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The pair-distribution function g describes physical correlations between electrons, while its average g
over coupling constant generates the exchange-correlation energy. The former is found from the latter
by g =(1—aors/Bao)g, where ao is the Bohr radius. We present an analytic representation of g (and
hence g) in real space for a uniform electron gas with density parameter r, and spin polarization g. This
expression has the following attractive features: (1) The exchange-only contribution is treated exactly,
apart from oscillations we prefer to ignore. (2) The correlation contribution is correct in the high-
density (r, ~0) and nonoscillatory long-range (R ~ 00 ) limits. (3) The value and cusp are properly de-
scribed in the short-range (R ~0) limit. (4) The normalization and energy integrals are respected. The
result is found to agree with the pair-distribution function g from Ceperley s quantum Monte Carlo cal-
culation. Estimates are also given for the separate contributions from parallel and antiparallel spin
correlations, and for the long-range oscillations at a high finite density.

I. INTRODUCTION AND OUTLINE
The pair-distribution function g of an electronic system

is an observable, while its average g over coupling con-
stant e (where e is the charge of an electron) generates
the exchange-correlation energy. ' The electron gas
with uniform spin densities (n&, n~) provides an impor-
tant limit in which these distribution functions may be
studied. In this work, we will construct an accurate ana-
lytic representation for the uniform gas g, and test it by
comparing the corresponding g with that found in a

I

Monte Carlo calculation. We need an accurate analytic
representation of the uniform gas g as an input to the
nonempirical construction ' of a generalized gradient ap-
proximation for the exchange-correlation energy of a
nonuniform system. Our g should also be useful for the
construction of other nonlocal spin-density fenctionals,
e.g., the weighted density approximation. '

For any electronic system, the pair-distribution func-
tion (which depends upon e only through the Bohr ra-
dius ao=A' /me ) is'

g(ao& r&r ) l + ( p 215&(r)M(r') —n (r)5(r' —r)1+ i ) /n (r)n (r')

where 4 2 is the ground-state wave function with spin
densities n&(r , }nt(r) (n =n&+n&), and 5h(r)=it(r)

n(r) is th—e density fluctuation operator. Physically,
n(r')g(ao, r, r')d r' is the expected number of electrons in
volume element d r' at r', given that there is an electron
at position r. Thus g is non-negative.

The average of g over coupling constant is

g(ao, r, r') =( 1 —aot)/t)ao)g(ao, r, r') . (4)

The uniform electron gas is characterized by the di-
mensionless parameters r, and g, where

To recast Eq. (2) in a useful differential form, inultiply
both sides by e, differentiate with respect to e, and
change variable from e to ao. The result is

e2
g(ao, r, r')= dA, g(fi /mA, , r, r'),

e
(2) n =kF/3ir =3/4ir(r, ao)

g=(n& ni )/n . —
where the ground-state spin densities are held fixed by a
fictitious local external potential while the coupling con-
stant X is turned off. At A, =O, the wave function +& be-
comes a noninteracting Kohn-Sham wave function and
g(fi /m A, r, r') =g +g,, reduces to the exchange-only
pair-distribution function g . The exchange-correlation
energy of Kohn-Sham density functional theory is'

2 I

E„,=E„+E,= fd r fd r', [g(ao, r, r') l].C r' —r

(3)

Its exchange-only pair-distribution function
g„(g,kF1r' —r1) is independent of ao, while its correlation
contribution g, (r„g,kF1r' —r1) depends upon ao via r, .
Equation (4) becomes

g (r„g,kFR ) = ( 1 + r, d/dr, )g (r„g,kFR ) .

pair-distribution function

Here R =—1r' —r1, and kF is the Fermi wave vector of Eq.
(5). Fourier transformation (wave-vector analysis} of Eq.
(7) yields Eq. (90) of Ref. 9.

The exchange-only
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g„(g,kFR ) is presented in Sec. II. Its exact closed form
displays long-range (R ac ) oscillations which are ab-
sent from small systems such as atoms and molecules. In
Sec. II, we report a nonoscillatory model (g„) which
displays all the other principal features of g„.

