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Ab initio total-energy calculations have been performed on a parallel computer to study the formation
and migration energies of cation and anion vacancies in MgO. The calculations are made in the frame-
work of density functional and pseudopotential theory, using the supercell method, with the valence or-
bitals expanded in plane waves. The relaxed ground state is determined by conjugate-gradients minimi-

zation of the total-energy functional with respect to the plane-wave coe5cients of occupied orbitals. The
calculated defect energies are shown to be in remarkably close agreement with experiment and with

values obtained from empirical modeling. We present results for the electron distribution surrounding
the vacancies that show that the distortion induced in the oxygen ions is more complex than has previ-

ously been thought.

I. INTRODUCTION

The purpose of this paper is to report some of the first
fully ab initio calculations of defect energetics in a ceram-
ic oxide. Specifically, we have calculated the Schottky
formation energy and the activation energies for cation
and anion vacancy migration in MgO, using pseudopo-
tential and density-functional methods. A preliminary
brief account of this work has already appeared. '

In the past, the treatment of the energetics of perfect
and defective ionic materials has relied on empirical in-
teraction models such as the shell model. While the
empirical approach has achieved important successes,
there is increasing recognition of the need for the more
fundamental approach provided by ab initio methods.
The direct first-principles treatment of defect energetics
in an oxide such as MgO is, nevertheless, a major under-
taking, and the present work has been made possible only

by very recent advances in technique, and particularly by
the exploitation of parallel methods. The substantial
computational task needed was performed on a 64-node
Meiko Computing Surface. More will be said below
about the parallel computer code CETEP used in the work.
We shall show that our calculated defect energies agree
closely with available experimental values. The calcula-
tions also give important insight into the electronic struc-
ture of the defects, which we hope will open the way to
improvements in the empirical modeling of materia1s
such as MgO.

The methods we shall describe can be applied to a wide
variety of materials. We have chosen to work on MgO
for a number of reasons. First, oxides generally are rath-
er difficult to model empirically, because of the large de-
formability of the 0 ion, which is not a stable species
in free space. Ab initio methods have an important role

to play in revealing the physics that should be incorporat-
ed in empirical models for such materials. Secondly,
MgO has a wide-ranging importance as a high-
temperature ceramic, a catalyst, and a mineral (it forms
approximately 10% of the earth's lower mantle). Third-
ly, MgO is the simplest representative of a large class of
important oxides having the rocksalt structure.

There has already been a considerable amount of ab in-
itio work on the energetics of ionic perfect crystals, much
of it based on the Hartree-Fock approximation. (Perfect
crystals are, of course, relatively straightforward to treat,
because only calculations on small symmetrical unit cells
are needed. ) Particularly important has been the devel-

opment of the Hartree-Fock code CRYSTAL, which has
been used to study the electronic structure and energetics
of a large number of ionic crystals. ' The pseudopoten-
tial density-functional techniques used in the present
work have also been applied to perfect ionic crystals, in-

cluding MgO, with excellent results. " Recently, a
number of attempts have been made to use the Hartree-
Fock approximation to study the energetics of ionic de-
fects via calculations on clusters embedded in a represen-
tation of the bulk crystal. A recent example of this is the
work of Grimes, Catlow, and Stoneham' on vacancies on

MgO, which, though partially successful, was limited by
the small size of clusters that could be handled, and by
difficulties in achieving convergence with respect to the
size of the basis set. Problems were also encountered in

treating the positional relaxation of the ions —a very im-

portant effect for defects in ionic materials, because of the
ionic polarization induced by the effective charge on the
defect. It is also relevant to mention the work of Pisani
et al. ,

' which proposes a more sophisticated scheme for
embedding the cluster in the surrounding crystal.

Our computational strategy is to perform all the calcu-
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lations in periodic boundary conditions (sometimes
known as the supercell method), with the electronic orbit-
als represented in a plane-wave basis. The pseudopoten-
tial treatment of materials containing first-row elements
such as oxygen in a plane-wave basis requires carefully
constructed "optimized" pseudopotentials, ' and even
then large numbers of plane waves are needed. However,
any such disadvantage is more than compensated by the
major advantage of this approach, which is that the total
energy can be systematically taken to complete conver-
gence with respect to the size of the basis set. This is par-
ticularly important in treating charged defects, where the
response of the electron distribution to the defect charge
needs to be accurately described, and where we also need
to be able to calculate the forces on the ion cores.

