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The total energies of the observed crystal structures of Ce [face-centered cubic (fcc), orthorhombic,
and body-centered tetragonal (bct)] under pressure have been calculated, using the local-density approxi-
mation. The linear-muffin-tin-orbital calculations were full potential, all electron, and fully relativistic.
The experimental data for the different crystallographic transitions are well reproduced by the calcula-
tions and we have extracted two terms that are mainly responsible for the a—a’ transition: a one-
electron term and a Madelung term. The a—a’ transition is driven by the increasing importance of the
4f contribution with decreasing volume. This finding is also supported by a calculation without the 4f
contribution to the cohesion which yields the a’ phase unstable. The a’— bct transition is found to be
somewhat more complex in nature since it is quite heavily influenced also by the 5d electrons. The cal-
culated ground state is (correctly) found to be fcc and the equilibrium volume as well as the bulk
modulus are in good agreement with experiment. The present ab initio calculation of a crystallographic
phase diagram of an f electron system suggests delocalized 4/ electrons exist in the high-pressure phases,

including the a phase, of Ce.

INTRODUCTION

Cerium has a very interesting phase diagram.! At at-
mospheric pressure and low temperatures the enhanced
Pauli paramagnetic a phase is stable [face-centered-cubic
(fce) structure]. With increasing temperature a-Ce trans-
forms to the B phase (double hcp) and to the y phase
(fcc). The susceptibility of these two phases show Curie-
Weiss behavior with an effective moment close to the free
ion value, suggesting a localized 4f electron. At room
temperature and a pressure of 7 kbar the trivalent low-
density ¥ phase collapses into the much denser but iso-
structural a phase, with a decrease in volume of about
14%. A further increase in pressure transforms a-Ce to
(orthorhombic) a’-Ce at ~50 kbar’? with a very small
volume collapse. This phase is superconducting below
1.9 K.> With a further increasing pressure ( ~ 120 kbar),
the orthorhombic a’ phase transforms to a body-centered
tetragonal phase (hereafter referred to as bct).! ™* This
phase is stable up to the highest experimentally studied
pressures ( ~ 500 kbar).! ~*

The underlying physical interactions driving the high-
pressure phases (a, a’, and bct) is the aim of the present
work, and we argue that these interactions have implica-
tions for the the entire phase diagram of Ce. The a’ phase
is generally believed to be tetravelent.! * The crystal
structure of this phase is the same as for uranium (a-U)
at low temperatures. The early actinides are known to
have delocalized 5f electrons and it has been argued that
the shape of the f spherical harmonic reflects the distort-
ed crystal structures found for these elements. The simi-
larity in crystal structure between a’-Ce and a-U can be
taken as an indication that the 4f states in a’-Ce are
itinerant. Similarly the crystal structure of elemental
protactinium (Pa) is the same as the bct phase of Ce (al-
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though with a different ¢ /a ratio). Hence some crystallo-
graphic phases of cerium are reminiscent of delocalized
f-electron behavior.

Over the years there have been a number of models
proposed to explain the isostructural ¥y —a transition in
Ce, but only a few are still compatible with all experimen-
tal data.’~® One model, the Mott transition model, sug-
gests the 4f electrons localized and nonbonding in y-Ce
and itinerant and bonding in a-Ce.>” This model is con-
sistent with the positron experiments’ and is supported
by the fact that the band calculations of Glotzel'® on the
a phase of Ce yielded a theoretical volume in acceptable
agreement with experimental data. A subsequent band
calculation on Ce obtained similar results.!! However,
the calculations reported in Refs. 10 and 11 did not
reproduce the observed volume collapse between - and
a-Ce. Actually the y phase was found to be energetically
unstable.'>!! However, by implementing the orbital po-
larization formalism'? in a spin-polarized relativistic
band calculation, thereby accounting for Hunds rules and
allowing the possibility of one 4 f orbital being completely
filled and the rest empty, good account for the y—oa
transition was obtained.'* The orbital polarization used in
Ref. 13 introduced shifts of an 4f,m;,0 orbital by an
amount —L°m,E?*, where L7 is the orbital moment for
the o spin channel, m, is the magnetic quantum number,
and E’ is the Racah parameter (calculated self-
consistently). In this study it was found that the total en-
ergy was minimized when y-Ce had one 4f orbital com-
pletely filled, and the rest empty —thereby describing lo-
calization (within this model), and that a-Ce has a 4f
band pinned at the Fermi level. Furthermore, by includ-
ing many-body correlations in a Kanamori-Hubbard for-
malism into a band scheme, it was found that the
Coulomb interaction (U) necessary to localize a 4f elec-
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tron in a-Ce is quite big (=6 eV), whereas in y-Ce a
smaller U localizes a 4f electron (~5 eV).!* Since an es-
timate of U for a-Ce is about 5 eV,%!! this model suggests
that the 4f states are localized in y-Ce but not in a-Ce.
It was also found that the different contributions (hybrid-
ization or direct hopping) to the width of the 4/ band are
extremely anisotropic in k space, not additive, and about
equally important.'*

