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We examine the competition between diffusion-mediated irreversible nucleation and growth of islands

during submonolayer deposition on perfect substrates. We provide a detailed scaling theory for the com-

plete distribution of island sizes and separations, both with the ratio of diffusion to deposition rate and
with time. Scaling functions and exponents are obtained by simulation. The leading scaling behavior is
independent of details of the island structure. These results are supplemented by an analysis of rate
equations for the island-size distribution whose unconventional form appropriately describes island nu-

cleation and growth mechanisms. The exponents agree with the simulations and the island-size distribu-
tion shows qualitative agreement. We further provide simulation results for the scaling of the island-

separation distribution, quantifying, in particular, the depletion in the concentration of pairs of islands
at small separations.

I. INTRODUCTION

Recent scanning-tunneling-microscopy (STM) experi-
ments clearly reveal the evolution of far-from-equilibrium
structure during island-forming adsorption processes in
various systems. ' Here traditional quasiequilibrium nu-
cleation and growth theories ' must be replaced by ap-
propriate far-from-equilibrium island-growth models and
scaling theories. '

Specifically, in this report, we focus on processes in-
volving adsorption on single-crystal surfaces, leading to
diffusion-mediated nucleation and growth of islands. Ad-
sorption achieved by molecular-beam or vapor deposition
is effectively irreversible and random for the systems of
interest here. In the traditional nucleation-mediated pro-
cess, the rate-limiting step, for low island mobility and
density, is typically the formation of clusters of some crit-
ical number of atoms s' for which growth is more likely
than decay; for sizes s (s', a quasiequilibrium holds. '

It has been noted that often the adatom chemical poten-
tial may greatly exceed its equilibrium value, implying
that s' will be small. Here, however, we adopt a kinetic
viewpoint that island formation will often be effectively
irreversible, guaranteeing far-from-equilibrium behavior.

This kinetic behavior is based on the feature that the
activation energy barrier E, for single-atom diffusion will
certainly be less than the minimum barrier E, =E,+5E
for escape of an atom from an island. Thus, it is possible
that there exists a range of temperatures T where the iso-
lated adatom diffusion rate

ho =v exp( E, /ktt T)—
is comparable to or dominates the deposition rate r while
the rate

h, =vexp( —E, /kttT)

for escape from island edges is insignificant (relative to r).
Judicious choice of r is, of course, required for this
scenario. Clearly, the larger the 5E, the broader this
range. An alternative approach would be to select T so
that ho)&h„and analyze island-density scaling with
varying r.

We consider only the regime of lou coverage where the
finite extent of islands and their subsequent coalescence
are not significant factors. For irreversible island forma-
tion, it is clear that the island density N decreases with
increasing ratio of diffusion to deposition rates D =ho/r.
As D increases, deposited adatoms or "walkers" can on
average travel farther between deposition events. One ex-
pects a scaling relation' of the form 1V-D ~ as D ~ 00

for fixed submonolayer coverages. Mo et al. ' made the
important observation that knowledge of this relation al-
lows one to extract an estimate of E, , from experimental
STM data for the variation of X with T. Underlying this
observation is the assumption that migration of adatoms
can be effectively described by a pure random walk. Un-
der this assumption, we develop here a complete descrip-
tion of the scaling of the full island-size distribution with
both D and coverage 8 (or dose time t) We furthe. r ana-
lyze the behavior of the distribution of island separations,
as well as the effect of anisotropy in the diffusion rates.

Another basic issue, which we do not address in this
report, is that of the structure of the irreversibly formed
growing islands. Their structure could assume the equi-
librium form, if island restructuring is efficient on the
time scale of deposition; one could observe nonequilibri-
um "growth figures" if restructuring is incomplete, or
even dendritic or diffusion-limited-aggregation (DLA-
like) fractal aggregates if restructuring is highly restrict-
ed. ' The latter behavior derives from the Mullins-
Sekerka shape instability associated with walkers deposit-
ed on the substrate diffusing to the island edges and ir-
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reversibly aggregating. It should be noted that for higher
coverages, deposition on top of the islands will be
significant. Island growth resulting from such atoms
diffusing to and incorporating at island edges results in an
anti-DLA shape stabilization of island structure, growth
occurring preferentially at indentations or fjords. ' Also
for fractal islands, deposition directly in the fjords at
higher coverages will lead to significant thickening. This
behavior has been observed experimentally. Clearly, the
details of island shape will be highly system specific. For
this reason, we focus here on more universal size and sep-
aration scaling behavior.

