system at each minimization, and which
was gradually transferred from the ionic system over the
preceding 200 time steps, is always less than 10% of the
total ionic kinetic energy. For instance, in a simulation
with ion temperature T =325 K, the maximum-energy
electrons remain at all times within 2 meV (=20 K Xkp)
of the Born-Oppenheimer surface. In the absence of
minimization, excellent energy and momentum conserva-
tion are observed in all cases, indicative of accurate in-
tegration of the equations of motion. For instance, at
T =10 K, the average total electronic energy was of or-
der 3.7 hartree, the average ionic kinetic energy of order
2X 107 hartree, while the total energy of the coupled
system was conserved to within 2X 10~ hartree over 10*
time steps.

The present formulation assumes constant, nonfrac-
tional occupation of each time-dependent orbital, a con-
straint which can lead to error whenever a “level cross-
ing” occurs, that is, whenever the energy gap between an
occupied and an unoccupied state goes to zero on ac-
count of the finite ion displacements. However, we be-
lieve that the frequent quenches keep the electronic sys-
tem sufficiently close to the Born-Oppenheimer surface at
all times so that level crossings, when they do occur, in-
troduce only minimal errors in the ion dynamics.

B. Ground-state calculations

We first performed calculations with no ion motion
(T =0 K), and varied the volume so as to minimize the
total ground-state energy of the system, thereby establish-
ing the zero-temperature, zero-pressure equilibrium of
bce sodium. The results for the ion-sphere radius, bind-
ing energy per ion, and bulk modulus at equilibrium,
shown in Table I, are in fair agreement with experi-
ment.?
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TABLE I. Equilibrium (7 =0 K) results for the bcc sodium
lattice (experimental results quoted in Ref. 22).

Quantity Simulation  Experiment % error
ry at equilibrium 3.985 3.93 1.4
Binding energy/ion
(hartree) —0.228 —0.2305 1.1
Bulk modulus (kbar) 69.54 76 8.5

C. Radial distribution functions

We now consider results at finite temperature. The
ion-ion radial distribution functions g (#) for T =325 and
373 K are shown in Fig. 1. For T =325 K, although the
system is in the solid phase, the trough between the
second and third peaks of g(r) is partially filled in and
the radial distribution function strongly resembles that of
a liquid. Indeed, for T =373 K the crystal has melted
(Sec. VE), but the radial distribution function is only
slightly less peaked than at 7'=325 K, confirming that
no qualitative change in the shape of g(r) intervenes
across the phase boundary.

In Fig. 1 we also display experimental data for
T =378.5 K (Ref. 26), which we compare to the T =373
K simulation results (neglecting the 1.5% difference in
temperature). The simulation correctly predicts the posi-
tions of the foot, peak, and first trough of g (r) (r =5.3a,,
7a,, and 10a,, respectively), but overestimates the height
of the peak by about 15% and the depth of the trough by
about 10%. Factors which can account for this
discrepancy are the small system size, and the short run-
ning time of the simulation (2.8 ps of elapsed physical
time), both of which exaggerate the correlation between
particles, and hence the height of oscillations in g (7).

- -

373K.:

T

T 1

-
0]

e e O Y BN S

0 2 4 6 8 10 12
7"/(10

FIG. 1. Sodium ion-ion radial distribution functions obtained
for T=325 (dotted line, topmost maximum) and 373 K (full
line), compared to the experimental results for 378.5 K (Ref. 26,
dashed line, lowest maximum).
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D. Analysis of ion motion and of the phonon spectrum

In Fig. 2, we display for T =10 K the velocity auto-
correlation function Z (¢), defined by?’

Z()=1(v(0)-v(1)) . (34)

In Eq. (34) v(¢) denotes the time-dependent velocity of
each ion and ( ) the ensemble average over all ion trajec-
tories, which in the numerical simulation is replaced by a
time average over all trajectories. The velocity auto-
correlation functions were constructed from data accu-
mulated over 8 ps, after an equilibration period of 1000
time steps, corresponding to an elapsed time of 0.31 ps.