The calculation of defect energies, whether by the su-
percell method or otherwise, requires careful attention to
the dependence of the results on the size of the system.
What we are really aiming to calculate is the energies of
isolated defects in an infinite crystal, so that we should, in
principle, study the convergence of the energies with
respect to cell size. This is a particular concern for
charged defects treated by the supercell method, since
one must consider the effect of Coulomb interactions be-
tween repeated images of the defects. Fortunately, these
issues are already well understood from earlier work
based on empirical modeling.

' ' However, in order to
provide firm evidence for the case of MgO, we have sup-
plernented our ab initio work with a set of calculations
using an empirical interaction model, in which the vacan-
cy energies are computed by the supercell method for a
wide range of cell sizes. The results of these ancillary cal-
culations, presented in the Appendix, indicate that
sufFiciently accurate results can be expected from systems
of 32 ions, which is the size of the supercell used in our
main ab initio calculations.

The theoretical and computational techniques used in
this work are summarized in the following section; in-
cluded in this section is an outline of the technique used
to correct our Coulomb interactions between periodic de-
fect images. Before attempting calculations on defects,
we have made extensive calculations on the properties of
the perfect crystal, the results of which have been
checked against experiment and previous theoretical re-
sults; this part of the work is described in Sec. III. The
defect calculations themselves are described in Sec. IV,
where we also present results showing how the valence
electrons are redistributed in response to the formation
and migration of vacancies. The significance of our
work, and the prospects for future calculations of the
present kind on other oxides are discussed in Sec. V. Our
supporting calculations based on an empirical model are
reported in the Appendix.

II. THEORETICAL
AND COMPUTATIONAL TECHNIQUES

We describe in this section first of all the general
theoretical framework of the calculations, and then the
issues involved in running them on a parallel machine.
We also outline the considerations that arise in treating
charged defects in periodic boundary conditions.

A. General framework

The calculations are based on the well-established
methodology of density-functional theory in the local-
density approximation (LDA), combined with the pseu-
dopotential technique. ' ' The total ground-state ener-

gy of the system for any set of positions of the ion cores is
found by determining the self-consistent orbitals of the
valence electrons, with the interactions between these
electrons and the magnesium and oxygen cores represent-
ed by ab initio nonlocal pseudopotentials. All the calcu-
lations are performed in periodic boundary conditions,
using as a basis-set plane waves up to a chosen cutoff en-
ergy.

The pseudopotential method has long been in common
use for nearly-free-electron materials such as aluminum
and silicon, but has only begun to be used for materials
containing first-row elements such as oxygen in the last
few years. The difficulty for these elements comes from
the fact that the valence 2p orbitals do not have core
states of the same angular momentum lying below them,
so that the cancellation theorem of pseudopotential
theory does not apply. ' ' Consequently, the p-wave
pseudopotential is strongly attractive, and the representa-
tion of the valence pseudo-wave-functions needs many
plane waves. This problem has been mitigated by the re-
cent development of "optimized" pseudopotentials. ' '

These are constructed as usual on the basis of all-electron
atomic calculations, with the condition of norm conserva-
tion, but with the additional requirement that the kinet-
ic energy associated with each pseudoorbital above a
chosen wave vector be minimized. A further key element
in the present work is that the Kleinman-Bylander repre-
sentation of the pseudopotentials is used. " This allows
the plane-wave matrix elements of the pseudopotentials
to be expressed in separable form, a feature which is
essential for calculations on the large systems needed in
the present work.

The oxygen pseudopotential we use has the optimized
form, with an optimization wave vector for the p wave
equal to 5.7 a.u. The reference atomic configurations
used to construct it were 2s 2p for the s and p corn-
ponents, and 2s 2p 3d for the d component, with
real-space cutoffs for these three components equal to
1.25, 1.25, and 1.45 a.u. The d-wave component was tak-
en to be the local part of the Kleinman-Bylander repre-
sentation. Optimization is not needed for magnesium,
and we have used the standard Kerker method of
pseudopotential generation, with reference ato-
mic configurations of 3s for the s component, and
3s 3p 3d for p and d components, and real-space
cutoffs of 1.38, 1.98, and 2.03 a.u. In this case, the s-wave
component has been treated as local. Both pseudopoten-
tials have been shown to be highly transferable over the
required energy ranges, and to be free of the "ghosts"
which can sometimes afHict the Kleinman-Bylander
form.