We note that island-density scaling has been con-
sidered previously for adsorption models where island
growth is incorporation rather than diffusion mediated.
In island-forming chemisorption from an equilibrated
physisorbed precursor, precursor density and, thus,
chemisorption rates should be enhanced at island edges. "
Thus the process involves a competition between birth of
islands by chemisorption on empty regions of the sub-
strate, and growth of existing islands by chemisorption at
enhanced rates at their edges. The decrease of the island
density with the ratio of birth to growth rates (at fixed
coverage) has been elucidated in these "cooperative
sequential adsorption" models. ' In some cases, they
reduce to Kolmogorov "grain-growth-type" models,
where islands are born randomly at a constant rate and
grow deterministically at a fixed velocity following nu-
cleation. ' More generally, scaling of the complete
island-size distribution has been analyzed for a variety of
models including droplet coalescence, ' percolation, '

and thin-film growth mechanisms. ' A Smoluchowski
rate-equation analysis has been used extensively in previ-
ous studies of nucleation and growth in thin-film sys-
tems, and in some cases scaling theories developed. '

However, no analysis of the rate equations appropriate
for the problem we consider here was available prior to
this study. We emphasize that even effective rate-
equation analyses yield only qualitative information,
since they systematically ignore fluctuations and correla-
tions. In the absence of an exact microscopic solution,
simulations are essential to study growth models and test
scaling theories.

The outline of this work is as follows. In Sec. II we
survey briefly recent experimental systems and findings,
and in Sec. III we describe the details of our model and
the simulations. The scaling relations are postulated and
examined in Sec. IV. Section V is a summary of the
simulation results, which should be compared with the
rate-equation solutions presented in Sec. VI. Section VII
addresses some of the scaling ideas and results for the
island-separation distribution and short-range size-size
correlations. Further investigation of these issues is post-
poned to a separate report. Finally, we conclude the dis-
cussion of our results in Sec. VIII.

II. APPLICATIONS TO SPECIFIC SYSTEMS

Studies of a few different experimental systems, grown
under conditions that favor irreversible aggregation and
low island mobility and dissolution, have been reported in

the recent literature. Usually they involve real-space im-
aging (e.g. , scanning tunneling and atomic force micros-
copy) and complementary surface-sensitive diffraction
methods (e.g., low-energy electron diffraction). In the
former, visual access to the spatial distribution and struc-
ture of the stable islands allows for direct scaling analysis
of the average populations on the substrate, while in the
latter the average distribution of island sizes and separa-
tions is reflected naturally in the structure of the
diffracted intensity peaks, whose variation, e.g. , with tem-
perature, can be followed.

For systems of interest here, the most relevant issues
are indeed the size and separation distributions of tmo-

dimensional islands, and their evolution with system pa-
rameters and coverage. In their recent study, Mo et al.
addressed the island-size scaling with D, in connection
with STM studies of submonolayer (-0.1 ML) diffusion
of Si atoms, during deposition on Si(001) surfaces. They
observe stable Si dimer formation on wide surface ter-

0
races (100—1000 A), and no significant escape of dimers
or atoms from the Si islands, so effectively the islands
form irreversibly. Diffusion on Si(001) is very anisotrop-
ic, and well modeled using properties of one-dimensional
random walks. Direct account of the details of the in-
teractions in the system, such as aspects of the bonding of
the atoms to the islands (as they relate to the elongated
shapes observed), do not affect strongly the island scaling,
as concluded in Mo et al. from both experiments and
simulations. In spite of the simplicity of the method they
proposed, their results for diffusion barriers are similar to
others obtained from ab initio calculations. '