As expected at low temperature, inspection of Fig. 2
shows that ion motion is a superposition of several fre-
quencies due to the thermal excitation of phonons in the
crystal lattice, with a comparatively long autocorrelation
time.?® A quantitative measure of the frequency content
of the ion motion is given by the power spectrum Z(w),
defined as the Fourier transform of Z (¢),

Z(w)=f_°° dtei®Z (1) . (35)

The power spectrum obtained from the simulation data is
displayed in Fig. 3 where it is compared to the physically
expected result, Z (o). In the harmonic approxima-
tion and in thermal equilibrium

7TUOkBT )
IM glw),

where v, is the volume of the bce primitive unit cell and
where g (o) is the phonon density of modes,

2 phys( )= (36)

g0)== 3 so—apD), 37
k,o

where o' is the experimentally determined phonon fre-
quency for wave vector k and polarization o. Because of
the small size of the simulation region, and the symmetry
of the bcc lattice, only seven nonequivalent wave vectors
within the first Brillouin zone give rise to distinct longitu-
dinal and transverse nonzero frequencies, of which fur-

1.0 T T T T T T T

0.8 4
0.6 E
0.4 :

0.2

Z(t)/2(0)

T—T— T

t (ps)

FIG. 2. Ion velocity autocorrelation function for 7 =10 K.
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FIG. 3. Ion velocity power spectrum (full line) for 7T =10 K
(this is the Fourier transform of the ion velocity autocorrelation
function shown in Fig. 6). The dashed line shows the result ex-
pected on the basis of experimental data, Z P"¥(p).

thermore only 13 are distinct. Thus Eq. (37) can be writ-
ten with 13 distinct terms 8(w—w{*®'), with appropriate
weightings to account for degeneracies. The frequencies
P are obtained from the experimental data of Ref. 29.
To account for the finite observation time over which the
spectra are constructed, we replace g (), as given by Eq.
(37), by its convolution with a window of finite width
Aw~1/t,,, where t,,, =8 ps is the maximum lag over
which Z (¢) has been determined.

Inspection of Fig. 3 shows that Z(w) is qualitatively
similar to Z P»(w), with several peaks in the frequency
range 0<w <2.5X 10'3 s~1. Nonetheless, the simulation
predicts peaks at frequencies consistently lower than
occurring in ZP¥(w), and a spurious peak at
©=1.6X10" s~!. Furthermore, the high-frequency
peaks in the range 1.5X 10" <w<2.5X 10" s ! are of
smaller amplitude than expected from comparison with

Z PS(5). This latter feature is an indication that in the
m L
T
3
[0,0,1] [1,1,1] 1,1,1) [0,1,1]
—~ T
! -
- 2 L [ ]
i [ ]
3 L
1 -
0 T H P T N

FIG. 4. Frequency dependence on wave vector in the bcc
crystal lattice at 7=10 K. Full lines: experimental results
(Ref. 29); large dots: simulation results for the transverse
modes; large squares: simulation results for the longitudinal
modes. The large square at the H point denotes both the trans-
verse and longitudinal mode frequencies.
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simulation thermal equipartition of energy has not oc-
curred for the high-frequency modes. Indeed, failure to
reach complete equipartition is a common occurrence in
traditional non-ab-initio molecular-dynamics calculations
for low temperatures, where there is not enough anhar-
monicity in the lattice vibrations to naturally promote
equipartition.?® This difficulty is exacerbated in the
present case, on account of the relatively short time span
accessible to the fully self-consistent, ab initio simulation.
These observations suggest that in future work greater
care be taken to ensure fast equilibration at low tempera-
tures. In particular, a Langevin equation might be used
in the place of the Nosé thermostat in the early equilibra-
tion phase: the Langevin scheme introduces high-
frequency noise in the ion motion, which should promote
equipartition of energy at all frequencies on a faster time
scale.