The computational strategy of the calculations incorp-
orates two key ideas of the Car-Parrinello method.
First, the ground state is determined by global rninimiza-
tion of the energy functional with respect to the plane-
wave coefficients of all the occupied orbitals (rather than,
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for example, by repeated diagonalization of the Kohn-
Sham Hamiltonian). This is essential for the very large
plane-wave basis sets and numbers of occupied orbitals
we have to treat. The minimization is performed by the
preconditioned conjugate-gradients technique developed
by Teter et al. Important features of the method are
that the orbital coefficients are updated in a band-by-
band manner, which allows a substantial saving of
memory compared with other methods (e.g. , Ref. 29), and
that variation of the Kohn-Sham Hamiltonian during the
minimization search is fully included, which avoids the
problem of "charge sloshing. " A second, unrelated,
concept borrowed from the Car-Parrinello method is that
of repeated transformation of orbitals from real to re-
ciprocal space and back. This exploits the fact that the
kinetic-energy operator is diagonal in reciprocal space
and most of the potential energy operator is diagonal in
real space. (A very recent advance not included in the
present work is the treatment of the Kleinman-Bylander
nonlocal potential in real space. ) Because of these re-
peated transformations, the calculations rely heavily on
efficient fast-Fourier methods.

Other, more minor, points of technique are as follows.
First, we note that in the Mg atom there is an appreciable
overlap between the 3s and 2p orbitals, which means that
the nonlinear core correction of Louie, Froyen, and
Cohen ' may be significant; we return to this question
later in the paper. Second, Brillouin-zone sampling is

essential, even for the 32-ion systems we use; we have
used the standard Monkhorst-Pack scheme. Third, the
exchange-correlation energy is represented by the usual
Perdew-Zunger form, though we shall mention the
effects of using other forms.

B. The parallel code

Only very brief details of the parallel code CETEP
(Cambridge-Edinburgh total-energy package) are given
here, since a full description will be published else-
where. In designing a parallel code for total-energy cal-
culations, the roost important issue is the strategy to be
followed in distributing the computation between proces-
sors. After considering a number of strategies, we have
concluded that for the parallel machines available to us at
present the optimal method is to parallelize over regions
of real or reciprocal space. This exploits the fact that
most of the terms in the total-energy functional are diag-
onal in either real or reciprocal space. Real space (or re-

ciprocal space) is divided into disjoint regions assigned to
different processors, which work independently on the
calculation of quantities in these regions. When perform-
ing fast-Fourier transforms between the two spaces, the
data need to be redistributed between processors. The re-
quirement that the amount of such redistribution be kept
to a minimum is one of the main factors in deciding how
to assign regions to processors. In our implementation,
each processor is in charge of either a set of planes on the
real-space grid or a set of columns on the reciprocal-
space grid, depending on the part of the calculation in-

volved. The efficieney of the calculations is enhanced by
assembly coding of the one-dimensional fast-Fourier cal-
culations which make up the three-dimensional trans-

form, and by specially written communication routines
for the redistribution of data across processors. Full de-
tails, and results on the timing and performance of the
code are given by Clarke, Stich, and Payne.

C. Charged defects in repeated geometry

The main focus of this work is on the energetics of iso-
lated vacancy defects. We perform the calculations in

periodic boundary conditions by having a single vacancy
in each repeated cell. Vacancies in MgO carry a net
charge: a Mg vacancy is formed by removal of a Mg core
without changing the number of valence electrons, while
an 0 vacancy is formed by removing an 0 core together
with eight valence electrons; the net charges of the Mg
and 0 vacancies are thus —2e and 2e, respectively. (We
note that other charge states are also possible; for exarn-

ple, under suitable conditions, F centers consisting of an
electron bound to an oxygen vacancy can be formed.
These, however, are not of interest here. We are also not
concerned in the present work with the unoccupied ac-
ceptor and donor levels associated with the vacancies, al-

though these are clearly of great interest. Our sole con-
cern here is with ground-state energetics. ) Because of the
net charges carried by the defects, the sum of the core
and electron charges in each supercell is not zero when a
vacancy is present. This gives rise to two questions: first,
how to ensure that the total energy per supercell makes
mathematical sense; second, how to correct for the in-

teraction of the vacancies with each other's polarization
fields.