Zhang, Lu, and Metiu' have made a detailed study of
the energetic barriers for various diffusion processes in
this system using a Stil1inger-Weber potential. Indeed,
they find that dimer motion and dissociation, as well as
trimer dissociation, are extremely rare events. An atom
adjacent to a dimer string may be captured by another
atom to form a dimer in an adjacent row. This dimer
then acts as the nucleus of an adjacent dimer string. In
the STM counting of islands, it would thus be appropri-
ate to identify adjacent dimer rows as a single island.
Then, island formation is indeed effectively irreversible,
and our scaling theory will apply. In passing, we note
that Zhang, Lu, and Metiu propose a different mecha-
nism from Mo et al. for the formation of elongated island
shapes. However, since island dissolution is not involved,
this discrepancy does not affect island-density scaling.

!n another room-temperature STM study by Hwang
et al. of deposition of Au on Ru(0001), a dramatically
far-from-equilibrium fractal structure of the growing Au
islands was observed. This clearly demonstrates that is-
land restructing is highly restricted, further implying that
island dissolution is not possible at these temperatures.
Annealing to 650 K produced significant island re-
structuring, but still no dissolution. Even at room tem-
perature, the island density is quite low, reflecting high
diffusion rates for isolated atoms. Thus this system is a
good candidate to study the scaling of the island density
under conditions of irreversible aggregation. It should be
noted that the width of the arms of these fractal Au is-
lands is quite broad ( —100 A). A detailed analysis of the
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rearrangement and diffusion mechanisms required to pro-
duce this width will be the subject of a separate investiga-
tion.

Finally, we describe a chemisorption system where our
model and scaling ideas may be applicable. Extensive
theoretical and experimental studies of H20 adsorption
on transition-metal surfaces show that surface diffusion
of H20 is rapid on the time scale of typical adsorption ex-
periments (even at low temperatures). Under these condi-
tions, water can rapidly form hydrogen-bonded clusters,
even at low coverages (see Ref. 19 for a review of these

systems). For H20 adsorption on Ni(110), and possibly
on other fcc(110) metals, there is evidence that the H20
dimer is stable at low coverages, both to dissociation and
to addition. The latter feature makes our model inapplic-
able. However, on many other metal surfaces [e.g. ,
Ni(111), Cu(100), Pt(111)], there is no evidence of ex-
clusive dimer formation. In fact, no significant popula-
tion of dirners is observed. This is presumably because
the high H20 mobility at low coverages, and the strong
hydrogen bonding interaction, lead to the rapid forma-
tion of larger clusters. '

III. THE MODEL
AND SIMULATION ALGORITHM

We consider random deposition of particles on the
empty sites of a lattice, at constant rate r, starting with a
clean surface at t =0. Deposited particles can hop be-
tween neighboring empty sites, at constant rate ho, until
they meet other walkers or islands already formed on the
surface. A cluster of two or more particles (an island) is
immobile and structureless. Such islands occupy single
sites, but can assume variable size. When a walker ar-
rives at a site adjacent to another walker, it aggregates
with that walker, converting it to an island of size two.
When a walker arrives at a site adjacent to an isolated is-
land of size s ~2, it aggregates with that island convert-
ing it to an island of size s+ l. In the rare event (in the
regime of large ho) that a walker reaches a site with more
than one neighbor occupied by an island or another walk-
er, it aggregates with one of these chosen randomly but
weighing by size. Aggregation is always irreversible and
trapping occurs instantaneously.

We employ a "hybrid" simulation algorithm for op-
timum eSciency. At each stage we decide whether to at-
tempt to deposit at a randomly chosen site or to move
with certainty one of the walkers selected at random from
a continually updated list of all walkers on the lattice.
The former choice is made with probability
p„=r I( r +h On ) and the latter with probability

p& =1—p„, where n denotes the actual density of walkers
on the surface. Our algorithm is optimal in the sense that
almost all attempts to deposit succeed since the island
and walker densities are typically very low. (Selecting
from an updated list of empty sites to guarantee adsorp-
tion would be inefficient. ) On the other hand, since the
walker density is so low, it is appropriate to keep a list of
walkers in order to implement hopping. Time in the
simulations is chosen consistent with the rate
specifications.