To further resolve the frequency spectrum displayed in
Fig. 3, we perform a mode-by-mode analysis of the ion
motion.”® For a given wave vector k, we construct the
Fourier-analyzed displacements 1(k, ), given by

N
a(k,)= 3 [R,(1)—R, Jexp(—ik-R,) , (38)
j=1

where the set of coordinates RjZRj(O), ji=12,...,
refers to the initial bece lattice positions. Spectral analysis
of the autocorrelation functions {(k,)-4(k,0)) then re-
veals the frequencies wy , for each wave vector k and po-
larizations o=1,2,3. The results of this analysis are
shown in Fig. 4, where we display frequency dependence
on wave vector along several lines in the Brillouin zone,
along with the experimentally determined dispersion
curves.

We first consider the transverse modes (large dots).
Starting from the T point in the Brillouin zone, it can be
seen that while the shape of the dispersion curve is
correct, the frequencies are consistently lower than the
experimental values, with the maximum frequency at the
H point underestimated by 9%. The predictions for the
longitudinal mode frequencies (large squares) show
roughly the same errors, with the exception of the PI"
line, where the frequency of the mode with wave vector
(27 /3a)(1,1,1) is underestimated by 30%. This large er-
ror leads to the spurious peak seen in Fig. 3 at
©=1.6X10" s71. The errors recorded here are not too
surprising in view of the known difficulties encountered
in modeling alkali metals in the LDA.*® Another factor
possibly accounting for errors is the simple local pseudo-
potential used here, which might be replaced by a more
accurate nonlocal form.*!

In Fig. 5 we display Z(¢) for T=325 K. At this
higher temperature, ion displacements are large and
anharmonic effects are pronounced,’” leading to a short
phonon lifetime. The velocity autocorrelation function
thus decays much faster than for T=10 K (note the
much shorter horizontal scale). The resulting power
spectrum, Fig. 6, shows that the sharp peaks of the
T =10 K power spectrum have broadened and merged
together. In addition, Z (o) exhibits a long tail extending
well above the highest phonon frequency.
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FIG. 5. Ion velocity autocorrelation function for T =325 K.

E. Prediction of the melting temperature

To estimate the onset of melting as a function of tem-
perature, in Fig. 7 we display ion motion in the xy plane
for an interval of 3 ps, at T =10, 100, 350, and 373 K.
The density is fixed at p=0.932 gem~? (r,=4.05), the
experimental value for the liquid metal just above freez-
ing. For T=10 K [Fig. 7(a)] ion excursions about the
equilibrium positions are small as expected, becoming
somewhat larger for T =100 K [Fig. 7(b)]. At T =350 K
[Fig. 7(c)], displacements about the equilibrium positions
are very large, at times extending halfway to the neigh-
boring lattice sites, but remain strictly bounded. Finally,
at T =373 K [Fig. 7(d)] ion motion is no longer bounded,
and individual ions migrate to neighboring sites without
returning to their initial positions. This results in a
nonzero self-diffusion which we take as the signal that the
crystal is melting.

To quantify the onset of self-diffusion and melting we
compute the mean-square displacements of the ions as a
function of time, with the definition

w (10871

FIG. 6. Ion velocity power spectrum for T =325 K (this is
the Fourier transform of the ion velocity autocorrelation func-
tion shown in Fig. 9).
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FIG. 7. Projection of ion orbits in the xy plane, for a dura-
tion of 3 ps starting from the bcc lattice configuration, at the
temperatures indicated above each plot.

i

N,
(AFn)Y=— 3 [R,(N—R, (0. (39)
i j=1

The behavior of { Ar(¢)) for T =350, 360, 367, and 1000
K is shown in Fig. 8. The onset of unbounded ion
motion, and hence of nonzero self-diffusion
D =lim, , {(ArXt))/6t, occurs in the range
350=T =360 K (which we did not explore in greater de-
tail due to limitations in computational resources). With