These issues are not peculiar to ab initio calculations.
They arise in exactly the same form in the treatment of
charged defects with empirical interaction models. It is

well established' that charged defects can be treated in

periodic boundary conditions, provided we suppose the
net charge of cores and electrons to be compensated by a
uniform background. The residual Coulombic interac-
tion between defects can be derived by a simple physical
argument. ' According to this, the leading contribution
to the interaction energy per defect hE can be obtained

by regarding the defects as point charges in a uniform

dielectric, so that it is given by

b,E= —
—,'aq /eoL,

where q is the net defect charge, eo is the static dielectric
constant of the bulk crystal, L is the lattice parameter of
the supe rcell, and a is the appropriately defined

Madelung constant. When the defect formation energy is

obtained by subtracting the energy of the perfect system
from that of the defective system, the correction bE is

subtracted from the result to obtain an improved value.
In order to demonstrate the correctness of this pro-

cedure, we report in the Appendix calculations on vacan-

cies in MgO performed in periodic boundary conditions
with a well-established empirical interaction model. The
calculations demonstrate that the formation energies cal-

culated in this way converge rapidly with increasing su-

percell size, and that they converge to the values obtained

by applying the more conventional Mott-Littleton
method ' ' to the same interaction model. Migration
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energies are also shown there to converge rapidly. This
provides the justification for the extraction of formation
and migration energies from ab initio calculations on 32-
ion systems reported later in the paper.

III. THE PERFECT CRYSTAL

Before attempting calculations on defects, we have
made extensive tests of our computational methods on
the MgO perfect crystal. By making calculations on the
two-ion primitive cell, we have studied the influence of
the plane-wave cutoff, the number of Brillouin-zone sam-

pling points, the nonlinear core correction, and the
choice of exchange-correlation function.

Our tests on the plane-wave cutoff were made using
four Monkhorst-Pack sampling points, i.e., with the
scheme q =2 in the notation of Monkhorst and Pack.
Our results show that the total energy converges very
rapidly for cutoffs above 600 eV. For a cutoff of 1000 eV,
the total energy per unit cell is converged to within better
than 0.05 eV (i.e., 0.01% of the total energy), and all our
remaining calculations on the perfect crystal have been
performed with this cutoff. As we show below, a smaller
cutoff can be used when calculating energy differences.

In testing the convergence with respect to sampling, we
bear in mind that our main interest is in large systems
containing 16 or 32 ions. We wish to know how many
Monkhorst-Pack points are needed for these systems.
Provided we restrict ourselves to the perfect crystal,
questions like this can be answered without doing calcu-
lations on large systems. For example, a calculation on a
32-ion repeating cell of perfect crystal is precisely
equivalent to a calculation on the 2-ion unit cell per-
formed with an appropriately chosen "folded-out" sam-
pling set. Our tests show that I -point sampling is not
really adequate even for the 32-ion system, but that the
four-point set should be extremely accurate for the 16-
and 32-ion systems, giving an error of less than 0.01 eV in
the total energy per cell. However, for calculations on
the distorted 2-ion perfect crystal needed to obtain the
transverse-optic frequency (see below), the four-point set
is not adequate, and we have used 16 sampling points in
this case.

The core correction due to the nonlinear dependence of
the exchange-correlation energy on electron density pro-
duces important effects if there is a significant overlap be-
tween core and valence wave functions. ' The overlap is
negligible for oxygen, but the slight overlap for the mag-
nesium atom (Fig. 1) makes the correction worth investi-
gating. We have implemented the correction using the
standard procedure described by Louie, Froyen, and
Cohen. ' Its effects turn out to be small, but will be not-
ed below where appropriate.

Our calculated values of the equilibrium lattice param-
eter ao, the bulk modulus, the zone-center transverse-
optic frequency, and the four phonon frequencies at the X
point for this value of ao are listed in Table I. The re-
ported value of lattice parameter does not include the
core correction, which reduces it by 0.5%. This variation
is well within the uncertainty from other sources. For
comparison, the use of the Wigner form for exchange
correlation, instead of the Perdew-Zunger form used

valence density

0 0.5 1 1.5 2 2.5 3 3.5 4

I (a.u.)

FIG. 1. Contributions to the electron density p(r) as a func-

tion of radial distance r due to core electrons and valence elec-

trons in the neutral Mg atom, showing the slight overlap in the

region 1.5 —2.0 a.u. The densities are calculated in the local den-

sity approximation, using the Perdew-Zunger form for exchange
and correlation.

here, increases the lattice parameter by 0.9%%uo. However,
the core correction is included in the TO frequency,
which is the one case where it is significant. Without the
correction, the frequency is lower by 0.8 THz. The excel-
lent agreement with experiment for all quantities
confirms that technical aspects of the calculations are un-

der adequate control.
To provide a reference point for the results of the fol-

lowing section, we show in Fig. 2 our calculated density
distribution of valence electrons in the perfect crystal.
The strongly ionic nature of MgO, which is well known
from other calculations based on both the Hartree-Fock
and pseudopotential-LDA methods, ' is very clear from
the figure. The valence charge is almost entirely localized
on the oxygen ions, so that the magnesium ions are com-
pletely invisible. We hope to report elsewhere on the de-
tailed comparison between the present results for the den-
sity distribution and those produced by Hartree-Fock cal-
culations.