Our simulations involved typically more than 200 runs

(a)
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FIG. 1. Configuration of islands in a 30X30 window of a
600X 600 simulation sample for isotropic diffusion. The dose is
15% in (a) D = 10, (b) D = 10, and (c) D = 10 . Note how fewer
but larger and further separated islands are nucleated as D in-
creases.

on lattices of at least 10 sites, with periodic boundary
conditions, and covered a range of diffusion ratios
(10 ~ D 10 ) and low coverages ( (0.2 ML). A typical
run takes between 15 min and an hour of CPU time (de-

pending on the hopping rate) on a silicon graphics
machine. For illustration, Fig. 1 shows typical
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configurations from the simulation of two-dimensional
isotropic diffusion.

As above, we will denote the average island density by
X, and the walker density by n. Wherever it appears, d
refers to the substrate dimensionality. The average area
associated with an island is A =1/X, and in the regime

1/d
where n (&N &(1, l = A gives the typical diffusion
length (in unit lattice spacings). Here d denotes the
"dimensionality" of the random-walk paths on the sur-
face. Specifically, d =2 for isotropic diffusion, whereas
d =1 in the strongly anisotropic case. The case of ex-
treme anisotropy in surface migration is representative of
the Si on Si(001) system, for instance, and, although not
equivalent to, scales such as diffusion on a one-
dimensional substrate (see Sec. V). In many real systems
at low coverages, the dependence of the island-capture
probabilities on the island size and shape is weak. In our
model they are ignored for simplicity.

psn,
s=l

sav

g sn,
s=1

dss rt +'D &g s rt "D

f ds s(rt) +'D «g[s(rt) D «]
0

f du u g(u)—(rt) D«
dQ Qg Q

0

and (4)

Note that the argument of g scales like s/s, „or s/s, „.
Also, since in our model the islands occupy single sites,
regardless of their size, the total density of occupied sites
is not 8 but, rather, n +N.

From (1) it follows that 8-rt f o"dx xg(x), and for the

average densities,

N-(rt) +'D «f dxg(x)
0

IV. THE SCALING THEORY

Let n, denote the average density (per site} of islands of
size s. Then the total average density of islands is
N =g, &2n, and that of the walkers is n =n, . The total
dose, defined as the number of particles (per site) deposit-
ed until time t, is 8=+,&,sn, One . can measure the
average island size (here size means number of particles
incorporated) as the ratio

s,„= g sn, g n, =8/(n+N)-8/N,

when lV &&n. Note that the most commonly used mea-
sure of the island size is a weighted average, usually the
first moment of the distribution sn„namely

s,„=ps'n, sn, ,

but as regards the scaling with t and D, the choice is ir-
relevant, as the following shows. Note that the relation
between s,„and 0 is not simple. We postulate that, for
large D and all but short times, scaling holds as

n, &, —(rt ) +'D «g [s(rt )"D «] .

Sav

and

g sn,
s=l

g n,
s=l

f ds s(rt) +'D «g[s(rt) D «]
n

f ds(rt) +'D «g [s(rt } D «]
0

dQ Qg Q

-(rt) D«
f du g(u)

0

(2)

Specifically, in Appendix A, we show that the range of
times over which the above scaling applies can actually
be written as rt;„=D ~ &&rt &0(1). Substituting
(1}into the s,„and s,„expressions gives

n -(rt) D ~g(0),

as D~~. Here a= —(2co+I) and y=2y, given that
g(0)%0, as born out by our simulation results. Thus, the
scaling in (1) applies to both immobile islands (s ~ 2) and
mobile walkers (s= 1). In this respect, the most impor-
tant feature of the scaling function g is the fact that it
does not vanish for small arguments. Also, given the
monotonicity of N and n in the scaling region, the ex-
ponent co must satisfy the inequality —1&co& —

—,'. We
focus on the analysis of the above scaling in the two im-
portant cases corresponding to (i) isotropic and (ii}
(strongly) anisotropic diffusion on two-dimensional sur-
faces. Diffusion on a linear lattice scales with the same
exponents as (ii), which are different from the exponents
governing case (i). The relevant dimensionality is actual-
ly d .