30.00 — -
28.00 —
26.00 —
24.00 — ! =

22,00 - / i

18.00 - / .
16.00 [ '
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8.00 —
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FIG. 8. Mean-square displacement of the ions as a function
of time, for the temperatures indicated in the plot. The figure
shows that the onset of self-diffusion occurs in the temperature
range 350< T <360 K.
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this level of precision, the simulations thus predict a
melting temperature T,, in the range 350=T,, <360 K.
As the experimental value is T5*'=371 K, the error in
the prediction is as large as 6%. The underestimation of
the melting temperature is at least partly due to underes-
timation of the phonon frequencies (Figs. 3 and 4); at a
given temperature this leads to an overestimation of ionic
displacements, and, following the Lindemann criterion,
to a lower threshold for melting of the crystal. Further-
more, the finite size of the simulation volume suppresses
the longest wavelength modes and artificially raises the
melting temperature,®® so that in simulations on larger
systems the error in the melting temperature will certain-
ly increase, although it is hard to estimate the ultimate
value of the error without actually performing these
simulations. A more rigorous convergence study of the
melting temperature, with both finer sampling of temper-
atures than in Fig. 8 and with simulations of larger num-
bers of ions is called for in future work.

Discussion of the behavior of the liquid metal has al-
ready been presented in Ref. 9, where it was shown that
predictions of the self-diffusion coefficient are in reason-
able agreement with experiment and comparable to those
of previous work using the Car-Parrinello method.®

VI. DISCUSSION OF THE BREAKDOWN
OF ADIABATICITY

In the course of the simulations the electron response
to the ion motion is only approximately adiabatic. This
is expected in a physical system, as electrons and ions can
exchange energy through scattering mechanisms, leading
to thermal equilibration, and as such does not contradict
the assumptions leading to Egs. (6) and (7). Starting with
electrons in the instantaneous ground state, the physical
consequence of nonadiabaticity should be a broadening of
order kT of the electron energy distribution about the
Fermi energy, and a small concomitant transfer of energy
from the ions to the electrons.

However, in the simulations the transfer of energy
from the ionic to the electronic degrees of freedom has an
irreversible component such that in the absence of a ther-
mostat, and of periodic quenching of the electron wave
functions, equilibration between electrons and ions is nev-
er achieved, even though total energy, as defined by Eq.
(17), is rigorously conserved. A consequence of this ir-
reversibility is the unphysical “cooling” of the ions at a
rate increasing with initial ion temperature, which makes
simulations at all but the lowest temperatures impractical
unless one introduces the artifice of a thermostat and
electronic quenches.

To illustrate this unphysical effect, in Fig. 9 we show
the time evolution of the energy in simulations run
without an ionic thermostat or periodic electronic
quenching. In the left-hand column of the figure we
display the evolution of the effective ion temperature T,
defined as

2

E3N—[kB*E]KE(I) , (40)

T,(t)

where E g is the ion kinetic energy. We consider the in-
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FIG. 9. Histories of the ion kinetic (left-hand column) and
electron Kohn-Sham kinetic (right-hand column) energies for
three different initial values of the effective ion temperature
T;=2E ke /3N;kg. Each row corresponds to a different initial
temperature: (a) 7,(0)=200 K, (b) T7,(0)=1000 K, (c)
T,(0)=4000 K. The drop AT;(0) is a measure of ion energy
loss, defined as the increment in T,(¢), excluding the first 0.3 ps,
and with fluctuations averaged over a sliding interval of 0.5 ps.
The quantity Ae =2AEggg /3N, kg, displayed in the right-hand
column, is a similar measure of the energy gain of the electrons.

itial conditions T;(0)=200, 1000, and 4000 K [Figs. 9(a),
9(b), and 9(c), respectively]. In all three cases, the ions
start in the bcc crystal lattice configuration, so that the
ion potential energy is initially at a minimum.