a, (A)
S (Mbar)
TO(I ) (THz)
TA(X) (THz)
LA(X) (THz)
TO(X) (THz)
LO(X) (THz)

Calculated

4.17
1.54

12.39
8.65

12.57
13.24
16.36

Experimental

4.21'
1 55 -1.62'

12.23'
8.96

12.65
13 15
16.61

aWyckoff (Ref. 26).
Sangster, Peckham, and Saunderson (Ref. 37).

'Anderson and Andreatch (Ref. 38).
Jasperse et al. (Ref. 39).

TABLE I. Calculated and experimental values of lattice pa-
rameter ao, bulk modulus 8, and five phonon frequencies of
MgO. Phonon modes are the transverse-optic mode at the I
point and the transverse and longitudinal-acoustic and -optic
modes at the X point of the Brillouin zone.



12 968 DE VITA, GILLAN, LIN, PAYNE, STICH, AND CLARKE

4.174 —'

Q QQQ

+-
I

4 '74

FIG. 2. Contour plot of the calculated valence electron den-

sity (units of 10 A ') on the (100) plane in perfect-crystal
MgO. The contours are uniformly spaced at intervals of

0
25X10 A '. Intersections of the grid lines mark regular-
lattice sites. Distance along the edge of the plot is indicated in
angstrom units.

tal energy of the system for a series of values of the relax-
ation coordinate. In the 32-site vacancy systems, where
there are many more degrees of freedom, we have made
use of our calculations based on the empirical interaction
model ' reported in the Appendix. The relaxed ionic po-
sitions given by this model in the same supercell
geometry turn out to be close to the relaxed ab initio posi-
tions; this can be established from the magnitudes of the
residual forces acting on the ion cores. We therefore get
accurate enough results for the relaxed total energy if we
use the empirically calculated relaxed positions in the ab
initio calculations. When this is done, the residual forces
on the ions are less than, and for most of the ions much
less than, 0.4 eV/A; from this, we can show that further
relaxation would lower the total energy by no more than
0.1 eV, which is not significant.

We report in Table II the unrelaxed and relaxed

TABLE II. Ab initio total energies of the periodic systems
used to study the energetics of defective MgO, together with the
resulting Schottky energy E& and cation and anion migration
energies 4E compared with values from experiment and from
empirical modeling. Ab initio results are shown for 16-ion and
32-ion supercells, with the individual energies numbered to al-

low the relations between them to be indicated. The correction
referred to in items (6) and (10) is the Madelung term given in

Eq. (1).

IV. DEFECT ENERGETICS
16 ions 32 sons

A. The Schottky formation energy

The Schottky energy Ez is the sum of the energies
needed to extract a Mg ion and an 0 ion to form iso-
lated relaxed Mg and 0 vacancies, minus the cohesive en-

ergy per ion pair. For a given size of cell, we therefore
need the energies of (i) the perfect crystal; (ii) the system
formed from (i) by extracting a Mg core; (iii) the system
formed from (i) by extracting an 0 core and eight elec-
trons. The quantity Ez is obtained as the small difFerence

between large energies and it is essential that the same
plane-wave cutoff and sampling vectors be used in calcu-
lating these three energies. Our calculations of E~ have
been performed for supercells containing 16 and 32 ions,
using four sampling points. For the 16-ion system, we
use a cutoff of 1000 eV. The 32-ion calculations employ a
cutoff of 600 eV, which corresponds to a basis set of
about 15 000 plane waves. The justification for using this
cutoff, which is somewhat lower than what we used for
the perfect-lattice properties, comes from tests performed
on the unrelaxed vacancy formation energy in the eight-
ion system. Calculations on this system show that reduc-
tion of the cutoff energy from 1000 to 600 eV changes the
Schottky energy by less than O.OS eV, even though the ab-
solute total energies are less completely converged.