An alternative to the Mott model for the ¥ —a transi-
tion has been suggested, namely, the Kondo volume col-
lapse picture.!> Both this model and the Mott model are
consistent with most of the experimental data, indicating
no change in the f-electron count (~1) upon making the
transition. The Kondo volume collapse model, which has
its energy scale and temperature dependence set by the
experimental Kondo temperature T of the two phases,
demonstrates that the spin quenching mechanism is con-
sistent with other temperature-dependent data. It in-
cludes no change in the orbital moment through the tran-
sition. Moreover, the Kondo model differs from the Mott
transition picture in that it describes the 4f electrons
more localized (less delocalized) in the o phase. The
y —a transition is here thought to be driven by
differences in coupling between 4f electrons and the
valence band. Although the 4f electrons contribute to
the cohesion also in this model, this has been claimed to
be in a different way than in the Mott model.'®

At present, the Mott model”®!? and the Kondo mod-
el’> both contend in explaining the a—y transition and
one concludes that there are two conceptually different
models that explain the a—y transition with equal accu-
racy. However, we have in a previous communication
pointed out that the high-pressure phases in Ce are stabi-
lized by the 4f electrons, and that the high-pressure phases
of Ce, including the a phase, have itinerant 4f electrons."’
The conclusion that delocalized 4f electrons are crucial
for determining the high-pressure phase diagram of Ce
was earlier reached also by Skriver.!® The present paper
is a full report of our results on the crystallographic
phase diagram of Ce, including energy bands, density of
states, charge-density contour plots, and orbital occupa-
tion numbers. We have also performed simple model cal-
culations to investigate the importance of hybridization
versus direct hopping for determining the 4f bandwidth
in Ce in a related way as was previously done.'

DETAILS OF THE CALCULATIONS

The total energy of Ce (per unit cell) is of the order of
—17717 Ry/atom, while the difference in energy be-
tween the different phases is of the order of a few
mRy/atom. Hence an accurate computational technique
is required to study this transition. We used a full poten-
tial linear-muffin-tin-orbital (LMTO) technique'® in the
calculations reported here. The calculations were all
electron, fully relativistic (with the spin-orbit coupling in-
cluded at each variational step?®), and employed no shape
approximation to the charge density or potential. The
base geometry was a muffin-tin geometry with a true in-
terstitial; the basis functions, charge density, and poten-
tial were expanded in spherical harmonic series within
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the muffin tins and in Fourier series in the interstitial.
The volume in the muffin-tin spheres was kept the same
in both structures and was a fixed fraction (approximately
0.50) of the total volume. The basis set was comprised of
augmented linear-muffin-tin orbitals.?® The tails of the
basis functions (the extension of the bases outside their
parent spheres) were linear combinations of Hankel or
Neuman functions with nonzero kinetic energy; three tail
functions were used for each basis. The coefficients were
chosen for each (n,/) value by fitting to atomic wave
functions calculated from self-consistent potentials; the
kinetic energies of the tail functions were chosen to op-
timize the fit. The basis set contained 5s, 5p, 6s, 6p, 5d,
and 4f orbitals; all orbitals were contained in the same
energy panel with a separate set of energy parameters for
the pseudovalence and the valence states. Approximate
orthogonality between bases with the same / value was
maintained by energy separation.

