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Transport spectroscopy of a confined electron system under a gate tip
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Conductance resonances measured for split-gate structures around threshold are interpreted in
terms of single-electron tunneling through a quantum dot beneath the tip of the gate 6nger. Mea-
surements at different values of source-drain voltage allow the spectroscopy of excited states for
a 6xed number of electrons in the quantum dot. The measured magnetic-6eld dependence of the
conductance resonances is consistent with a minimal number of seven electrons in the quantum dot.
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FIG. 1. Conductance a vs gate voltage V~ for difFerent
temperatures T. Inset: Top view of the split-gate structure.
The circle represents the region where we imagine the quan-
tum dot.

Coulomb-blockade effects were recently studied in ar-
rays of small metallic tunnel junctions and also in semi-
conductor systems where a quantum dot is defined by
split-gate techniques. i The Coulomb-blockade theory, de-
veloped for metallic systems has been applied to dots
with a large number of electrons, taking into account
the discrete energy-level spectrum in the dot, ~ 4 and was
used in experiments with a few tens of electrons. s

We present here investigations of conductance reso-
nances appearing in split-gate devices around threshold.
We interpret them in terms of transport through a quan-
tum dot with a small number of electrons localized be-
neath the tip of a gate finger.

The metallic split-gate structure was deposited
on a GaAs-A1, Gai, As heterostructure with a two-
dimensional electron gas (2D EG). The 2D EG has an
electron density of 3.4 x 10 m and an electron mo-
bility of 60 mz/Vs at a temperature T of 4.2 K. The
geometry of the split-gate structure is shown in inset of
Fig. 1. The 2D EG and the gate are separated by 86 nm.
For the measurements at temperatures below 1 K a fixed
voltage VGz is applied to gate 2, so that the 2D EG under
and around this gate is depleted (V~z = —1 V, threshold
is at —0.26 V). While sweeping the voltage VG, of gate 1,
the current through the device is measured with an ac
lock-in technique (effective ac drain source voltage is 5

pV, ac frequency is 13.4 Hz). A dc bias voltage could be
added to the ac voltage.

Figure 1 shows a plot of conductance o versus
gate voltage VG measured for different temperatures T.
Around threshold we observe several sharp conductance
resonances. Whereas the shape and amplitude of the
conductance peaks are not affected by V~z, the posi-
tions are shifted slightly by the same value for all peaks
(b,VG/KVGz = 9 x 10 ). Similar conductance reso-
nances are seen for several samples. A warming-up and
cooling-down process changes the conductance traces,
but conductance resonances appear in all cases. Con-
sidering the insensitivity to the gate voltage VGz and the
vanishing of the conductance in between peaks, trans-
port around threshold seems to take place through elec-
tronic states confined beneath the tip of the gate fin-
ger. This confined system is formed by spatial potential
fiuctuations which are caused by charged impurities pos-
sibly induced by the gate processing with electron-beam
lithography. When increasing the voltage on gate 1 while
keeping the voltage on gate 2 at a strong negative value,
transport has to start at the tip of gate 1. The mea-
surements, presented in the following, can consistently
be interpreted in terms of transport through a quantum
dot of the size of the tip of the gate, which has a diameter
of 150 nm. The position of the dot is marked in the inset
of Fig. 1 by a circle.

For transport through confined systems weakly cou-
pled to the leads, Coulomb-blockade effects are expected.
Gate voltage difFerences between conductance peaks are
then given by the difference of the chemical potentials (
for successive numbers of electrons in the confined system
plus a Coulomb term e /C: b.V~ = (o.e) [((N + 1)—
((N) +ez/C], where C describes the sum of the geometri-
cal capacitances between the dot and the gates (Ct ) and
leads (Ct, C„).o. = CG/C is the scaling factor between
gate voltage and energy scale in the dot. The chemical
potential $ describes the change of total ground-state en-
ergy of interacting electrons when adding one electron in
a confinement potential whose minimum is fixed at zero.
For noninteracting electrons in the quantum dot ((N) is
equal to the single-electron eigenenergy E~.