We emphasize that the scaling theory presented in this
work applies only to low coverages, where islands occupy
a small fraction of the surface and direct interference be-
tween growing islands is insignificant. For real systems,
with extended islands that occupy a finite fraction of the
surface, deposition of' particles on top of the islands and
their subsequent migration to and aggregation at the is-
land edges must be properly accounted for. Large islands
may then compete favorably for the incoming particles
and scaling must be modified to incorporated this size
dependence in the growth rates. For higher coverages,
when there is no im.pediment to island coalescence, the
ideas developed in percolation theory are more useful.
Scaling with respect to D and rt should be preserved,
since coalescence simply rescales sizes. Specifically, one
expects that s,„/s, —(8—8, ) r, where 8, is the percola-
tion threshold' and s~ —(rt) D«. For our model the
spatial correlations have finite range, so the exponent y
should have the random percolation value.

We have assumed that the nucleation of islands is
homogeneous rather than defect mediated. For a small
concentration of (pointlike) defects e, which act as perfect
walker traps, and for low-enough D, one has N &)c,, and
the presence of defects will not significantly affect the
homogeneous scaling behavior. However, as D exceeds
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FIG. 2. The scaling of (a) the simulated average island densi-

ty N and (b) walker density n with the relative diffusion constant
D. Shown are the cases of isotropic diffusion (circles, 8=5%),
infinitely anisotropic diffusion (boxes, 8=10%), in two dimen-
sions, and the one-dimensional case (diamonds, 8= 10%). In or-
der to check for finite-size effects, we added, for the anisotropic
case, data for a 1000X100 lattice (boxes), a 10000X10 lattice
(crosses), and a 10000X 100 lattice (multis).
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sions, and the one-dimensional case (thin lines).
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FIG. 3. The effective exponent g,N obtained from the simula-
tions in the range D=10 —10, for isotropic diffusion (0,
8=5%), infinitely anisotropic diffusion (~, 8=10%), in two di-
mensions, and the one-dimensional case (1,e= 10%).

FIG. 5. The dependence of rt;„on the diffusion rate D at the
onset of scaling. In two dimensions, ~ denotes isotropic
diffusion (slope, —0.44) and ~ denotes infinitely anisotropic
diffusion (slope, —0.35). In one dimension, denoted by 4
(slope: —0.34).
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TABLE I. Simulation and rate-equation estimates of the ex-
ponents g, y, a, an co,and co at fixed dose (5% for isotropic and 10%
for infinitely anisotropic and one-dimensional diffusion), in the
range D =10 -10'.

g(e ' x), (i.e., as E exceeds the density of islands that
would otherwise nucleate homogeneously), X will eventu-
ally cross over from the D + behavior to a constant of
order c. (as most islands are nucleated at the defects,
whose initial spatial distribution also determines that of
the formed islands).
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V. SIMULATION RESULTS

Our simulation results are summarized as follows. On
Fig. 2 we demonstrate the scaling behavior with D, of the
average density of walkers, n —D ~, and islands,

2 (isotropic)
0.30'

1b
3

0.62'

2b
3

—0.67'

2b
3

0.31'

1b
3

0.65—

'Simulations (+0.03 ).
Rate equations.

3.2 — .

CO

CO

CD

0.26—

0.1.3 -~

0
0.00

0.0

0.20—

04
05

' 06. c7
QB

( )-0.67D—0.30

0.8 -. .