Integration over the Brillouin zone was done using
“special point” sampling.?! The results reported here
used 10 points in the irreducible wedge of the a-Ce Bril-
louin zone and, correspondingly, 16 points in the irreduc-
ible wedge of the a’-Ce Brillouin zone and 58 points in
the irreducible wedge of the body-centered tetragonal
zone. The difference in energy between the different
structures was found to be converged to less than 0.1
mRy by performing calculations at volumes near the
transition volumes using sets containing from 10 to 60
points for a-Ce and between 16 and 128 points for a’-Ce
and between 58 and 80 points for bct Ce. Spherical har-
monic expansions were carried out through / =8 for the
bases, charge density, and potential. The Fourier series
for the basis functions contained 369 plane waves for a-
Ce, 489 plane waves for bct Ce and 1053 plane waves for
a'-Ce; the Fourier series for the charge density and po-
tential contained 1695 plane waves for a-Ce, 2255 plane
waves for bct Ce, and 5175 plane waves for o’ Ce. Final-
ly, the calculations used the Hedin-Lundqvist exchange-
correlation functional.

TOTAL ENERGY RESULTS

Among the studied structures the fcc and bct phases
are quite simple and we used the experimental ¢ /a ratio
for the bct phase. However the a’ phase is somewhat
more complicated. a’-Ce may be described as a one-
face-centered orthorhombic lattice with two atoms per
unit cell at positions (0,0,0) and (0,0.5,1—2y) in units of
the a, b, and c lattice translation vectors. The lattice con-
stants are known but the value of 2y is not known experi-
mentally. As a preliminary to calculating the equation of
state of a’-Ce we performed a set of calculations to find
the minimum in the total energy as a function of 2y, us-
ing experimental values for the lattice constants at a
volume close to the experimental transition volume (22.3
A per atom). The minimum energy was found at
2y =0.225 [Skriver’s calculated value was 0.21 (Ref. 18)];
this value, together with the experimental ratios of the
lattice constants, was then used at all volumes in calculat-
ing the equation of state of the a' phase. The theoretical
value 2y=0.225 may be compared with the value
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2y =0.21 found experimentally in the isostructural «a
phase of uranium.

The main result of this work—the total energy as a
function of volume for the observed phases of Ce—is
displayed in Fig. 1. The important features of Fig. 1 have
been collected in Table I. At zero pressure, the structure
of Ce is correctly found to be fcc with an equilibrium
volume of 28.1 A®, which compares well with experimen-
tal results [ ~28-29 A’ (Refs. 1- 4)]. Our calculated
equilibrium volume agrees well with the value obtained
from previous fully relativistic calculations,'® whereas the
scalar relativistic calculations of Ref. 11 underestimated
the volume by ~17%, and the scalar relativistic calcula-
tions of Glotzel'® underestimated the volume by ~ 13%.
The fact that our calculations include the spin-orbit cou-
pling as well as treating the Ss and 5p orbitals as (pseudo)
valence states might explain this difference. Also, experi-
ence shows that using a larger (better converged) muffin-
tin-orbital basis set, a so-called double basis set,'® normal-
ly predicts a lower theoretical equilibrium volume (by a
few percent) and this is possibly part of the reason for the
disagreement between our calculated volume and the
linear augmented plane wave (LAPW) results (these cal-
culations used a larger basis than ours).!! The calculated
bulk modulus B at the experimental volume is 370 kbar,
which may be compared with the experimental room-
temperature value of ~240-290 kbar.!”* The pressure
derivative of B, called B’, was calculated to be 4.4, in fair
agreement with the experimental value 5.5.! 7% We find a
transition to the a’ phase at a volume of 24.2 A3, The
calculated volume collapse is quite small ~1 A’ and the
calculated transition pressure is 70 kbar. (The transition
pressure may be obtained from the slope of the common
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FIG. 1. Calculated total energy of a (fcc, open circles), o’

(orthorhombic, filled circles), and bct (open squares) Ce. The
calculated pressures for the phase transitions are obtained from
the slope of the common tangent of the energy curves. The en-
ergies refer to the minimum energy of the fcc phase.
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TABLE 1. Calculated equilibrium volume and bulk modulus
for a-Ce, as well as volumes, volume changes, and pressure for
the a—a' and a’—bct transitions.

