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We pi. esent a method which uses a tight-binding basis set to describe the energetics of covalent bonds.
&V'hile h aving the same ability to model covalent bonding, the current method is significantly faster than
the direI:t diagonalization of the tight-binding Hamiltonian, and has the merit of being linear in the size
of the s I~stem, resulting in the ability to do molecular dynamics for thousands of atoms. At present, the
raethod works only for systems with fixed bonding topologies.

The tight-bindini; (TB) method has been frequently
used to do molecu]ar dynamics (MD) in recent years. '

However, the direct diagonalization of the TB Hamiltoni-
an matrix scales as the cube of the system size. The re-
cursion method of &olving the TB Hamiltonian is linear
in the size of the system, but a large prefactor is needed,
making TB impractical to be used dynamically for
thousands of atoms. While superior to three-body poten-
tials, ' TB is a model which approximately incorporates
quantum-mechanica. l features of the system and uses its
Ham:iltonian matrix parameters to fit the experimental or
ab in, itio computational results. In this paper we will in-
troduce another model which can be thought of as an ap-
proximation to the TB solution, but has the same ability
as the TB solution to fit ab initio data. The great speed of
this model makes it possible to do MD for thousands of
atoms and for thousands of time steps.

In this paper, we will follow the tight-binding bond
model of Sutton et a/. But instead of solving the band
energy exactly by direct diagonalization of the TB Hamil-
tonian or the recursjIon method, we will use maximally lo-
calized wave functions (LWF). The LWF's are generali-
zations of the Wannier functions of periodic systems.
Like the Wannier fU.nctions, the LWF can be achieved by
a unitary transformation of the eigenfunctions and can be
used to describe the system and get the band energy. Us-
ing the variational principle, we will minimize the band
energy and solve the LWF (i.e., the coefficients of LWF
based on the TB basis). The LWF's are orthonormal. As
an approximation, one can truncate each LWF within a
specific local region. For large enough regions, this
should be a good approximation because the LWF's de-
cay exponentially at large distances for systems having a
gap. As a simple model, we use only linear combina-
tions of the TB bases of the two atoms of a covalent bond
to form a LWF and use this LWF to describe that bond.
If the orthogonality condition between different LWF's
were enforced exactly, there would be two problems.
First, because the basis set for each LWF is very small,
the orthogonality condition between neighboring wave
functions will drive the total energy high above its
correct value. Second, it is difficult and slow to imple-

ment the exact orthogonality condition computationally.
Consequently, we will relax the orthogonality condition.
Instead of enforcing the exact orthogonality condition,
we will use a penalty function to mimic its effects. Then
the total energy to be minimized by variation is
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Here, the f; is the LWF for bond i, n is the total number
of bonds in the system, and each LWF is normalized to
one. 0 is the tight-binding Hamiltonian matrix. The
orthogonality of the tight-binding basis is assumed as in
conventional TB theory. The last term in Eq. (I) is the
penalty function for the lack of exact orthogonalization
between P s. If A, equals infinity, the orthogonalization
will be exact, and the magnitude of the last term is zero.
However, it is difficult to variationally minimize E for
very large k. The current method is based on the
discovery that in order to match the correct energy and
to get a good electron density, a small A, is needed. The
smaller the localized basis set used in the description of
the LWF, the smaller k needs to be. For our LWF, the
proper k is larger than, but of the same order as, the
Hamiltonian matrix elements. Because k is so small, the
conjugate gradient scheme can be used efficiently to min-
imize the energy in Eq. (I), and the A, term in that equa-
tion does not slow down the convergence of the conjugate
gradient scheme. Thus the introduction of the penalty
term and the small size of A, have solved the two prob-
lems mentioned above. Equation (I) is the main equation
in the current method; its properties will be discussed
below.

In this paper, we chose silicon in the diamond struc-
ture as our example. There are four sp basis functions
on each atom in the conventional tight-binding treat-
ment. We will use the same basis set for our LWF. Us-
ing that basis set, each LWF has only eight coefficients.
For the conjugate gradient algorithm, we need the func-
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tional derivative of E:

E=Hg, +A, g (g, tP, )g
j=neighbor of i

(2)

Vsso ~spa Vpp~ Vppm Ep —E,

TABLE I. Overlap matrix elements of tight-binding Hamil-
tonian. The parameters are in eV. The k in Eq. (1) correspond-
ing to the values in the second row is 19.503 eV.