Relaxation of the ionic positions in the vacancy sys-
tems is, of course, crucia1, because the relaxation energies
are substantial. In the 16-site system, this poses no prob-
lem since the cubic symmetry of the vacancy leaves only
a single positional degree of freedom, namely, the radial
distance of the ion immediately next to the vacancy.
Here, the relaxed geometry was determined from the to-

—7384.963
—461.560

—7339.924
—7341.224

43.739
44.987

—6961.171
—6962.754

422.209
423.457

Schottky energy:
(11) Ab initio (6)+(10)—(2)
{12) Experimental
(13) Empirical model

7.784
4 ~a

7.72'

6.884

(14) Migrating Mg vacancy
(15) Migrating 0 vacancy
Mg migration energy:
(16) Ab initio (14)—(4)
(17) Experimental
(18) Empirical model
0 migration energy
(19) Ab initio (15)—(8)
(20) Experimental
(21) Empirical model

aMackrodt (Ref. 43).
Sangster and Rowell (Ref. 44).

'Duclot and Departes (Ref. 45).
"Sempolinski and Kingery (Ref. 46).
'Shirasaki and Harma (Ref. 47).
"Shirasaki and Yamamura {Ref.48).

22 c2 28d

2.07'

2.42, '2. 61'
2.11b

—7338.831
—6960.273

2.393

2.481

(1) Perfect lattice (total) —3711.197
(2) Perfect lattice (per unit cell) —463.900
(3) Mg vacancy (unrelaxed) —3667.749
(4) Mg vacancy (relaxed) —3668.136
Mg extraction energy:
(5) Uncorrected (4) —(1) 43.061
(6) Corrected 44.633
(7) 0 vacancy (unrelaxed) —3284.272

(8) 0 vacancy (relaxed) —3285.718
0 extraction energy:
{9) Uncorrected (8) —(1) 425.479
(10) Corrected 427.051
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ground-state energies of the 16- and 32-site systems con-
taining either a Mg or an 0 vacancy, together with the
energies of the corresponding perfect crystals obtained
with the same cutoff and sampling set. The Mg and 0 ex-
traction energies obtained from these numbers are
corrected for the Coulomb interaction between periodic
images, as described in Sec. IIC. The static dielectric
constant eo entering this correction is taken to have its
experimental value of 9.86. The uncorrected and
corrected extraction energies for the relaxed vacancies,
together with the resulting values of the Schottky forma-
tion energy are given in Table II.

For both sizes of repeating cell, the calculated
Schottky energy is approximately 7 eV which is remark-
ably close to the predictions from empirical modeling,
which are also included in Table II. In judging the de-
gree of convergence with respect to cell size, reference
should be made to the results of calculations using an
empirical potential reported in the Appendix. These sug-
gest that further increase of cell size is unlikely to change
the results by more than a few tenths of an eV. The rela-
tion with experimental results will be discussed in Sec. V.

Because the defects carry net charges, we expect them
to induce a strong polarization of the surrounding lattice,
and to distort the electron clouds on neighboring ions.
The response of the electron density to the formation of
vacancies is conveniently studied by subtracting the elec-
tron density in the perfect crystal from that in the vacan-
cy system. To make this meaningful, we do this using the
electron density in the unrelaxed vacancy system, be-
cause otherwise the difference arising simply from the
displacement of the ions would confuse the issue. Con-
tour plots of this difference density on the (100) and (110)
planes for the Mg and 0 vacancies are displayed in Figs.
3 and 4. As for the perfect crystal (Fig. 2), the Mg ions
are almost invisible on these plots, since the electron den-
sity in their vicinity is so small.

In both plots, the prominent features represent the dis-
tortion of charge density on the neighboring oxygen ions,
which is considerably more complex than would be pre-
dicted by empirical models such as the shell model. ' '
For the Mg vacancy, the valence electrons on neighbor-
ing oxygens are repelled by the effective negative charge
of the vacancy. The figure shows that the charge redistri-
bution is due mainly to the distortion of the oxygen p or-
bitals pointing towards the vacancy. The double peak-
trough structure arises from the shift of charge within the
lobes of these orbitals. For the oxygen vacancy, the main
consequence of the effective positive charge on the defect
is seen to be not the polarization of the nearest oxygens
but the transfer of electrons from these neighbors to a
spherical shell region embracing the Mg neighbors of the
vacancy. The transfer is mainly from the p orbitals point-
ing towards the vacancy, and this leaves a prominent
quadrupole moment on the oxygen neighbors.