Ve (AY) 28.1
B., (kbar) 370
Va—a' (Af)} 242
AVa—a' (A7) 1.0
Pa—a' (kbar) 70
Va'—bet <A3° ), 20.0
AVa' —bet (A) 0.0
Pa’'—bct (kbar) 150

tangent of the total energy curves in Fig. 1.) These values
compare well with the experimental data reported for the
a—a' transition, a transition volume of ~24 A3 =4 ac-
companied by a small volume collapse and a transition
pressure (extrapolated from the phase diagram to zero
temperature) of ~65 kbar.!”* To illustrate the delicacy
of the calculations, we note that at the calculated equilib-
rium volume, the orthorhombic structure has a total en-
ergy ~3 mRy/atom higher than the fcc structure while,
as mentioned above, the total energy is ~—17717
Ry/atom. Notice from Flg 1 that at even smaller
volumes (~20 A%) the o phase transforms to the bct
phase. The calculated pressure for this transition is 150
kbar and is also in good agreement with experimental
data, 120 kbar at room temperature.!”* As is obvious
from Fig. 1, this transition is even more delicate than the
a—a' transition, since the energy difference between the
bet and the o’ phase is extremely small.

ELECTRONIC STRUCTURE

It is desirable to analyze the different contributions to
the total-energy expression in order to see if certain terms
are mainly responsible for the crystallographic transitions
shown in Fig. 1. However, before attempting this it is il-
lustrative to study the electronic structure, namely, the
density of states (DOS) and the energy bands. In Fig. 2
we display our calculated DOS for two different volumes,
34.06 A’ [Fig. 2(a)] and 19.96 A® [Fig. 2(b)]. The shaded
area represents the 4f partial DOS. The a' phase has
two atoms per cell. However, the partial DOS for the
two different atom types are almost identical, and there-
fore we have plotted the partial DOS for one of them
only. Notice that the sharp features of the DOS (Van
Hove singularities) in the fcc phase gradually disappear
when the symmetry of the structure is lowered
(fcc—bct—orthorhombic). The electronic structure is
seen to be dominated by the 4f contribution and the Fer-
mi level cuts the 4f band at the low-energy side for all
structures. The bandwidths are seen to be quite the same
for all three structures, whereas the details of the DOS
differ. Notice also that the 4/ bandwidth is about three
times broader for the lower volume. From Fig. 2 alone it
is hard to see why one crystal structure should be favored
over the other. The hybridization at the two volumes
seems to be about the same, and the occupied part of the
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DOS has about the same shape, although the low volume
DOS is, of course, broader.

It is equally hard to argue for the change in crystal
structures by looking at the bands. In Figs. 3(a) and 3(b)
we show the bands corresponding to the DOS plotted in
Fig. 2. The general interest for plotting bands has dimin-
ished lately, since, for instance, by studying the bands
alone it is hard to argue why different crystal structures
should be stable. However, with the new experimental
techniques, which actually measure the energy dispersion
(angle-resolved photoemission), we feel that it is of in-
terest to display this dispersion. Therefore, the bands in
Fig. 3 for the three different crystal structures make a
comparison between theoretical and experimental energy
dispersion possible.

However, one should bear in mind that previous ex-
perience!® 112223 shows that the calculated DOS of a-Ce
do not resemble the experimental spectra. More recent
studies show that this to some extent is a surface effect,
since it was demonstrated that the surface of a-Ce is y-
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like,?* in agreement with predictions.25 Even when ac-
counting for these surface effects and extracting the bulk
signal of the photoelectron spectra, the agreement be-
tween calculated DOS functions and experiment is not sa-
tisfactory, suggesting a more complicated picture with
the possibility of complex final-state effects, and so on.
For both volumes and for all structures the bands can
be characterized by having a set of very narrow states ly-
ing just above E. These states have mostly 4f character
and it is these states that give rise to the high peak just
above Ep in the DOS (Fig. 2). Notice that the broaden-
ing and increasing dispersion of the 4f states with de-
creasing volume is about the same for the three struc-
tures. This is compatible with the DOS results presented
in Fig. 2. Notice also that the lowest-lying energy band
shows some peculiarities. It is expected that with de-
creasing volume an increase of the bandwidth should take
place. However, our results show a counterintuitive
effect for certain k points. For instance, at the T point,
the lowest band in both the fcc and bct structures has an
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FIG. 2. Density of states (DOS) for fcc, bet, and orthorhombic Ce. The shaded area represents the 4f partial DOS. Energies are
in Ry and the Fermi level is at zero energy and is marked with a vertical line. The DOS are plotted for two volumes 34.06 A’ (a) and

