PHYSICAL REVIEW B

VOLUME 46, NUMBER 19

RAPID COMMUNICATIONS

15 NOVEMBER 1992-1

Nonparabolic confinement in quantum wire superlattices
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The high-frequency polarizability of quantum wires in a novel metal-insulator-semiconductor field-
effect transistor heterojunction is studied in the far-infrared regime. Whereas on conventional narrow
quantum wires only the fundamental mode of the dimensional resonance is observed, the quantum wires
investigated here exhibit higher harmonics. Additionally, at high electron densities and intermediate
magnetic fields we observe a completely unexpected splitting of the fundamental mode. The behavior is
discussed in view of nonparabolic confinement as well as interwire interaction.

Synthetic low-dimensional electron systems with
dimensionality below 2 are presently a subject of much
interest. For the realization of such systems the two-
dimensional (2D) electron gas in metal-oxide-
semiconductor systems or heterostructures has turned
out to be a very good basis. Much insight into the elec-
tronic properties of such systems is gained from investi-
gations of their far-infrared (FIR) excitations. They have
demonstrated that in etched,? as well as field-effect-
induced® low-dimensional electron systems, the bare
confinement potential V,,, is of parabolic shape in a very
good approximation. According to the generalized Kohn
theorem* the FIR conductivity exhibits a single dimen-
sional resonance at a frequency that corresponds to the
characteristic frequency of the bare potential. Here we
mean by ‘“bare potential” the potential induced by all
external charges contributing to the confinement as, e.g.,
charges on the gate pattern, in surface states or image
charges on the semiconductor interfaces, but not the elec-
trons that occupy the quantum wire or dot. Model calcu-
lations as well as experiments also demonstrate that the
electron systems usually are smaller than the lithographi-
cally defined patterns on the surface due to lateral de-
pletion widths of the order of some 10 nm. As a conse-
quence once the dots or wires in a superlattice are defined
they can be regarded as decoupled in a very good approx-
imation since wide barriers separate them. On the other
hand, for superlattices of strongly interacting dots>® in-
triguing properties are predicted.

For experimental studies of the effects of nonparabolic
terms in the bare potential and of the influence of interac-
tion in a superlattice new types of devices have to be fa-
bricated with a modified confinement scheme. The effect
of deviations from parabolic shape in the bare
confinement has been observed on Si-MOS (metal-oxide-
semiconductor) structures with a very versatile stacked
gate configuration.” If these structures are operated in
the so-called subgrating mode the FIR absorption exhib-
its several resonances. However, no signatures of in-
terwire interaction are reported and the magnetic-field
dispersion has not been investigated.” Here we investigate
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electron channels in a special type of Al,Ga,_,As/GaAs
heterojunction induced by positive gate voltages beneath
grating stripes which are considerably narrower than in
the Si-MOS devices.

Our samples are metal-insulator-semiconductor field-
effect transistor (MISFET) AlAs/GaAs heterojunctions.®
The heterojunction contains a back electrode buried 1.5
um beneath the heterojunction interface. The gate volt-
age is applied with respect to this electrode. The gate is
formed by a metal grating of period a and an aspect ratio
W /a =%, where W is the metal stripe width. At voltages
above a threshold voltage of typically V,;,=0.9 V, car-
riers are injected from the back electrode into the poten-
tial minima at the heterojunction interface. The 32 nm
thick barrier is formed by an undoped AlAs/GaAs super-
lattice and growth is finished by 10 nm undoped GaAs so
that at V, >V, we expect a capacitance of roughly
1.3X10'% e/cm?V beneath a homogeneous gate.®