%ang and Perdew used the random-phase approxima-
tion (RPA), which is exact in the high-density or small-
wave-vector limits, to uncover a simple scaling relation-
ship for the wave-vector analysis of the correlation con-
tribution g, in these limits. Fourier transformation back
to real space gives the high-density or nonoscillatory
long-range limit of g, as a function of a single argument
(scaled distance). In Sec. III, we report an analytic repre-
sentation of this function.

Section IV discusses the short-range (R ~0) part of g, .
We present a simple analytic expression for g, (r„(,0),
based upon Yasuhara's summation of ladder diagrams. '

Then the familiar cusp condition" on g is used to con-
struct a modified cusp condition on g. These results are
of special relevance to nonuniform systems, where the
value and cusp of g and g in the limit of r'~r are expect-
ed ' to be those of a uniform electron gas whose spin
densities n

&
and n

&
are the ones found at position r in the

nonuniform system.
Section V unifies the long- and short-range behaviors

into a single analytic representation for (g, ). From this,
we obtain (g, ) via Eq. (7). We show that our g agrees at
short and intermediate range (R /r, ao & 2) with the result
of Ceperley's quantum Monte Carlo calculation for
r, =2,5, 10 and (=0 and 1. Moreover, our expressions
are usefully transparent, revealing the underlying physics
of the pair-distribution function.

Section VI estimates the contributions from parallel
and antiparallel spin correlation. Finally, Appendix A
suggests a possible way to restore the long-range oscilla-
tions of g, for the case of finite but high density n.

Although other analytic representations of g or g are
available in the literature, none suits our purpose. Con-
tini, Mazzone, and Sacchetti' presented a model for g
(not g) with good nonoscillatory long-range behavior.
Chacon and Tarazona reported an expression for g
which is not exact for either g„or g, in the high-density
limit (where g„dominates). Neither of those representa-
tions extends to the spin-polarized case (%0. Wang and
Perdew constructed a Pade approximation for the
wave-vector analysis of g, but that expression cannot be
Fourier transformed analytically back to real space;
moreover, a numerical Fourier transform shows that the
value and cusp of g at R =0 are not accurately repro-
duced. Thus it is necessary to construct a new analytic
representation which preserves the principal features of
the exact g.

where
2

J( )
9 siny —y cosy

y =
3

dy y2J y3' 0

the exchange hole density integrates to —1:

f dR 4~R n(g„—1)=—1 .
0

(3) Since

(10)

dyy J(y)= —1, (12)

the exchange energy per electron is

oo 21I dR 4rrR n[g„—1]—=—
2 0 R

(4) Since for smally

J(y)~ —
—,'+ —,',y +

3e kF
(13)

(14)

the short-range behavior is

g„(g,k,R ) —,'(1 —g')+ "+~'"+"
20

X(kFR ) +

(5) Since for large y

(15)

9 cosy 9J(y)~ —— +
4y'

9 cos(2y ) + 7

(16)

the nonoscillatory part of the long-range behavior is
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It has the following important properties: (1) Since J ~ 0,
the "exchange hole density" n(g„—1) is nonpositive. (2)
Since

II. EXCHANGE-ONLY
PAIR-DISTRIBUTION FUNCTION

0.5 1.5

The exact exchange-only pair distribution function for
the uniform gas is

g„(g,kFR ) =1+—,
' [(1+()J[(1+()'~ kFR ]

+(1—g) J[(1 g)'~ k„R ]], —

FIG. 1. Nonoscillatory part of the pair-distribution function

(g ) (solid curve) and its coupling constant average (g ) (dashed
curve), for a uniform electron gas with density parameter
r, =0.5 and spin polarization (=0. The high-density hmit of
(g ) or (g ) is the exchange-only pair-distribution function
(g ) =g„(dots).
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g„(g,k~R )~1— +9

4(kFR )
(17) 0.05

Scaled Distance v = Qk R
S

where

(1+/)' '+(1—g)' '
p(g) —= (18)

A 1 + A +8+C 2 Dy

y 1+—,'Ay y

(19)

A nonoscillatory model (g„) with the other properties
listed above is obtained by replacing J(y ) with

0

-0.05

-0. 1

-0. 1 5

-0.2—

-0.25
2.5 7.5 10

M

'Tf
C
A

Q

5

where A =0.59, 8 = —0.543 54, C =0.027 678, and
D=0. 18843. For small and intermediate R(R/r, ao
&2), (g„) and g„are identical for most practical pur-
poses (Fig. 1). The first term of Eq. (19) is long ranged,
while the second is purely short ranged. Equation (19) is
a microcosm of the kind of analytical expression we shall
develop for (g, ) in Secs. III—V.