Starting from this steepest-descent direction, one can get
the conjugate gradient search direction by the conven-
tional conjugate gradient step, and then carry out the line
minimization along that search direction simultaneously
for all wave functions. For the purposes of comparison to
the direct diagonalization tight binding (DDTB), we fol-
low the work of Wang, Chan, and Ho (WCH). We com-
pare the results of the current method to the DDTB re-
sults. The tight-binding matrix elements shown in Table
I are chosen from Chadi's work, ' as used by WCH. The
1/r radial-dependent form of the Hamiltonian matrix
elements are used as in Ref. 9. Using the same Hamil-
tonian matrix parameters as in DDTB, to get the right
total band energy by the current model, it is necessary
that the value of k be 7.94 eV. Using this A, , the electron
density on each basis is found to have a root-mean-square
error of 4%%uo comparing to the DDTB density. Although
qualitatively similar, the energy changes (which corre-
spond to frequencies and forces) for some atomic dis-
placements can have errors as large as 50%. However,
this does not mean we cannot use this method. As dis-
cussed above, we are seeking a model which, like the
tight-binding model, correctly incorporates the most im-
portant quantum-mechanical features, and hence can fit
the ab initio data with good precision. Because in the ex-
act tight binding the Hamiltonian matrix parameters are
varied to fit either the electronic band structure" or the
energetics of the systems, ' it is legitimate here for us to
do the same thing. This readjustment of the Hamiltonian
matrix is used to compensate the effects of the locality of
the wave functions and the relaxation of the orthogonali-
ty condition. It is much like what was done for the
DDTB Hamiltonian matrix when the tight-binding basis
set overlaps are ignored. ' The real test is to see how well
this model can be used to fit the ab initio or experimental
data and how does that compare to the ability of the
DDTB model. Although the final goal is to fit the ab ini-
tio or experimental data to get the best parameters, in
this paper, we also want to know how well this model can
replace the DDTB model. For this purpose, we have
fitted the Hamiltonian matrix parameters and the A, to
the DDTB data. The resulting parameters are shown in
Table I. To get these parameters, we have minimized the
errors in several phonon modes and elastic constants with
respect to the DDTB results. As can be seen from Table
I, the new parameters are significantly different from the
old ones, but are still qualitatively similar. The current
model with the new parameters typically has the band en-
ergy versus atomic displacement curves within 8% of the
DDTB results. In Fig. 1, we show one such energy
curve. One can see, despite a consistent difference, these
two curves look very similar, including the unusual
feature at large displacement. In order to get the total
energy, energy terms other than the band energy must be
included. Following Refs. 5 and 9, we use a pair poten-
tial to approximate these energy terms. To do that, we
have the ab initio total energy (per atom) taken from Yin
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This work
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(4)

Here for DDTB we have A p
= —10.4504 eV,

A, =6.9148 eV/A, A2= —4.9244 eV/A, A3=2. 7729
eV/A, A4 = —1.4406 eV/A, and for the current model,
we have A o

= —9.912484 eV, A, =7.2977 eV/A,
A2= —4.6644 eV/A, A3=2.6710 eV/A, A~= —1.5721 eV/A . These two curves look rather similar.
Then the pair potential can be defined as

4(r)= —,'[E„,(r) —Eb,„d(r)] . (5)

After this step, we can compute phonon frequencies and
elastic constants. We repeated the quantities computed
in WCH, and the results are shown in Table II. The
DDTB results have a very small difference from the
values in Ref. 9, due to different parametrizations for
Eb,„d. Between the current method and DDTB, there is
a 4% difference for phonon frequencies and 2 —4%
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FIG. 1. Energy curves for a displacement of one atom. One
atom is moved from its equilibrium position in one direction
and the band energy is plotted vs the displacement of that atom.
The thick line is DDTB and the thin line is the current model.

and Cohen' and WCH (Ref. 9) for silicon in the diamond
structure and fitted in the following form:

E„,(r) =Eo[1+(r ro)—/A] exp[ (r —ro)/—A] (3)

with Ep = —4. 8060 eV, rp =2.3627 A and A
0=0.5076 A. Here r is the interatomic distance. The

band energy per atom for the current and DDTB results
for the same structure are fitted to a fourth-order polyno-
mial, which is
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TABLE II. T=O K equilibrium properties of diamond Si.
Unit of lattice constant is angstrom. Unit of elastic constants is
10" erg/cm'. Unit of phonon frequencies is THz. For the
definition of the mode-Gruneisen constants y, see Ref. 14. The
ab initio LDA results, experimental results, and the Stillinger-
Weber (SW) results are all quoted from Ref. 16.
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FIG. 2. Atomic forces for the random displacement de-
scribed in text. Each circle represents one atom. The straight
line stands for (DDTB force) =(current model force). The band

energy forces graph which is not plotted here looks similar and
has a similar average magnitude as this total forces graph.

difference for the elastic constants (note that, most of the
quantities listed in Table II are not directly fitted in our
readjustment of Hamiltonian parameters). This agree-
ment is rather good compared to the errors in DDTB. A
large discrepancy between the current model and DDTB
model is in the yTA. Its unusual negative value stems
from a cancellation between band energy effects and elec-
tron static effects. ' As a result, the exact value is sensi-
tive to the model used. That is why DDTB gets a 50%
error for this value. Fortuitously, the current model gets
a much better result when compared to the ab initio
value. Also shown in Table II are the results of the
Stillinger-Weber' (SW) three-body classical force model.
As can be seen in Table II, the DDTB and the current
model have in general better results than the classical
model, especially for some quantities like y TA. The atom-
ic forces due to the band-structure energy are computed
using the Hellman-Feynman theorem, which is applicable
to both the DDTB and the current model. And the pair
potential force can be readily computed from the pair po-
tential given in Eq. (4). In Fig. 2, we randomly moved all
the atoms from their equilibrium positions in a diamond-
structure 64-atom cell, and the forces on every atom are
computed and comparison is made between our method
and DDTB. Band-energy forces and the total forces have
root-mean-square differences of about 6% and 4%%uo be-
tween the DDTB and the current model. The average
displacements in Fig. 2 are rather large, and the DDTB
used here is no longer good. The DDTB has a 19%
difference for its forces compared to the ab initio local-
density approximation (LDA) results, while for our mod-
el, the difference is 18%. MD simulations have been car-
ried out for a 64-atom cell for both the DDTB and the
current model. The atomic pair correlation functions are
plotted in Fig. 3. The peak positions are the same for
these two methods. The first peak heights have a
difference of 1%. The second and third peak heights
have differences of about 6%. This difference is of about
the same order as the difference between DDTB and ab
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FIG. 3. Pair-correlation functions of diamond Si. The thick
line is DDTB molecular-dynamics result and the thin line is
current model result. The temperatures for both curves are 472
K.

initio LDA computations. ' In summary, we have
learned that for a wide variety of properties, the current
model results are comparable to the DDTB results. We
conclude that the current model has the same ability to
accurately model the silicon diamond structure as the
direct diagonalization tight binding. We hope that the
same is true for other covalent systems.

The advantage of the current model over the DDTB is
its great speed. In the following, we will give the com-
puting time for these two methods on IBM RS/6000
work station model 560. The direct diagonalization of 64
atoms takes 4.03 sec, while the current model takes 1.04
sec to carry out 80 conjugate steps, which converge the
wave functions to residuals of 10 9. [The residual is
defined as ~(5/5$, )E e;f; ~; here—e; is the Lagrange
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multiplier for the normalization of g;.] To compute
10000 steps in MD as shown in Fig. 3, it takes 11 h using
direct diagonalization. For the time step we used, which
is 1X10 ' sec, by setting up a residual requirement of
10 (which results in a 10 relative error of forces), on
average it only takes 16 conjugate steps to reach that ac-
curacy for each MD step. As a result, it only takes 35
min to compute the 10000 steps for the current model.
This time saving is even more significant for larger sys-
tems. For a 4000-atom system, it takes 10 days for the
direct diagonalization to compute one step, thus doing
MD for such systems is out of the question. By using the
current model, it can do the MD of a 4000-atom system
for 10000 time steps within 45 h. Surprisingly, the num-
ber of conjugate gradient steps needed to converge the
system to a same error residual under the same condi-
tions (temperature and the MD time step) is the same for
these two different systems (one 64 atoms, one 4000
atoms), they are both 16 in our cases. This is because, for
our case, the large system is homogeneous in space. So,
the span of the electronic energy spectrum of the large
system is almost the same as the small system. As a re-
sult, the conjugate gradient method converges the large
system as fast as the small one, because the rate of con-
vergence only depends on the eigenvalue spectrum span
of the system. ' In conclusion, the speed of this model
makes it possible and practical to do MD for several
thousand atoms and several thousand steps.