Typical FIR transmission spectra on a device with a
grating gate of @ =350 nm are sketched in Fig. 1. The
radiation is incident normal onto the sample surface and
polarized normal to the grating stripes. At a frequency
of about 5, =30 cm ™! a strong resonance is observed that
hardly changes position with gate voltage. This reso-
nance is the fundamental mode and is the only excitation
observed for electron systems bound in a purely parabolic
bare potential. It corresponds to the center-of-mass
motion of all confined electrons in a homogeneous elec-
tric field. In presence of nonparabolic terms to the
confinement a redistribution of the FIR oscillator
strengths is expected so that besides the fundamental
mode higher harmonics of the dimensional resonance be-
come visible.® Indeed in the spectra of Fig. 1 a weak but
distinct resonance is found at higher frequencies of about
60-70 cm~!. The oscillator strength of this mode nor-
malized to the corresponding oscillator strength of the
fundamental mode first increases at low gate voltages
above threshold and then decreases again with a max-
imum at gate bias ¥, —V,;,=0.25 V. From this we infer
that the nonparabolicity of the bare potential is gate-
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( B=oT a = 350 nm electron wires. If the bare potential is parabolic an
[1% T- 22k analytical ansatz for the charge-density distribution can
x3 Vg~ Vih=0.15V be used for an estimate of the effective wire width and
W one-dimensional charge density N; from the experimen-
t tal resonance positions. The model'® assumes a classical
0.25V 2D charge-density distribution. Input parameters are the
s W maximum value of the density distribution and an
g effective dielectric constant & of the background. With
>» t 0.35V €=16.4 and a maximum density calculated from the ca-
(g W pacitance value given above we get, e.g., from the experi-
7 v mental resonance position in the samples with period
U FIR 19 a=350 nm a wire width of W_=200 nm and

N, =7X10°cm™'at ¥, —¥,;,=0.35V.
In Fig. 2 we depict the resonance positions measured
on the same device as function of a magnetic field B ap-
l ) U 'I:’etecmr plied perpendicular to the sample surface. The dispersion
20 20 50 80 100 of v,(B) is the same as measured previously in different

wave number (cm")

FIG. 1. FIR transmission spectra recorded on a heterojunc-
tion MISFET with a grating gate of @ =350 nm period and gate
biases of 0.15, 0.25, and 0.35 V above the inversion threshold.
The experimental setup is sketched in the inset.

voltage dependent.
The resonance frequency of the nth-order dimensional
resonance can be expected at®10

1+coth(g,d) |'” B
n1+coth(nqld) s n=1,2,3,....

Vi

\g!

Here n is the order of the mode, ¥, is the frequency of the
fundamental mode, ¢, =21 /a, and d is the separation be-
tween the gate and the electron system. The second fac-
tor of the right-hand side reflects the screening of the
charge-density excitations by the gate, which is less
effective at higher wave vectors n-q, that can be approxi-
mately assigned to the nth-order mode.!! Even modes
are optically inactive’ and the n =3 mode is expected
within this model at a frequency v;=1.95vV, above the
fundamental mode. This is close to the experimental
values.

We have investigated the dimensional resonances in
samples with different periods a of the wire array. In
samples with period a =500 nm the resonance frequency
of the fundamental mode is slightly (10%) lower com-
pared to the resonances in the sample with ¢ =350 nm.
The relative oscillator strength of the higher-order mode
is larger in the 500 nm samples. Since our different sam-
ples have approximately the same aspect ratio W /a the
latter indicates that the nonparabolic contributions be-
come smaller with decreasing widths of the gate stripes.
In samples with @ =250 nm the resonance frequencies of
the fundamental mode are considerably larger: ;=50
cm™!. Imperfections in this sample cause low oscillator
strengths so that a higher harmonic mode has not been
identified. In general, the relative oscillator strengths of
the higher-order modes are considerably weaker in our
samples than in wide electron wires in stacked gate Si-
MOS channels.” It is thus tempting to conclude that the
deviations from parabolic bare potential are small in our

wire arrays:® ¥,(B)*=%,(0>+%2. Here v, is the
cyclotron-resonance frequency. It is remarkable that the
fundamental mode is not affected at all when it crosses
the second harmonic of the cyclotron resonance. In con-
trast the n =3 mode exhibits a very pronounced an-
ticrossing with the second harmonic of the cyclotron res-
onance. We attribute this behavior to the different char-
acters of the two modes. The fundamental mode origi-
nates from the center-of-mass motion of the electron sys-
tem and is not associated with internal charge oscilla-
tions. This uniform mode is not expected to interact with
the cyclotron mode.”> In contrast the higher-order
modes are associated with internal oscillations of the
many-particle system. In this sense the higher-order
modes are analogous to charge-density excitations in 2D
systems which are known to interact with the second har-
monic of the cyclotron resonance.'>!* Similar behavior
has also been found for one-dimensional plasmons, i.e.,
charge-density excitations with the wave vector along
narrow electron wires.!*