For all initial conditions a short equilibrium phase first
occurs, over the interval 0=t <0.3 ps, during which the
ion kinetic energy drops to about half its initial value.
This phase is the result of approximate equipartition of
energy between the kinetic and potential components of
the total ion energy. For the remainder of each simula-
tion the effective ion temperature then gradually de-
creases, over several picoseconds, on the time scales 7 in-
dicated in the figure. The total increment in effective
temperature, AT, is also indicated in the figures. Be-
cause the total energy of the electron-ion system is con-
served to high accuracy, the energy lost from the ionic
system reappears in the electronic system. As a partial
indication of this transfer of energy, we display the evolu-
tion of the Kohn-Sham electron kinetic energy Eggg in
the right-hand column of Fig. 9. A full account of energy
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balance requires the display of the other energy terms E;;,
E,,, and E,; which appear in Eq. (18), but Fig. 9 suffices
to indicate that the electrons are gaining energy to the
detriment of the ions.

It should be emphasized that because the TDDF
scheme embodies an approximation of the true electron
dynamics, the mechanisms responsible for electron-ion
energy transfer are physical processes. This is in strong
contrast to the Car-Parrinello scheme where the electron
orbitals evolve by virtue of a fictitious kinetic energy, and
where energy transfer corresponds to an unphysical
breakdown of adiabaticity.>* In particular, in the TDDF
scheme the dynamical linear response of the electronic
system to perturbations includes not only the random
phase approximation, but also local field corrections to
the electron-electron interaction.!! Furthermore, effects
such as electron-phonon scattering in the solid, or Lan-
dau damping of sound waves in the liquid metal,*® are
present in the simulation. The presence in the TDDF
scheme of these physical processes at first sight strongly
suggests that electrons and ions should readily equili-
brate, as in comparable but fully classical molecular-
dynamics simulations of electron-ion systems.?*

The failure of the electronic system to equilibrate with
the ions is in fact due to a more fundamental limitation of
the model, which occurs no matter how accurately the
electronic system is simulated by itself: we believe it is a
consequence of representing the ions by classical parti-
cles, while the electrons are modeled quantum mechani-
cally. In such a ‘“mixed” physical representation,
thermal equilibrium between classical and quantum com-
ponents is not possible, a situation which directly results
from the suppression of spontaneous emission and for
which we sketch a general argument in Appendix D,
without pursuing the matter further in the present work.

The observation that the electron system cannot reach
thermal equilibrium with the classical ions suggests that
as in comparable Car-Parrinello simulations a numerical
thermostat be coupled to the electronic system as well as
the ions, replacing the periodic quenching procedure used
here.3®37 Whether such a procedure is practical will be
the topic of future study.

VII. CONCLUSIONS

The TDDF scheme, based on Schrddinger-like equa-
tions for the evolution of the electronic wave functions,
has been shown to give results comparable to those of the
Car-Parrinello method when applied to sodium. With
the implementation of nonlocal pseudopotentials, now
under way, we expect that the TDDF scheme will be
comparable to the Car-Parrinello method for a number of
first-principles calculations, with the advantage of avoid-
ing explicit orthonormality constraints in the electronic
equations of motion. We have also shown that the
difficulties associated with electron-ion equilibration
when modeling metallic systems are of a different nature
than those encountered with the Car-Parrinello method,
and thus might be controlled by different means. Finally,
the TDDF scheme holds the promise of applications in
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areas where the computation of electron dynamics is
essential, such as the direct calculation of electronic
transport in bulk materials,? or in electronic devices.*®
However, a full elucidation of the limitations of the
quantum-classical model**“® will first have to be accom-
plished before such applications are routinely feasible.
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APPENDIX A: IMPLEMENTATION
OF NONLOCAL PSEUDOPOTENTIALS
FOR THE ION CORES

We outline the steps in implementing nonlocal pseudo-
potentials in the TDDF scheme, including some of the
difficulties we have so far encountered. Following Klein-
man and Bylander*! we model the ion cores by a com-
bination of local and nonlocal pseudopotentials, with the
local pseudopotential incorporating long-range effects.
The total potential due to all the ions can be written