B. The vacancy migration energies

The vacancy migration energy for each type of vacancy
is obtained from a calculation of the relaxed ground-state
energy when the migrating ion is constrained to lie mid-
way between two neighboring half-vacancies on the ap-

(0) %
4.174

0.000 2.087 4.174

(b) &
4.174

0.000

0.000 2.951

FIG. 3. Difference valence density (defective system minus
perfect crystal) for the Mg + vacancy in MgO on (a) the (100)
plane and (b) the (110) plane. Density is in units of 10 A

0
with contours at intervals of 10 A ', and negative regions
shown shaded. Intersections of the grid lines mark regular-
lattice sites, with the vacancy site at the origin of coordinates.
Distance along the edge of the plot is indicated in angstrom
units.

propriate sublattice. These calculations have been per-
formed only on the 32-site system since empirical calcula-
tions (see Appendix) indicate that the 16-site system
would be too small. As for the formation energy calcula-
tions on the 32-site system, an explicit relaxation of ionic
positions has not been performed. Instead a good esti-
mate of the relaxed positions is obtained from the empiri-
cal calculations. The residual forces on the ions in the
self-consistent ground states give a guide to the addition-
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FIG. 4. Difference valence density (defective system minus
perfect crystal) for the 0' vacancy in MgO on (a) the (100)
plane and (b) the (110) plane. Other details are the same as for
Fig. 3.

al relaxation energy remaining, and allow us to conclude
that this is less than 0.1 eV. The Madelung correction is,
of course, independent of the vacancy position, so that
the migration energy is obtained by subtracting the un-
corrected energy of the relaxed equilibrium vacancy sys-
tem from the uncorrected energy of the relaxed migrating
vacancy system.

Table II gives our ab initio migration energies, com-
pared with the results of empirical modeling and experi-
mental values. The agreement between ab initio calcula-
tion and experiment is remarkable, the discrepancies for
both vacancies being no more than 0.2 eV. Contour plots
of the valence electron density for the saddlepoint

FIG. 5. Total valence electron density on the (100) plane for

(a) the migrating Mg
+ vacancy and (b) the migrating 0 va-

cancy. In both cases, the system is fully relaxed, with the mi-

grating ion held at the saddle point, midway between initial and
0

final sites. Units of density are 10 A ', with contours at in-

tervals of 10 ' A '. The plots are cut off for densities above

20 X 10 A '. Distance along the edge of the plot is indicated

in angstrom units.

configuration of the migrating vacancies are shown in

Fig. 5.

V. DISCUSSION

One of the main objectives of this work has been to
demonstrate the feasibility of calculating the energetics of
defects in ionic oxides such as MgO entirely from first

principles. In order to achieve this objective, it has been
essential to work with large systems, and at the same time
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to ensure complete convergence with respect to the size
of the basis set by using a sufficiently large cutoff energy.
Calculations of this kind are computationally extremely
demanding. The availability of a highly parallel comput-
er, and the development of the parallel computer code
cETEP described in Sec. II B were crucial to the success of
the project. However, we stress our belief that the
current rapid progress in parallel technology will make
calculations of the kind we have described routinely
available within a few years. Even with the 64-node
Meiko Computing Surface being used in this project, sub-
stantial improvements already achieved in the coding of
cETEp will enable considerably more ambitious calcula-
tions to be undertaken very soon.

Larger calculations are desirable. We have paid close
attention in this work to the convergence of the defect
energies with respect to the size of repeated system, and
we have sought to buttress our methods by making use of
comparisons with empirical modeling results. We have
argued from these comparisons that our ab initio results
for the Schottky and migration energies are probably
within a few tenths of an eV of the limiting values for
completely isolated defects, which is certainly accurate
enough for practical purposes. It is still true, however,
that the results would be further strengthened by calcula-
tions on larger systems. It would also be an advantage to
be able to relax the ionic positions without appealing, as
we have chosen to do here, to empirical modeling. Pro-
gress in both these areas is expected very shortly.

The comparisons with experiment that we have been
able to make fully confirm the reliability of our calcula-
tions. At present, the experimental situation is satisfacto-
ry only for the migration energies of the cation and anion
vacancies, where there is close agreement between
different experimental measurements. Our ab initio re-
sults reproduce these migration energies with remarkable
accuracy, the discrepancies of -0. 1 eV being comparable
with the spread of experimental values. The striking
similarity of the migration energies for cation and anion
vacancies, also predicted by the empirical interaction
models, is fully confirmed by our results. Unfortunately,
because the Schottky formation energy Ez is so large, the
concentration of intrinsic defects is minute even near the
melting point, and Es is therefore very difficult to mea-
sure experimenta11y. Measured values lie in the range
4—7 eV (see Ref. 43). Given this large uncertainty, it has
been necessary up to now to rely on the predictions of
empirical models. The close agreement of our ab initio
value for Es with the empirical predictions is therefore
important, because it confirms the reliability of empirical
modeling for this quantity. There are many other eases
where defect formation energies in oxides are difficult to
measure (see, e.g., Ref. 49), and we believe that the
present kind of ab initio calculation has much to offer in
this area.