We observe at high electron densities a completely
unexpected behavior of the fundamental mode. In the
sample of Fig. 2 the fundamental mode behaves only as
discussed above at gate voltages below V, —V,;, =0.35 V.
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FIG. 2. Positions of the dimensional resonances measured as
function of a magnetic field applied perpendicular to the sample
surface. Circles denote the positions of the fundamental;
rhombs the positions of the n =3 mode. Positions calculated
for the second harmonic of the cyclotron resonance are indicat-
ed by the straight line.
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FIG. 3. FIR transmission spectra of the fundamental of the
dimensional resonance recorded on the sample of Fig. 2 at
higher electron density.

At higher gate bias the fundamental mode splits in a
small magnetic-field range and shows an anticrossing be-
havior of the resonance oscillator strengths as demon-
strated in Fig. 3. The resonance positions in the corre-
sponding magnetic-field regime of samples with periods
a =250 and @ =350 nm are plotted in Fig. 4. The
strength of the splitting and the magnetic-field range are
independent of the polarization of the radiation with
respect to the wires. As indicated by the dashed lines the
resonance positions of the vanishing branches in both
samples converge to V=\/2VC suggesting an anticrossing
with a mode of corresponding magnetic-field dispersion.
However, so far no such excitation has been predicted for
an electron wire array. Apart from the range where the
fundamental mode splits the magnetic-field dispersion is
still well described by ¥,(B)*=%2+4%,(0)? as indicated by
the full line in Fig. 4. The unexpected behavior is only
observed if the gate bias exceeds a critical value that de-
creases with decreasing array period. In samples with
a =500 nm the splitting occurs at voltages V, — ¥V, =0.4
V. In devices with a =250 nm at voltages below
Ve—Vw=0.3 V the signal-to-noise ratio of the spectra
does not allow us to identify the presence of a splitting.
At higher gate voltages the oscillator strength is
sufficiently large to detect a splitting.

At present we do not have a model that describes the
splitting of the fundamental mode. From the presence of
the n =3 mode of the dimensional resonance one could
infer that the nonparabolicity of the bare confinement
also was responsible for the splitting. One thus might in-
voke an anomaly of the fundamental mode once the ex-
tension of the classical motion perpendicular to the wire
axis in a pure harmonic potential 27k /m *(w3+w?)!/?
becomes smaller than a critical width determined by the
strength of the nonparabolic contributions to the actual
bare potential. Power spectra of numerically evaluated
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FIG. 4. Resonance positions vs magnetic field recorded in
the magnetic-field range where the fundamental of the dimen-
sional resonance splits on (a) the sample of Fig. 3 and (b) a sam-
ple with period @ =250 nm. Circles denote the positions of the
fundamental; rhombs those of the higher-order mode. Positions
calculated for the second harmonic of the cyclotron resonance
are denoted by dashed lines. Full lines are calculated according
to ¥,(B)*=%3+%v2 with frequencies ¥,=30 and 50 cm™' ex-
tracted from the experiment in (a) and (b), respectively.
Dashed-dotted straight lines are calculated according to
¥(B)=V2%..

classical orbits!® in a model potential consisting of a har-
monic potential truncated by infinitely steep walls actual-
ly exhibit two distinct frequencies that behave similar to
our experimental data. This indicates that nonparabolic
confinement may be the cause of the splitting although a
sophisticated calculation of the magnetic-field dispersion
has to include intrawire electron-electron interaction
even for the fundamental mode. We note that with the
potential models used so far for such calculations no such
splitting of the fundamental mode neither in semiclassi-
cal’ nor in quantum-mechanical'® theories are predicted.

We also consider interwire interaction as a possible ori-
gin of the splitting. Since interwire Coulomb interaction
increases with decreasing wire separation and increasing
electron density'® this would be in correspondence with
our observations. However, it would imply a sudden
change of the interaction at a critical magnetic field and
we do not understand why the magnetic field should have
such a dramatic effect on the interaction potential. Cal-
culations of collective excitations in an array of interact-
ing wires published so far do not consider a magnetic
field.!" '8

Note added in proof. We have learned recently that a
similar splitting of the fundamental mode in a magnetic
field has also been observed by Gerhardts et al.!® in
different samples.
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