III. CORRELATION HOLE
AT LONG RANGE OR HIGH DENSITY

Wang and Perdew found that the high-density
(n ~ 00 ) limit of the correlation hole scales as

P (Pk, ) f, (u)
ng, (r„g,kFR )~

4+vao

where P(g) is given by Eq. (18),

k, =(4kF/mao)' =Kr,' kF

(20)

(21)

al+a2v+a3v 2

f&(u)= 2 3 4 '
1+blv+b2v +b3v +b4v

(22)

where a l
= —0. 1244, a2 =0.027032, a3 =0.002 341 7,

bl =0.2199, b2=0.086664, b3=0.012858, b4=0.0020.
Equation (22) provides a fit that is accurate v & 1, but less
so for 0&v &1; as a result, the integral J o dv ft(v),
which should vanish, turns out to be 0.009 514.

Now

is the Thomas-Fermi screening wave vector [with
K=(4/3m)(9n/4)'~ ], and u=pk, R. The same expres-
sion gives the long-range (R ~av ) nonoscillatory limit.
The function f&(u) has been evaluated numerically [see
Eqs. (7), (34), (37), and (42) of Ref. 9], and fitted to the
Pade form

FIG. 2. Shape functions f, ( v ) (solid curve) and f, ( v ) (dashed

curve) for the high-density limit (23) and (24) of the correlation
contribution to the pair-distribution function g and its

coupling-constant average g in a uniform electron gas.

f)(u)=2f, (u)+ —u f, (u) .1
(25)

IV. CORRELATION HOLE AT SHORT RANGE

We begin with the value of the pair-distribution func-
tion at the origin. Yasuhara' made an approximate eval-
uation of the electron-electron ladder interactions and
found

Figure 2 compares the shape functions f, (v) and f, (v).
Note that f, /f ~

varies from —, in the limit u ~0 to 1 in

the limit v —+ 00.
As expected for any system, ' the large-R nonoscillato-

ry asymptote of g, or g, for the electron gas,
2.25$/(k+R ), just cancels that of g„—1 from Eq. (17).
This asymptote is of order r, or e, while the small-R
asymptote of Eq. (23) or (24) is of order r, or e as expect-
ed from perturbation theory. The R singularity of the
small-R asymptote indicates the need for a special treat-
ment of the short-range behavior. We shall present a so-
phisticated treatment in Secs. IV and V. For now we
note that a sharp cutoff of all contributions to the corre-
lation energy of Eq. (41) from k+R/P less than some
constant, using the high-density limit of Eq. (23), pro-
duces a correlation energy which diverges as

2

(0.0311)P lnr, ,
ao

where r, ~0. This result is essentially the exact high-
density limit.

(g, (r„g,kFR ))~K 'p r,f&(Kpr,
' kFR )/(k+R )

(23)

With the help of Eq. (7), we find

' —2
(K rq)

g(r„g=O, kFR =0)=—2,. o i!(i+ 1 }!

We have evaluated the coupling-constant average

(26)

(g, (r„g,kFR ))~K 'p r,f, (Kpr, '~ k+R )/(kFR )

where

(24)
g(r„g=O, kFR =0}=—f dr, g(r,', /=0, kFR =0)1

S

(27)
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1+ar,
g(r„g=O, kFR =0)=-

1+pr, +apr,
(28)

numericaHy, and fitted the result to a simple Pade form Instead of solving this equation exactly, we use the Pade,
forms (28) and (29) to find H in the high- (r, ~O) and
low- (r, ~ac ) density limits, then interpolate between
them:

with a=0. 193 and p=0. 525. Then Eqs. (7) and (28) im-

ply

1+yr,H=
2+ 5rs +Ers

(35)

1+2ar,
g(r„(=O,kFR =0)=—

2 ( I+pr, +apr, )
(29)

Table I shows that these Pade forms are accurate enough
for practical purposes.