19.96 A’ (b).
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energy of about —3.5 eV below E at the highest volume
and an energy of about —1.5 eV below E for the lower
volume. Similarly, in the orthorhombic structure the ei-
genvalue at the I' point is more or less volume indepen-
dent. This is only found for certain k points; the overall
bandwidth (summed over the entire k space) is increasing
with decreasing volume (Fig. 2). The reason for this
counterintuitive effect is that with decreasing volume the
s band is pushed up to higher energies relative to the d
and f bands. For instance, for the high volume case the
lowest eigenvalue at the T point is an s state. For the low
volume case this s state is moved up in energy just below
the next state, which is an f state. The lowest eigenvalue
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at the X point has mainly d character, and since the d
band does not move up in energy, but broadens with de-
creasing volume, the lowest eigenvalue is moved from the
I'" to the X point with increasing pressure. This effect has
been observed for transition metals, where it is referred to
as an s —d transfer.?®

Notice also that the narrow 4f bands are dispersed
about the same along the different symmetry lines, with
the exception of the bct phase, which shows very little
dispersion between the Z and I' point. These points are
along the z axis in k space, and thus this finding indicates
that there is little interaction between the 4f electrons
along the z axis of the bct lattice. This simply reflects the
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FIG. 3. Energy bands for fcc (lower panel), bet (middle panel), and orthorhombic (upper panel) Ce along high-symmetry direc-
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gies are in eV and the Fermi level is at zero energy. The energy bands are plotted for two volumes 34.06 A’ (a) and 19.96
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fact that the interatomic spacing along this axis is quite
large for this structure. Finally, we point out that the
two lowest bands at the Z point in bct Ce are not degen-
erate, although at the smaller volume they are very close
in energy.

TRIVALENT AND TETRAVALENT
spd CALCULATION

The results presented above were obtained with the 4f
electrons contributing to the bonding. This suggests that
in order to account for a very delicate quantity, such as
the crystal structure, it is important to treat the 4f states
as bands. To test the importance of the 4f states for
determining the crystal structures of Ce, we recalculated
the total energy of Ce in the a, bct, and a’ structures at a
volume where it is known that Ce is in the o phase (~22
A?), but with the 4/ band being forced to be empty (using
s, p, and d partial waves only). We have done this test
calculation assuming three as well as four valence elec-
trons. We performed calculations for both cases since it
previously has been suggested that the high-pressure
phases of Ce are tetravalent (four valence electrons),
whereas more recent calculations reveal that the charge
occupation in Ce, also at the higher pressures, is close to
one (see below). This latter finding suggests that a calcu-
lation that forces the 4/ bonding to be absent should be
done using three valence electrons with the 4f electron
treated as a core state.

As stated above we have tried both cases. For the
tetravalent calculation we found bct to be the stable
phase, with the a phase ~10 mRy and the a’ phase ~20
mRy higher in energy, whereas for the trivalent calcula-
tion we found the bct phase to be stable with ~1 mRy
lower energy than the a structure and ~10 mRy lower
energy than the a’ structure. This shows that at volumes
where it is known from experiment that the orthorhom-
bic structure is stable, treating Ce as a normal trivalent or
tetravalent element is incorrect, and that the 4 f electrons
participate in the bonding and the formation of the crys-
tal structure. This is consistent with the fact that certain
features in the phase diagram, i.e., the a—a’ transition,
is not seen in other systems that do not have itinerant f
electrons, e.g., Y or Zr.