In its current form, the model can only describe well-
defined covalent bonds for fixed topology (i.e., no bond
breaking and forming). There are a number of applica-
tions within that category, especially for polymer and
large biological molecules. It can also be used to com-
pute the ground-state energies of different topological
structures and compare the energies between them. It is
evident, from the data in this paper and in Ref. 3, that,
like the DDTB, the current model is better than any

three-body force model, at least for the system we stud-
ied. Hence, the current model can be used to replace the
three-body force model. The simplicity of this model also
provides a way to think about the covalent bond behav-
ior. At first glance, it is very much like the bond-orbital
model used by Harrison. ' ' ' But one important
difference is that we use a penalty function to describe the
effects of the orthogonality condition between neighbor-
ing bonds. The orthogonalization penalty function term
at one atom forces the covalent bonds of that atom in
their proper direction, and thus preserves the energy
versus bond-angle relation. On the other hand, like the
bond-orbital model, the strength of a bond mainly de-
pends on the atomic distance of this bond through the
change of the Hamiltonian overlap matrix. One exten-
sion of the current model is to use a larger LWF, for ex-
ample, not only include the bases on the two atoms of one
bond, but also include the bases on nearest-neighbor
atoms of those two atoms. The hope is that one can get
solutions closer to the exact tight-binding results. This
requires caution since we have determined that there are
numerous local minima as larger LWF's are used. These
local minima slow down the conjugate gradient step
tremendously and make it impractical. Efforts to make
the current model workable for breaking and forming
bonds are under way.

The authors would like to thank Dr. Andrew Horsfield
for many stimulating discussions. We would also like to
thank Dr. Robert Phillips for a careful reading of the
manuscript. This work was funded by Corning Inc. The
computing facilities of this work were provided by the
Cornell-IBM Joint Study on Computing for Scientific
Research. We gratefully acknowledge resources provided
by LASSP and the Cornell Theory Center in carrying out
this research.

'Present address: NREL, Cole Blvd. 1617, Golden, CO 80401.
'For a review see M. W. Finnis, A. T. Paxton, D. G. Pettifor, A.

P. Sutton, and Y. Ohta, Philos. Mag. A 58, 143 (1988).
See Solid State Physics, edited by H. Ehrenreich, F. Seitz, and

D. Turnbull (Academic, New York, 1980), Vol. 35.
E. R. Cowley, Phys. Rev. Lett. 60, 2379 (1988),and Ref. 16.

4W. A. Harrison, Electronic Structure and the Properties of
Solids (Freeman, San Francisco, 1980)~

5A. P. Sutton, M. W. Finnis, D. G. Pettifor, and Y. Ohta, J.
Phys. C 21, 35 (1988)~

P. W. Anderson, Phys. Rev. Lett. 21, 13 (1968).
7W. Kohn, Phys. Rev. 115, 809 (1959); W. Kohn and J. R.

Onffroy, Phys. Rev. B 8, 2485 (1973); J. D. Cloizeaux, Phys.
Rev. 135, A698 (1964).

M. P. Teter, M. C. Payne, and D. C. A11an, Phys. Rev. B 40,
12 255 (1989).

C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B 39, 8586

(1989).
D. J. Chadi, Phys. Rev. Lett. 41, 1062 (1978); Phys. Rev. B
29, 785 (1984); Phys. Rev. Lett. 59, 1691 (1987).
W. A. Harrison, Phys. Rev. B 24, 5835 (1981).
L. Goodwin, A. J. Skinner, and D. G. Pettifor, Europhys.
Lett. 9, 701 (1989).
See Ref. 4 and W. A. Harrison, Phys. Rev. B 27, 3592 (1983).
M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 3259 (1982).
F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262
(1985).
C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B 45,
12 227 (1992).

G. H. Golub and C. F. VanLoan, Matrix Computation (Johns
Hopkins University Press, Baltimore, 1989).
S. T. Pantelides and W. A. Harrison, Phys. Rev. B 11, 3006
(1975).