=0, +Vu , (A1)

where ¥, and f}NL are the sums of local and nonlocal
pseudopotentials, respectively. The local term has the
form (in coordinate representation)

N.
V. (x)= v, (Ix—R;),

j=1

(A2)

where v, (r) is a spherically symmetric potential. The

nonlocal term is given by

Ni L 1 |v¢.lm)(j)<v¢.lm|(j)
? - 1Y 190 (A3)
NL j§1 1§0m=—1 <¢I;Ul|¢l>
In Eq. (A3),
(x|v,;¢;;im Y= (x—R;|v;¢;;im )", (A4)

where the ket |v,¢,;1m )'* refers to the state of an ion
core at the origin,

(X|U1¢1;Im )‘0)2U[(r)¢[(r)Y]m(0xy¢x) »

where v;(r) is the radial dependence of the pseudopoten-
tial, and ¢,(r) the pseudowave function from which it was
constructed. As a generalization of Eq. (33), we envisage

(AS)
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a split-step scheme of the form Ni lax
exp(—ith)=1+ 3 3 2 y,lv,qﬁ,,lm 7
j=11=0m=—
(A2 5
¥;(t +At)=exp 5 Verr |€XP ITVNL X v p;Im |V (A8)
where
—_ 'TB
. At e -1
Xexp[ —iAt(—V?/2m,)]exp | —i—V = (A9)
p o)lexp 5 UNL Yi (v,0,10,8,)
with
X exp _i—/;—tvetf ]%m , (A6) _ (vidilud) (A10)
! (lv/1¢,)
where v includes both the electron self-interaction ghe expectation values in Egs. (A9) and (A10) are given
terms, and the local part of the pseudopotentials, as in y
Eq. (10). The computational problem at hand i 1s to imple- _ = 2 2
ment the effect of the operator exp[ —i(Az /2) Py, . <¢"U’{¢1)—47Tfo drrov(ri¢i(r) (AlD)
We assume that for different ions the supports of non- "
local pseudopotentials do not intersect, so that for all (v1¢,}v,¢,)=417f dr rivi(r)éi(r) (A12)
0

values of x and /,/’

((Ix=R;v(|x—R, [)=0 when j#k . (A7)

Equation (A7) obtains if the distance of closest approach
of any two ions is never less than 2r,, where r, is the ra-
dius over which the nonlocal pseudopotential is nonzero.
With Eq. (A7) true, one straightforwardly obtains the ex-

pansion
|

7

1 & —ilq—q)
+__
Lse

Jj=1

max

(qlexp(—irf/\'NL)Iq’)=6q,q fzy,

where 6 .- denotes the angle between the vectors q and
q’, P, the Legendre polynomial of degree /, and with

k,(q)=\/47r(2l+l)fomdrrzjl(qr)vl(r)d),(r) (A15)

The matrix defined by Eq. (A14) is exactly unitary in the
infinite-dimensional space spanned by {|q)}. In practice,
the set of plane waves is finite, so that the matrix is trun-
cated, and furthermore the integrals of Eq. (A15) are
evaluated with finite numerical errors. The resulting
transformation matrix will thus only be approximately
unitary. This state of affairs introduces a complication in
the implementation of Eq. (A6), as unitarity of the suc-
cessive operators is crucial in maintaining orthonormality
of the Kohn-Sham wave functions. Nonetheless, if high
accuracy can be obtained in evaluating Eq. (A14) (say, of
the same order as total energy conservation), the progres-
sive loss of exact orthonormality at each time step might
be tolerable, all the more so if, as in the present case, the
wave functions are automatically reorthonormalized
every few hundred time steps. To investigate these nu-
merical issues we are currently implementing Eq. (A6)
directly as outlined above.