%'e adopt the exchange-only spin dependence of Eq.
(15) for the full pair-distribution function at the origin:

g(r„g, k+R =0)=(1 g)g—(r„(=O,kFR =0) . (30)

Equation (30) is clearly correct in the limits (=0 and 1.
Defining the correlation contribution g, =g —g„, we find
that g, (r„g,kFR =0)Ig, (r„g,kFR =0) varies from —,

' in

the high-density limit to 1 in the low-density limit, con-
sistent with the results for f, /f i from Sec. III.

Arising from the Coulomb repulsion between electrons
(and thus a pure correlation effect}, the Kimball cusp
condition is

where y =0.3393, 5=0.9, and a=0. 101 61. The approxi-
mation (35) makes the left-hand side of Eq. (34) deviate
from 1 by less than 0.1% for all r, .

(g, (r„g,kFR))=a 'P r, [f,(u)+fz]I(k+R)

where u =Irgr, '~ k+R and

(36}

V. ANALYTIC MODEL
FOR THE CORRELATION ROLE

Following the paradigm of Eq. (19), we now combine
the long-range behavior of Eq. (23} with the short-range
behavior from Sec. IV, to find the nonoscillatory part of
the correlation contribution to the pair-distribution func-
tion averaged over coupling constant:

or

dg IdR ls =p=g/apl =p (31)
f2=[—a, —(az a, b, )v+—c, v

—d(Ia)(k~R /i')
+c2v +c3v +c4v je (37)

ag/a(k, R )]p=, ;gl, .
4

Similarly g obeys a modified cusp condition

t}g/t}(k R)~ = r, Hg~
4

(32)

(33)

The first two terms of (37) cancel the R ~0 singularities
of f, ( v ) l(kF R ) . Note that the range of fi is set by the
range 2m P/kF of the exchange hole.

The coefficient c, in Eq. (37) is fixed by the value of the
pair-distribution function at the origin, Eqs. (28) and (30):

where H is a function of r, . The differential equation for
H is found by applying (1+r,d/dr, ) to both sides of (33),
and using Eq. (7) to equate the result to (32):

0.613 86(l —
g )

F5&2

1+ar, —1
I+pr, +apr,

c& = —0.001 252 9+0.1244p

(38)

g BH + 1 + g

p ~ s ~ p

H=1. (34)
where p=d(g)I(lr r, P ) Similar. ly the coefficient c2 is
fixed by the cusp condition of Eqs. (33) and (35):

TABLE I. Pair-distribution functions g and g at the origin
for a spin-unpolarized i(=0) electron gas with density parame-
ter r, . The Fade approximants (29) and (28) are compared to
"exact" values from Eqs. (26) and (27). The cusps
g' =Bg /B(kFR }~0 from Eqs. {32) and (33}are also evaluated for
the Pade forms.

TABLE II. The correlation energy per electron c, and its
kinetic-energy part t, for the uniform electron gas, from the ex-
pressions of Ref. 14 (hartrees).

g
Pade "Exact" Pade "Exact"

=0
&c

0.01
0.1

0.5
1

2
5

10
20
100

0.497
0.468
0.360
0.262
0.147
0.039
0.009
0.002
0.000

0.497
0.468
0.362
0.266
0.150
0.033
0.004
0.000
0.000

0.498
0.484
0.426
0.367
0.282
0.160
0.089
0.047
0.010

0.498
0.484
0.427
0.369
0.285
0.160
0.087
0.044
0.009

0.003
0.024
0.094
0.137
0.153
0.101
0.047
0.017
0.001

0.001
0.012
0.052
0.085
0.117
0.124
0.097
0.062
0.016

0.01
0.1

0.5
1

2
5

10
20
100

0.1902
0.1209
0.0766
0.0598
Q.0448
0.0282
0.0186
0.0115
0.0032

0.1595
0.0918
0.0511
0.0367
0.0246
0.0124
0.0066
0.0032
0.0005

0.0974
0.0626
0.0402
0.0316
0.0239
0.0154
0.0105
0.0068
0.0021

0.0820
0.0480
0.0272
0.0198
0.0136
0.0074
0.0042
0.0023
0.0004
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FIG. 3. Nonoscillatory part of the pair-distribution function

{g) {solid curve) and its coupling-constant average (g ) (dashed
curve), for a uniform electron gas with density parameter r, and
spin polarization g, compared with the result (heavy dots) of a
quantum Monte Carlo calculation of g (Ref. 4). r, =2, (=0.