Several remarkable features are seen in Fig. 1. Whereas
at higher temperatures the peak shapes are symmetric
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with gate voltage, as also observed in Ref. 5, they are not
symmetric at the lowest temperatures. The full width at
half maximum (FWHM) of the three lowest-lying con-
ductance peaks increases linearly with temperature with
the same slope for the temperature range given in Fig. l.
From this temperature dependence of the FWHM one
gets the scaling factor a for the changes in VG and the
shift of the energy levels in the confined system related
to the Fermi energy of the 2D EG reservoirs. As in Ref. 6
we assume a transmission resonance with I'II the intrinsic
FWHM between two fermion baths. To a first approxi-
mation the FWHM is then given by (o;e) (I'o+3.5k~T)
with k~ the Boltzmann constant and we obtain o. = 0.5
for our system. In Fig. 1 the amplitudes of the two lowest-
lying peaks 1 and 2 are constant for the temperature in-

crease between 25 mK and 0.3 K and decrease at higher
temperatures. Conversely the amplitudes of peaks 3 and
4 increase for T ) 0.2 K. A decrease in amplitude with
increasing temperature is expected for well-separated en-

ergy levels in a quantum dot when the thermal broaden-
ing in the leads exceeds the intrinsic width of the reso-
nance state. s ~ An increase in amplitude can be explained
by an adjacent state with a higher transmission through
the barriers. By thermal overlap with this adjacent state
the peak amplitude will rise and the conductance peak
position in VG will change, as observed for peaks 3 and
4 at higher temperatures. The apparent classification of
peaks into pairs (1+2, 3+4) will be discussed later in
more detail.

In the measurement of Fig. 1 the dc bias voltage VDs
was fixed at zero. Figure 2(a) shows the difFerential con-

ductance 6I/has versus VG at difFerent VLis. For in-

creased dc bias the conductance peaks are broadened,
and within the ranges of finite conductance additional
peaks appear. In Fig. 2(b) the peak positions which
correspond to steps in I(V~s, V~) are plotted in the
UD~ —UG plane. For comparison the peak positions ob-
served for a magnetic field B = 1 T perpendicular to the
2D EG are also shown.

In the following we discuss these observations in terms
of single-electron tunneling. 4 During transport the num-

ber of electrons in the dot has to change from N to
(N + 1) and then from (N + 1) to N (cotunnelingi as
a second-order efFect is not considered here). The en-

ergy needed in adding the (N + 1)th electron to the
dot is given by the chemical potential ((N + 1) plus
the electrostatic energy change AU(N + 1, V~, Vins) =
e /2C+ e(Ne —CGVG —C„VDs)/C calculated for the
circuit shown in Fig. 3(a) while V~ and VLis are fixed.
During tunneling through the barriers (from an occupied
state in the emitter reservoir into the dot and from the
dot into an empty state in the collector reservoir) the en-

ergy must to be conserved. So at T = 0 K transport may
occur if

pa ) ((N + 1) + b, U(N + 1, VG, VLgs) & ILIA. (1)

(a) CG

p@ (p~) is the electrochemical potential of the emitter
(collector) reservoir. For positive (negative) VLis in our
circuit, as shown in Fig. 3(a), the electrochemical po-
tentials are given by y@ = s~ + e~VDs~ (p@ = sF) and

pc = sF (pc = s~ —e~V~s~), where sF is the Fermi

energy of the 2D EG in the reservoirs.
For nonzero dc bias VDg the interval in which VG satis-

fies Eq. (1) is broadened. The boundaries between trans-
port and blockade in the Vins —VG space are sketched in
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FIG. 2. (a) DifFerential conductance 6I/6VDs vs gate
voltage changes AVo for different dc bias voltages Vos (B = 0
T, T = 730 mK). (b) Positions of the maxima of the differ-
ential conductance in the V~g vs AV~ plane for B = 0 T
and B = 1 T. The peak indices are given above. Large dots
correspond to large amplitudes.

FIG. 3. (a) Schematic circuit used for the interpretation.
(b) The difFerent regions of conductance in the Vos vs AVo
plane. The shaded regions representing transport surround
regions of blockade vrhere the number of electrons is 6xed to
N, to (N+ 1), etc. Dashed and dotted lines describe steplike
increases in the conductance and are explained in the text.
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Fig. 3(b). The slopes of the boundaries are given by the
ratio of the capacitances which can be calculated from
Eq. (1). From Fig. 2(b) these ratios are obtained for
peak 1: C„/CG = 0.7, (Ci + C~)/C~ = 1.9. Conse-
quently o. = CG/C is 0.4 6 0.1, which agrees with the
value obtained from the temperature dependence. From
peak 1 to peak 4 the ratios increase. For peak 2 we have

C„/C~ = 0.9, (Ci + CG)/CG = 2.3. They are differ-
ent because the geometrical capacitances depend on the
spatial charge distribution.

In the regime of single-electron tunneling the conduc-
tance is increased for increased dc bias if during trans-
port the dot can go either into the ground state or ex-
cited states of the (N + 1) electron system. As the
energy ('(N + 1) for an excited state is higher than
the chemical potential ((N + 1) the conductance is in-
creased when ('(N+ 1) + 6U(N+1) & p@. This de-
scribes boundaries in the V~ —VDs plane [dashed lines
in Fig. 3(b)] where an increase in conductance is caused
by opening a new channel for tunneling at the emitter.
At fixed V~s the difference between current steps oc-
curing at different gate voltages V~ and VG is given by
VG —VG = (ne) i [("(N + 1) —((N + 1)].