90

CO

0. 1 6

0. 1 2

0.0
0.000

, ~ ()

I

0.036
I I I

0.072 Q. 1 Q8 Q. l 44

NDo. 3o

104
105
1P6

07
08

1 04
1050 04 0 1 Q6

-+ 1 07
o 10~

0.00
0.0 1 0

(c)

0.08
0.1 80

?.0

( )
—.0.75D-0.24

5 0 5.0

3.0

1.5

0.0
0.00

I

0.06
I

0. 1 2

I

0. 1 8
I

0.24
I

0.30
p C,

- n(=.

U

gy( )

0

NDo24. 0&

FICx. 6. The scaled walker density nD~ vs the scaled island
density ND~ for (a) two-dimensional isotropic and (b) two-
dimensional infinitely anisotropic diffusion. The curves show
the initial increase in both n and N, and the crossover to a
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totic relations (a) n —1/(DN) and (b) n —1/(DN ) hold.

( )
—0.76D—0.25

FIG. 7. Scaling of the island-size distribution wit D, m the
range D =10 —10, for (a) isotropic (rt =5%) and (b) infinitely
anisotropic diffusion (rt = 10%) in two dimensions, and (c) the
one-dimensional case with rt = 10%.
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X-D ~, at fixed dose. For 10 ~ D ~ 10, one
finds N-(0. 52+0.02)D' ' and n =(1.23
+0.02)D ' ' ' for one-dimensional diffusion
(at 0.1 ML), N —(0.51+0.02)D ' ' and
n = (0.77+0.02)D ' ' for two-dimensional
anisotropic diffusion (at 0.1 ML), and
N-(0. 55+0.02)D ' ' and n -(0.92
+0.02)D ' * ' for isotropic difFusion (at 0.05 ML).
Thus in the range of finite 10 ~ D + 10 one finds
effective exponents, y,& and q,ff, below the asymptotic
values, which we assume are given by g(d =1)=—,',

y(d =2)=—,', and y(d =1)=—,', y(d =2)=—'„ in the

scaling limit, D ~ Do. In a more refined analysis, effective
exponents are determined as local slopes in appropriate
log-log plots, as illustrated in Fig. 3 for the exponent y.
This is especially useful information in practice, since
small deviations in y can produce considerable shifts in

the energy barrier estimates. Assuming Arrhenius behav-
ior of the diffusion coefficient, the estimate for the energy
barrier, obtained from the T dependence of

(I/y)ln(N)-E, /ks T,

a

0.2—

0.0
0.0

G, 25-

0,05-

0.00
0.0

0, 7-

0, 5

0.6

1.2

+ 57.
o 107.

'l 57.

'l, 9

( t)-0.67D—0.30

+ 1 07.
0

207.

3.6 4, 8 6.0

is sensitive to the choice of y. The value used for this ex-

ponent when extracting E, should be the appropriate for
the experimental range of D.

Figure 4 explores the scaling of the walker density n

with time. The data collapses for large t, as n is plotted
against the variable (rt)D for one-dimensional migration
(d =1), or (rt)D for two-dimensional migration
(d =2). This is also the scaling behavior predicted by
the rate equations (see Sec. VI). Similar collapse was
found for the island density N in the variable rt/D. Fig-
ure 5 tests the scaling of t;„with D as derived in Appen-
dix A. The t;„values in this figure were determined
from the maxima of the walker density n since one ex-

pects scaling to set in rapidly after the maximum in the n

vs t curves. The agreement with the predicted slope (see
Table I for the simulation estimates of the exponents y
and co) is extremely good even for such a "crude" as-
sumption. Figure 6 shows the relationship between n and
N, and suggests the asymptotic scaling relations
n(d =1)-1/(DN ) and n(d =2)-1/(DN), as are also
obtained from the rate equations in Sec. VI.

In Figs. 7 and 8 we isolate the scaling of the island den-
sities n, with D from that with the coverage rt, respec-
tively. The collapse of the data is fairly good and very
sensitive to the exact choice of the effective exponents g
and y. Uniformly good collapse is observed using the
variable s/s, „. The simulation data are consistent with
the existence of an asymptotic scaling function g which is
analytic. This g would differ from the function associated
with the rate equations (see Appendix C). Furthermore,
the scaling function approaches a nonzero constant for
small values of its argument, as is implicit in the scaling
hypothesis (1). Results on the distribution of island sepa-
rations are presented in detail in Sec. VII.