The transformation induced by Eq. (A8) is easiest to
evaluate in Fourier space. Introducing a plane-wave
basis {|q)}, such that

(xlq)= 1/2eiq"‘ , (A13)
where V denotes the system volume, we find the matrix
elements

(@)A,(g")P/(cosOy o) , (A14)

APPENDIX B: ACCURACY OF THE
SPLIT-STEP METHOD

As it is not widely available in the literature, an expres-
sion for the error term in the split-step method, Eq. (33),
will be given. If we write the Hamiltonian for the single-
particle wave equation as H =T + V where T=p?/2m,
and V =v_4(x), we can define an effective Hamiltonian
H .., which contains the numerical error terms, through
the relation

exp —i%V exp(—iAtT)exp —i%t*V

=exp(—iAtH,,) . (Bl

A straightforward expansion of both sides of Eq. (B1)
then yields the expression

H,, —H+%C+O(At ) (B2)
where C=[2T —V,[ T, V]]. One has the decomposition
C=A4A+B, (B3)
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where
A=—[Vv4x)]? (B4)
and
3 2 %
B=—1 eff +2 eff
2 #,szl PuPy dx,0x,, Py ax#axvp"
32U T
+—— , BS
ox uaxv”"p v B5)
where in the coordinate representation p,= —id/dx,.

Equations (B4) and (BS) show that errors will principally
arise from regions where the gradient or second deriva-
tives of v 4 are large.

It is tempting to try to obtain O (Ar*) accuracy in the
split-step scheme, by absorbing as much as possible of the
error terms into the definition of v itself. For instance,
the replacement

At? )

veﬁ—>veﬁ+7[Vveﬁ(x)] (B6)
nullifies the error term 4 in Eq. (B3). Indeed, in equilib-
rium, imaginary-time calculations where one evaluates
the propagator with the replacement At — —iAr, with 1
a real number, the substitution of Eq. (B6) is enough to
obtain effective O (A7*) precision,*? because the contribu-
tions of the remaining error term B, while nonzero at
each time step, exactly sum to zero under the quantum-
mechanical trace used to construct the equilibrium expec-
tation values. In the present real-time calculation, there
is no equivalent cancellation, and no obvious way to nul-
lify the effects of B through a substitution equivalent to
Eq. (B6). This is because B contains mixed coordinate
and momentum operators, while the split-step method
depends for its implementation on a strict separation of
these operators in the terms V and T of Eq. (B1). Numer-
ical experiments with Eq. (B6) alone have not yielded
measurable improvements in accuracy, and have not been
pursued here.

Higher-order split-step schemes, with more than three
terms in the decomposition of the evolution operator, and
O(At®) accuracy at each time step are available.> How-
ever, the tradeoff between higher accuracy per time step,
and considerably greater algorithmic complexity and exe-
cution time per step, is not immediately clear. For this
reason, implementation of such a higher-order scheme
has not been attempted here.

An alternative method for integrating the time-
dependent Schrodinger equation which does not depend
on a split-step decomposition is the so-called second-

order differencing scheme**** (SOD scheme), where one
writes
Yt +Ar)=v(t —At)—2iAtH (1) . (B7)

With appropriate definition of norms and scalar prod-
ucts, the transformation induced by Eq. (B7) is exactly
unitary, and is O (At?) accurate. An advantage of this
scheme over the split-step method is that the exact eigen-
states of H are stationary under Eq. (B7), while in the

split-step method only the eigenstates of H,,, are sta-
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tionary, leading to O (At?) errors in the energies. Disad-
vantages of the SOD scheme are that it requires two sets
of three-dimensional arrays instead of one, has more
stringent stability limits, and large time-evolution errors
for large kinetic energies. The scheme has not been im-
plemented in the present work.