ENERGY ANALYSIS

The results presented above show that it is necessary to
treat the 4f electrons as bands in the high-pressure
phases. This is further supported by additional analysis
of the results of our calculations, since it was evident that
the transition from the a to the a’ phase was correlated
with a balance of two competing terms in the total ener-
gy: a Madelung term, and a 4f one-electron eigenvalue
term. The latter was calculated from the first moment of
the 4f partial DOS. The Madelung term, which may be
expressed approximately?’ as

Ey=—4Qe)’ o~ , D
M 2 QI SW
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FIG. 4. Calculated difference o’ —a (solid lines) and bct-a
(dotted lines) of the Madelung (open circles) and 4f one-electron
(filled circles) contributions to the total energy, as well as their
sum (open squares).

where 3, is the Madelung constant, Sy, is the Wigner-
Seitz radius, and Q; is the interstitial charge, favors the
close-packed a structure (Fig. 4). However, as seen in
Fig. 4, the 4f terms favors the open a’ structure. An ob-
vious argument for this is that degeneracies in the partial-
ly occupied 4f bands may be broken by lowering the
crystal symmetry. Occupied degenerate states in the fcc
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FIG. 5. 4f (full drawn lines) and 5d (dotted lines) occupation

numbers for fcc (open circles), bet (open squares), and ortho-
rhombic (filled circles) Ce.
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phase that are close to Ep can therefore lower the total
energy by lowering the crystal symmetry, since by doing
this one band is pushed up above E (and therefore not
affecting the total energy) and one band is pushed down,
lowering the total energy. In Fig. 4, we also show the
calculated sum of the Madelung and 4f one-electron
terms (the curve labeled “total””).?® It is evident from Fig.
4 that the a—a’ transition may be considered to be
driven by the 4f eigenvalue sum: with increasing pres-
sure the 4f term becomes increasingly important, and at
a sufficiently high pressure, dominates the Madelung
term, and the a’ phase becomes stable. (Isolating only
two contributions that drive the transition is, of course, a
simplification, and the transition volume given in Fig. 4 is
slightly larger than the one given in Fig. 1.)

We have also performed a similar energy analysis of
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the a’—bct phase transitions. However, as seen in Fig. 4
the interactions driving this transition are more compli-
cated than the ones driving the a—a’ transition. By iso-
lating only the Madelung and 4f one-electron contribu-
tion to the total energy, we obtain the bct phase to be un-
stable at all volumes. The fact that the s, p, d calcula-
tions, presented in the previous section, yield the bct
phase stable suggests that the interactions driving the bct
phase in Ce also have non-4f contributions (i.e., 5d). No-
tice from Fig. 4 that with decreasing volumes and an in-
creasing 4f bandwidth, the energy difference between the
bct and fcc phases becomes smaller. However, notice
also that with decreasing volume the energy difference
between the a’ and bct phase is more or less constant,
and thus the a’—bct transition would not occur if no
other terms played a role. As a matter of fact, for the bct

(b)

FIG. 6. Charge-density contour plots for orthorhombic Ce (e ~/a.u.’). The contours are cut in the (010) (a) and (100) (b) planes.
The contour of the total density is shown in the upper figure, and the contour of the nonspherical density is shown in the lower figure.
The spacing between full drawn lines is 0.01 and between dotted lines 0.003.
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phase we find that the 5d contribution to the eigenvalue
sum (not shown) also contributes to driving the transition
to that phase. Further evidence of the importance of the
4f contribution to the bonding and to determining the
crystallographic phases is seen in Fig. 5, where we show
the calculated 4f and 5d occupation numbers for the
three structures. ‘“‘Occupation number,” in the context of
our calculations, refers to the integrated /-projected den-
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zero.

OLLE ERIKSSON, J. M. WILLS, AND A. M. BORING 46

sity of states (ignoring the interstitial region). Notice
that, for all phases, the 4f electron count increases with
decreasing volume. Notice also that initially the 5d occu-
pation numbers are increasing with decreasing volume,
analogous to a normal s —d transition.”® However, for
low volumes the d count decreases, since for these
volumes the f occupation is increasing at the expense of
the rest of the valence electrons (s,p,d — f transition).
Also, Fig. 5 shows that the a' phase has more 4f elec-
trons than the a and bct phases at most volumes, but that
at volumes corresponding to where that bct phase is
stable, the bct phase has the most 4 f electrons.