0.4 VI. THE RATE-EQUATION FORMULATION

0
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0.0 0.8
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Two key observations underlie our analysis of this pro-
cess via "unconventional" rate equations: (i) the lifetimes
r for walkers to undergo nucleation (meeting other walk-
ers) and aggregation (meeting islands) are comparable for
large D (see Table II); (ii) the probability that a deposited
atom nucleates rather than aggregates scales like
P-n/(n+N)-n/N «1, if n «N. One thus obtains
the equations

FIG. 8. Scaling of the island-size distribution in time, with
D =10, for (a) isotropic and (b) infinitely anisotropic difFusion,
in two dimensions, and (c) one dimension.

dN n dn n=rn + Pand =—r(1 n) ———
dt 7 dt 7

(5)

While (i) and (ii) apply for rather general dynamics of de-
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and

n(d =1)=
8DN

(6)

n(d =2)= ln
1 1

mDN
'

follow. They provide an additional relation among the
exponents a, co, y, and y, namely a=2(co+1)/d and
y= 1 —2g/d, for d =1,2. Substituting (6) in (5) yields

posited atoms, we only elucidate their validity for ran-
dom walks (RW) of relevance here. The space-filling
property of (d +2)-dimensional RW guarantees that
walkers meet near, rather than distant, neighboring is-
lands or walkers. Thus atoms must deposit in the "vicini-
ty" of another walker for nucleation, which occurs with
the small probability P-n/N. Furthermore, after short
times, for both nucleation and aggregation lifetimes, ho~
measures the average number of lattice steps for a R% to
visit of the order I/(n +N)-1/N distinct sites associat-
ed with each island or walker. This contrasts the argu-
rnent of Mo et al. which assumes that a walker visits
1/n sites before nucleation. Recall that a two-
dimensional isotropic random walk (d =2) between
nearest-neighbor sites visits on average mH/InH distinct
sites after making H hops, for large enough H, while a
one-dimensional random walk (d =1) visits only
(8H/n. )'~ distinct sites. For an average of 1/N sites
visited, H(d =1)=~/(8N ) and H(d =2)=1/
(mN) ln( 1. /mN). T.herefore hor- n /8N and —1/mN, .

respectively, for d = 1 and 2 (see Table II).
Numerical integration of (5) demonstrates that a

quasistationary regime exists where dn/dt -0. This fur-
ther gives n-r~, for large D and n (&N. Note that,
through ~, the density n is a function of time, the quasis-
tationary condition corresponding simply to the kinetic
balance between deposition and aggregation events. As-
suming N &&1 and D is large, so that logarithmic correc-
tions are small (see Appendix 8 for more details), the im-
portant relations

asymptotically,
1/4

rt
2 D

32
and n — (rt )D

—1/2

(7)

if d„=1,and
1/3

3 rtN-
D

and n —[3n. (rt)D ]
'~ (8)

which modify the effective exponents over the range
D ~ 10 . In Appendix B we derive the above solution and
illustrate the order of the corrections expected. This is,
of course, in addition to the corrections to the leading
scaling behavior already present for the smaller values of
D.

The above rate-equation formulation for the walker
and island densities can be extended to characterize the
full island-size distribution n, for sizes s ~ 1. Rate equa-
tions for the n, are usually called Smoluchowski equa-
tions. However, we emphasize that the form of the equa-
tions presented here is unconventional, necessarily
rejecting the essential physics of this far-from-
equilibrium deposition process. Let P, denote the proba-
bility of deposition in the vicinity of an island of size s, so
P, n/(N-+n)-n /N (for n &(N), P, =P, and

if d =2. The prefactors show a trend (from d =1 to 2)
similar to that found in the simulations, though their
values are slightly different from the simulation esti-
mates. Figure 9 shows refined estimates of g, from the
local slopes of 1ogN-logD plots obtained from numerical
integration of (5). Similar dependence on the finite range
of D was found in the simulation data, and arises from
small-D corrections to scaling.