Another channel is opened at the collector at suffi-

ciently large dc bias V~s, when the dot can stay either in
an excited state or in the ground state of the N electron
system after the (N+ 1)th electron has left the dot. The
condition is ((N + 1)—(' (N) +((N) +6U(N + 1) & pc .
Such boundaries are sketched in Fig. 3(b) as dotted lines.
The distance between current steps reached for difFerent
gate voltages VG and V& at fixed dc bias is given by
Vg —VG ——(ne) i [('(N) —((N)].

The coupling of the different electronic states of the
dot to the leads and the asymmetry of this coupling de-
termine the observability of the current steps. s Compar-
ing Fig. 2(b) with Fig. 3(b), one can see for peak 1 and
positive V~g at B = 0 T excited states of the N electron
system are observed, whereas at B = 1 T an excited state
of the (N + 1) electron system is seen.

In Fig. 4(a) the magnetic-field dependence of the con-
ductance o versus VG is shown. The magnetic field B
is perpendicular to the 2D EG. For large B the ampli-
tudes of all peaks are suppressed since the transmission
through the barriers decreases with B. In accordance
with this argument the intrinsic peak widths and cotun-
neling effectsi decrease. So peaks become well separated
with increasing B. In addition, there is simultaneous
modulation of the peak amplitude and shift of peak po-
sition. The peak positions versus magnetic field B are
plotted in Fig. 4(b). As in the case of the temperature
dependence, peaks 1 and 2 and also peaks 3 and 4 show a
similar behavior. This pairing of two peaks is understood
in the one-particle picture of noninteracting electrons by
the spin degeneracy of the energy states. So in the 0 (VG)
characteristics two peaks just separated by the Coulomb
energy should appear. The gate voltage difFerences be-
tween peaks 1 and 2 and peaks 3 and 4 are not the same.
This may be explained by electron-electron interaction in
the dot or changes in the capacitances caused by a rear-
rangement of the charge distribution in the dot and/or
by the repulsion of the 2D EG in the leads for more neg-
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FIG. 4. (a) Conductance 0 vs gate voltage VG for mag-
netic fieMs B = 0 T to 4 T at T = 730 mK. The peak indices
are given above. (b) V~ values of peak maxima vs magnetic
field B. The peak indices are given to the right.

ative gate voltages. As pointed out in the discussion of
Fig. 2(b), the ratios of the capacitances differ from peak
to peak.

As expected from Eq. (1), changes in the chemical po-
tential ((N+1) with magnetic field move the position Vt

of the conductance peak. For a qualitative understanding
we compare our data with the one-particle energy levels
versus magnetic field calculated by Focks for a circular
symmetric parabolic confinement and assume that the
chemical potential ((N+1) reflects the magnetic-field de-
pendence of the one-particle energy E~+.i of the highest
occupied one-particle state. At magnetic fields, where a
crossing of eigenstates belonging to difFerent Landau lev-
els occurs, the character of the (N+1)th state is changeds
affecting the amplitude and the position slope 6VG/bB of
the corresponding conductance peak. Peak 1 would cor-
respond then to (N + 1) = 7, peak 6 to (N + 1) = 12.
At low temperature even the slopes [bV~/b(hue) = 1.6
and —0.9] obtained from our data for peak 2 at B = 0.7
T are consistent with Fock's calculation for the eighth
state at the crossover of the eigenstate belonging to the
first Landau level and the eigenstate belonging to the sec-
ond Landau level. At this crossing the ratio between cy-
clotron energy hu~ and confinement energy Leo is 0.76,
from which an efFective confinement energy 0.7 meV for
our system is obtained (for peak 1 it is 1 meV).

In the one-particle picture it is expected that the tran-
sition between difFerent Landau levels occurs at the same
magnetic Geld for the two electrons occupying the same



J. LEIS, R. J. HAUG, K. V. KLITZING, AND K. PLOOG

spin-degenerate state (spin splitting for the bare g factor
in GaAs is small). This is not in agreement with our data
(see peak 1 and 2). McEuen et al. s observed the same de-
viation and have recently reinterpreted their data taking
into account the Coulomb interaction in the dot.

In conclusion, we have presented conductance mea-
surements interpreted in the picture of single-electron
tunneling through a quantum dot with few electrons un-
der the tip of a gate finger. Differential conductance mea-
surements in the V~ —VDg plane yield the ratio of the

geometrical capacitances used in the model for a fixed
number of electrons and are used as a tool for studying
the spectroscopy of excited states.
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