CHARGE DENSITY

We have also analyzed the charge-density contours for
the different phases at several volumes. The general
shape of the charge densities were found to be insensitive
to volume. Therefore we consider contour plots for one
volume only, 19.96 A. Furthermore, we show both the
total density as well as the nonspherical density, i.e., the
density obtained when the spherical component is sub-
tracted out from the total density inside the muffin-tin
spheres and the planar average is subtracted out from the
interstitial. Notice that since the average interstitial den-
sity does not necessarily equal the spherical component at
the muffin-tin radius, there will be a “step” in the non-
spherical density, which, of course, is absent in the total
density. The charge density of the a phase (not shown) is
spherically symmetric around the atomic sites and rough-
ly constant in the interstitial region. Similarly, the
charge density for bct Ce (not shown) shows that the den-
sity to a large extent is spherically symmetric inside the
muffin tins. However, the interstitial density cut in the
(100) plane reflects the charge density of the underlying
atomic plane, since between the atoms in the (100) plane,
there is an oval-shaped region (not shown). Finally, the
orthorhombic phase shows a more nonsymmetric co-
valent charge density (Fig. 6). The cut in the (010) plane
(a) has a higher overall density than the (100) plane (b).
Notice that the charge-density cut in the (100) plane also
reflects the atomic positions of the underlying plane, seen
in the spherical contours that are in the interstitial re-
gion. Furthermore, the nonspherical component inside
the muffin-tin regions is more pronounced than in the fcc
phase.

HYBRIDIZATION VERSUS DIRECT HOPPING

We have stressed above that the 4f electrons play a
crucial role for determining the total energies of the low-
temperature crystal structures of Ce. The 4f contribu-
tion to the cohesion in a Ce is in principle accounted for
both in the Kondo model'® (through hybridization only)
as well as in the present and previous!®!"! calculations.
The latter calculations include both hybridization terms
as well as direct 4f-4f hopping. In order to get an esti-
mate of the relative importance of the direct hopping
versus hybridization effects for the 4f band formation we
performed LMTO calculations in the atomic-sphere ap-
proximation®® with the various contributions forced to be
zero. The calculated DOS from these calculations are
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displayed in Fig. 7. In agreement with previous results,'*
we find that the calculation without 4f hopping (upper
panel) has a bandwidth that is ~70% of the calculation,
which includes all terms (lower panel). The correspond-
ing equation of state underestimates the 4/ bonding, and
the equilibrium volume of a-Ce is ~32, A3, i.e., close to
the ¥ volume. The bandwidth obtained from the calcula-
tion without hybridization (middle panel) is ~85% of the
full bandwidth (this can also be estimated by scaling the
canonical 4f bands with the appropriate potential param-
eters?’). This shows that the two contributions are not
additive and are about equally important.'*

CONCLUSIONS

In conclusion, we have, within a band picture, given a
good account of the crystallographic phase stabilities in
Ce as a function of pressure. This, to our knowledge, is
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the first time a phase diagram has been successfully cal-
culated for an f-electron system. Moreover, we have
shown that the observed a—a’ transition may be inter-
preted as being driven by the counterplay between the
Madelung term and the 4f one-electron term. The
a’—bct transition is somewhat more complex in nature
since for this transition the 5d electrons also are of im-
portance. However it is equally important to treat the 41
electrons as bands, since otherwise the stability range of
the bct phase is grossly overestimated. Therefore the
contribution of the 4f electrons to the bonding is essen-
tial in describing the crystallographic phase transitions in
Ce under pressure.
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FIG. 6. Charge-density contour plots for orthorhombic Ce (e ~/a.u.’). The contours are cut in the (010) (a) and (100) (b) planes.
The contour of the total density is shown in the upper figure, and the contour of the nonspherical density is shown in the lower figure.
The spacing between full drawn lines is 0.01 and between dotted lines 0.003.