APPENDIX C: RESCALING TIME
IN THE ONE-PARTICLE
SCHRODINGER EQUATIONS

The one-particle Schrodinger equations, Egs. (6), can
be modified to read

1
2m

ikgat—llfj(x,t)z— V2¢j(x,t)+veﬁ(x,t,[n])lpj(x,t) ,

e

j=12,...,No=N,72, (CI)

where A is a purely numerical factor which artificially
modifies the rate of evolution of the electron wave func-
tions. If A>>1, electronic evolution is greatly slowed
down, and a larger time step can be taken to integrate the
equations of motion. The introduction of A is justified if
one is evolving the electrons assuming the instantaneous
ground-state approximation, and provided that A is not
too large, so that approximate adiabaticity of electron
motion is maintained. Defining a simulation time
7=t /A, the equations of motion take the form

i%!ﬁj(x,r):— 2r1ne V3, (%, 7) Foeg(x, 7, [0 ] (x,7)
j=12,...,Nyg=N,/2, (C2)
d2
Msim—sz(T)=Fk(T)7 k=12,...,N;, (C3)
T

where the “simulation mass” M is
Mg, =M/\*. (C4)

With A>1 Egs. (C2) and (C3) are formally identical to
simulating a system with artificially light ions, as is done
in the present work.

sim

APPENDIX D: QUANTUM-CLASSICAL
EQUILIBRATION IN A TWO-LEVEL SYSTEM

We consider an idealized system composed of electrons
bound in a two-level system, interacting with a heat
reservoir of harmonic oscillators with a continuous distri-
bution of frequencies. Let the excited- and ground-state
energies of the electrons be E, and E,, respectively, with
E,—E, =%, and the frequency distribution of the oscil-
lators be D (w). Following the analysis given in Ref. 46
of the evolution equation for the density matrix p of the
electronic system, one obtains the coupled equations for
the mean atomic level populations N, =p,, and N, =p,,,

dN,
—de*}/[n(Q)-Fl]Na+yn(Q)N,, R (D1)
dN,

—d—t=7’[n(ﬂ>+1]Na—yn(mNb , (D2)
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where, with appropriate normalization of the linear cou-
pling constant g(Q), y=27D(Q)g%(Q) is the rate of
spontaneous emission of the excited electrons (identical
to the golden-rule expression), and where n(w) is the
mean number of harmonic-oscillator phonons in thermal
equilibrium for an oscillator with frequency w.

_According to Egs. (D1) and (D2), equilibrium
N,=N,=0is achieved when
N,[n(Q)+1]=N,n(Q), (D3)

in other words when the rate of spontaneous and induced
emission from level a equals the rate of induced absorp-
tion from level b. With  the distribution
n(w)=1/[explfiw/kgT)—1], Eq. (D3) then yields the
correct Boltzmann distribution for the electronic system,
N,/N,=exp(—#Q/kyT)=exp| —(E,—E,)/kgT].
Now, assume that the harmonic oscillators are from
the outset assumed classical. The model is then modified
in two ways, (1) spontaneous emission is suppressed, so
that in Egs. (D1) and (D2) one should replace the terms
N,[n(Q)+1] by N,n(Q), and (2), the equilibrium pho-
non distribution is now the classical equipartition

JOACHIM THEILHABER 46

n(w)=kyT /fiw. The equilibrium condition becomes

N,n(w)=Nyn(w) , (D4)

with the only possible solution N, =N,. Thus the atomic
energy levels are equally populated in equilibrium, in
complete contradiction to the correct Boltzmann distri-
bution. This unphysical behavior directly follows from
the suppression of spontaneous emission, in fact indepen-
dently of the form of n (w). It is important to emphasize
that Eq. (D4) is not a high-temperature approximation to
Eq. (D3), but is an exact relation, resulting from the as-
sumption that the oscillators are exactly classical at all
temperatures (as are the ions in the TDDF model
presented here).

If an additional mechanism (such as another heat reser-
voir) is introduced to maintain a Boltzmann distribution
N,/N,=exp[—(E,—E,)/kgT] in the atomic system,
then equilibration between the electrons and the oscilla-
tors still cannot occur, as Eq. (D4) cannot be satisfied for
N,#N,. In this case, there will be a continuous and un-
physical flux of energy from the harmonic oscillators to
the electrons.

*Present address: Thinking Machines Corporation, 245 First
Street, Cambridge, MA 02142.
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