c2 =0.003 389 4—0.054 388p

1+yr,
+0.392 70

P r, 2+5r, +sr,

1+ar,
1+Pr, +aPr,

(39)

oo , 1 e'f dR 4nR ng, = e, (r—„g) .
2 0

c
&0

c s (41)

The right-hand side of (41) is the correlation energy per
electron. We have recently proposed an accurate and

Finally, the coefficients c3 and c4 are formed by simul-
taneous solution of two linear equations, corresponding
to the normalization integral

r 4' ng, =0 (40)
0

and the energy integral

FIG. 5. Same as Fig. 3. r, = 10, (=0.

simple expression' for the dimensionless function
e, (r„g) &0. {By rewriting Eq. (41) as an integral over
kFR and invoking Eq. (7), we find

oo , 1 e'J dR 4nR ng',—= [s,(r„g) t, (r„g—)], (42)
2 0 R c c $&

c =0.10847p +1.4604p +0.51749p

3 5297c lp 1 9Q3Qc2p
l r2 + 1 .0685p 1np

+34.356$ c,(r„g)p

c4 = —0.081 596p —1.0810p —0.31677p

(43)

+1.9030clp +0.764 85c2p —0.710 19p lnp

—22. 836/ e, (r„g)p ~ (44)

where t, = —B(r,s, )idr, )0 is the kinetic-energy contri-
bution to e,(r„g). Table II presents numerical values for

and t, . Clearly t, arises from g, —g, . Since
lim„og, ig, =2, the high-density limit of t, is

S

Since lima „g,ig, =l, t, is free from the most long-
ranged correlations that contribute to c, . For generaliza-
tions of these relationships to nonuniform densities, see
Eq. (4) and Ref. 15).

From Eqs. (40) and (41), we find

Scaled Distance R/r a Scaled Distance R/r a
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0.5
0 4
0.3
0.2
0. 1

0.5

U

B.
O

O

'Ij

A
O

FIG. 4. Same as Fig. 3. r, =5, (=0. FIG. 6. Same as Fig. 3. r, =2, g= l.
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FIG. 7. Same as Fig. 3. r, =5, (=1. FIG. 8. Same as Fig. 3. r, =10, (= 1.

The coefficient d(g) in Eq. (37) is left as a free parame-
ter. We have found that

d(0) =0.305 —0. 1360 (45)

provides a good fit of (g ) =(g„)+(g,) [Eqs. (8), (19),
(7), and (36)] to Ceperley's quantum Monte Carlo data
for g (Figs. 3—8). The fit is least satisfactory for the fully
polarized ( g = 1 ) electron gas at low density, where the
Monte Carlo pair-distribution function shows the begin-
ning of an oscillation even for small and intermediate
R(R/r, ao S2). This energetically unimportant oscilla-
tion is not included in our model.

Our expressions reveal the underlying physics of the
nonoscillatory part (g ) of the pair-distribution function:
The exchange-only contribution of Eqs. (8) and (19) has
an amplitude of order (r, ) and a range of one Fermi
wavelength 2n /kF. In the high-density (r, ~0) limit, the
correlation contribution of Eqs. (36) and (7) to (g } or
( g ) has an amplitude of order r, (whence (g, }=2(g, })

and a range of one screening length 1/k, = I/(vr, ' kF).
In the low-density (r, ~ ae ) limit, the correlation contri-

bution becomes of order (r, ) (whence (g, ) = (g, ) ) with
a range of 2n. /kz, like the exchange contribution. The
high-density behavior of (g ) is shown in Fig. 2.

Because of the truncated expansion in Eq. (37), the an-
alytic model of this section breaks down for very low den-
sities (r, ) 10). Appendix B presents expressions for this
low-density regime.