An important assumption of the shell-model descrip-
tion is that electron redistribution consists only of an
effective displacement of the valence charge relative to
the core charge on each ion. Ab initio calculations on de-
fects are important because they allow us to study the
true charge redistribution in detail. The results we have

presented give only preliminary glimpses into this matter.
However, we have shown that the redistribution induced

by both the Mg and 0 vacancies is more complicated
than would be suggested by the shell model. This is par-
ticularly true of the 0 vacancy, where charge transfer
and quadrupolar distortion effects are clearly visible.
How these unexpected effects can be reconciled with the
apparent correctness of shell-model energetics will be an
important matter for future study.

Encouraged by the results of the present work, we are
now exploring the capabilities of the present techniques
by applying them to a series of other oxides. Calculations
on the energetics of Li Frenkel defects in Li20 have al-

ready been completed and will be reported soon. Work
on the bulk, defect, and surface properties surface of a-
A1203 (corundum) is also under way.
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APPENDIX: EMPIRICAL MODELING
WITH PERIODIC BOUNDARIES

We present here some results for the energetics of va-
cancies in MgO calculated using an empirical interaction
model in periodic boundary conditions. The aim of these
ancillary calculations is to give insight into the size of
system needed to obtain reliable results. In the ab initio
work presented in this paper, our aim is to obtain reliable
values for the formation and migration energies of isolat-
ed defects. In order to do this with confidence, we need
some idea of the way the calculated defect energies con-
verge as the size of the supercell tends to infinity. This
cannot yet be explicitly examined in the ab initio calcula-
tions, but it can be rather easily studied with empirical
models. In addition, the empirical results obtained in
periodic boundary conditions can be directly cheeked
against values obtained from the same empirical model
with the Mott-Littleton method. ' ' In this method, the
defect is directly treated in the infinite crystal, with a set
of ions in its immediate neighborhood handled explicitly,
and the remainder of the crystal treated as a dielectric
continuum.

In appealing to empirical modeling in this way, we are
making the reasonable assumption that the asymptotic
dependence of the energies on supercell size will be quali-
tatively the same in ab initio and empirical treatments.
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TABLE III. Values for the Schottky energy Es and the cat-
ion and anion migration energies hE in MgO calculated in
periodic boundary conditions using the empirical shell-model
potential of Sangster and Stoneham (Ref. 41). Results are
shown for a range of different sizes of supercells, and include
the Madelung correction [see Eq. (l)]. Also shown are the de-

fect energies calculated from the same interaction model for the
infinite crystal using the Mott-Littleton method [Sangster and
Rowell (Ref. 44)].

No. of ions Es (ev)
aE. (eV)

Cation Anion

16
32
54
64
128
250
432

7.03
7.03
7.41
7.34
7.55
7.60
7.63

1.58
2.36
2. 15
2.22
2.11
2.08

1.53
2.48
2.23
2.32
2.21
2.19

Mott-Littleton 7.72 2.07 2. 11

We have chosen to use the well-established interaction
model of Sangster and Stoneham, ' which is a shell model
in which the Mg and 0 ions have full ionic charges of 2e
and —2e, and interact via potentials of the standard

Born-Mayer-Huggins form. The supercell calculations
were performed using the computer code sYMLAT.
Since the computations are rapid, it is not difFicult to
treat systems containing several hundred ions.

Table III shows results for the empirically calculated
Schottky energy, including the Madelung correction de-
scribed in Sec. II C, and the cation and anion vacancy mi-
gration energies, for sizes of supercells going up to over
400 ions. For comparison, we also quote results from the
same interaction model obtained by the Mott-Littleton
method. A number of conclusions are clear. First, the
supercell values for all the defect energies converge quite
rapidly with increasing cell size to the Mott-Littleton
(infinite-crystal) values. Second, with the supercell size of
32 ions, the residual error in the Schottky energy Es is
about 0.6 eV, or somewhat less than 10%%uo. This accuracy
is already extremely useful. It suggests, though, that it
would be desirable in the ab initio work to go to systems
of 54 and 64 ions, which would substantially reduce the
error. Third, the migration energies are already rather
well converged for systems of 32 ions, the absolute errors
being about 0.3 eV. Again, the ability to go to the next
size of the supercell would give worthwhile improve-
ments. Enhancements in the coding of CETEP will make
ab initio calculations on these larger systems feasible in
the near future.
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