VI. SPIN ANALYSIS
OF THE PAIR-DISTRIBUTION FUNCTION

Following Ref. 11, the pair-distribution function of the
uniform gas may be spin-analyzed as

2
I+&

2 2 2
(46)

A model for g, which permits us to use Eqs. (8), (19),
and (36) while respecting the normalization integrals, "

f dR 4~R n [g ~
—1]=—5

0

1S

g
t "(r„g,kFR ) =g [r„1,(1+()'~ kFR /2'~3],

g (~(r„g,kFR ) =g [r„—1,(1—g)'~'kFR /2'~'],

g "(r„g,kFR )=, g(r„g, kFR )—2

g2

2

'2

g(r„ l, (1+()' 3kFR /2' )

(48)

(49)

g(r„—1,(1 —g}' kFR /2' ) (50)

Equations (48)—(50) are exact at the exchange-only level
(where g„=1) for a11 R, and beyond this level for R =0.
These equations also correctly show that the most short-
ranged features of the correlation contribution g, or g,
(i.e., the value and cusp at the origin) arise purely from
antiparallel ($ $) spin correlation, while the most long-

ranged nonoscillatory feature of g, or g, (which cancels

that of g„—1) arises purely from parallel (1 1' and ll)
spin correlation. Note that Eqs. (30} and (50) make

g" (r„g,0)=g" (r„0,0) for all g. Of particular interest
is the problem of one down-spin electron in a sea of up-
spin electrons; according to Eq. (50)
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limg 1 t = [1+(kFR /6)t}/t}(kFR )]g(r„1, kFR )

—[tJ/"tJ(]g(r„g, k R )~& (51)

where the last term carries the value and cusp at R =0.
From Eqs. (41) and (48)—(50), the parallel-spin contri-

bution to the correlation energy e, (r„g) is predicted to
be

' 4/3 ' 4/3

e,(r„l ) . (52)

For /=0, this is typically less than half of the total
e, (r„0} .Clearly the tl contributions dominate" the
correlation energy of the spin-unpolarized electron gas,
and even more that of small systems which admit no
long-range correlation.

APPENDIX A: LONG-RANGE OSCILLATION
OF THE CORRELATION HOLE

AT HIGH FINITE DENSITY

While the long-range (R ~ Do ) nonoscillatory behavior
of g, or g, is associated with the small-wave-vector limit
k~0, the long-range oscillatory behavior arises from a
discontinuity of the second derivative of the wave-vector
analysis at finite k (=2kF when (=0). The relative
strength of this oscillation vanishes in the high-density
limit.

For a finite but high density, the random-phase ap-
proximation may suffice. Figure 2 and Table III of
Isihara and Ten Seldam' show the long-range oscillation
in g,"PA for /=0. The result is at least qualitatively

r, (r, +2E}RPA (gRPA)+ [(g ) g ]
(r, +E) (Al)

where E =2m(9m. /4)'~ = 12.06. (The exchange-only
pair-distribution function g„and its nonoscillatory model
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(g„) were presented in Sec. II.) From Eq. (7), we find
the average over coupling constant

Ps

g,""=&g," &+
S

(A2)

Note that the oscillation of g, or g, vanishes in the
high-density limit (r, ~0). In the low-density limit
(r, ~ oo ), we find within RPA (but not beyond it) a ten-
dency for the oscillation of g, to cancel that of g:
g„+g, ~(g„)+(g, ). In fact, the low-density lim-
it of the RPA correlation hole completely "screens out"
the exchange hole on the scale of the Fermi wavelength
2n. /k~: n(g" 1)—~—5(r' —r).

The only oscillation found in RPA is of the Friedel
type. Beyond RPA, a second oscillation of the incipient-
Wigner-crystal type appears at low density. We have not
attempted to represent this second oscillation here.

(g(ao, g,y)) =1—(I+py+I'jtt y +vy )e (B1)

where p = 1.0891 and v= —0. 1825. Equation (B1) has a
plausible shape, is properly independent of g, and
respects the normalization and energy integrals in this
limit.

For r, & 10, where the model of Sec. V breaks down, we
propose the interpolation formula

(g, (r„g,kFR ) ) =x (g, (10,g, kFR ) )

+(1—x )[(g( ao, g, ykFR ) )
—(g„(g,ykFR ) ) ], (B2)

where x is fixed by the value at the origin:

x =5.591(1+ar, )/(1+Pr, +aPr, ),
and y by the energy integral:

(1—x)[0.8959—0.2291[(1+/) +(1—g) ]]
[ —r, e, (r„g)+10xE, (10,() )

(B3)

(B4)

APPENDIX B: NONOSCILLATORY MODEL
FOR LOW DENSITY

A reasonable model for the low-density limit of (g ) or
(g(r„g,kt;R)) is
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