The logarithmic corrections in the lifetimes for isotro-
pic diffusion are important to consider in practice, if the
scaling results are to be used in estimating diffusion pre-
factors and energy barriers within the experimental error.
They introduce corresponding corrections to scaling, e.g. ,

N-(rt/D)' [ln(rt/D)]'

TABLE II. Direct estimates of the average aggregation lifetimes, at fixed dose (5% for isotropic, and

10% for infinitely anisotropic and one-dimensional diffusion). ~& and ~2 refer to the average simulation

lifetimes for nucleation and growth, respectively, to be compared with the effective-rate equation life-

time ~ (see text) ~

10
10
10'

7" '7 I

(nucleation)

2.0X 10
1.6X10-'
7.2X 10

(aggregation)

1.4X10 '
1.1X10-'
8.6X 10

5.6X10-'
1.9X10 '
1.2X10 '

2 (anisotropic)

104

10'
lo'

1.1X10 '
1.1X10-'
9.6X 10

8.2X10-'
6.3 X10-'
5.6X10-'

7.4X 10
4.3X10 '
3.3X10 '

2 (isotropic)

104

10'
10'

7.3X 10
2.3X10
2.4X10 '

5.2X10-'
3.9X 10
1.5 X10-'

4.8X10
1.3X10
4.8 X10-'
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FIG. 9. The effective exponent y,z obtained from the numeri-
cal solutions of the rate equations, in the range D=10 -10",
for isotropic (0, rt =

S%%uo) and infinitely anisotropic (~,
rt = 10%) diffusion.

g, &, P, =1. Accounting for all "two-body collisions, "
islands of size s can be created by deposition adjacent to
or aggregation with an island of size s —1; likewise they
can be removed by conversion to size s+1 islands
through deposition or aggregation processes. Since the
characteristic time for all aggregation processes is v.,
specified above, we conclude that

n 2 =Kn(n, ,
—n, ),

dt

dn =r —KXn .
dt

Recall that, for d„=1, E—ShoN/rr,

n —[32(rt )D In. ]

N- [m(rt )/(2D ) ]'

and

s,„-8/N-[2(rt) D/n]'

whereas for d„=2, E—~h0,

n-[3n. (rt)D ]

N- [3(rt )/(nD ) ]'

and

s,„—[n(rt) D/3]'~

We introduce the standard generating function

G(z, t)= g z' 'n, (t),
$=2

(10)

dn, n n
$ —1 s=rn —rn +—P ——P for s ~2 .

1
s —1 $ (9)

The rate equation for n1=n is as above, and applying

z to (9) recovers the dN/dt equation.
The rate equations in (9) are amenable to analysis by a

generating function approach. Since the most important
terms in (9) arise from direct deposition of walkers and
from island growth events, we first reduce these equations
to

G(z,—t) =En [n —(1—z)G(z, t }],a
(12)

with G(z, t =0)=0. The solution can be written trivially
as

from which the island-size densities can be recovered us-
ing

n, =[1/(s —2)!]O' G(z=O, t)/az -' .

Summing over all s ~ 2 in the rate equations one obtains

r

G(z, t)=exp —(1—z)f du E(u)n(u) f du K(u)n (u)exp (1—z)f du K(u)n(u)=0 =0 ~p
(13)

2DQ

Substituting expressions for E, N, and n, and using D =ho/r, yields
' 1/4 1/4

1 «4 2D(rt)
n, &2(d =1)= dQ

4(s —2)! =0 3 7T

'3/4'
Q1—
rt

(14)

and
T

n, &2(d„=2)= r~ dQ
[9nD(rt) ] 1 ——1 2 1/3 Q

(s —2)! =0 (9mDu }'~ 2 rt

2/3

where e (x ) =x ' 2exp( —x ). From these results, we ex-
tract the scaling functions g where

n, -(rt) "+'D rg(s/s)

descents (see Appendix C for details) gives
' 1/2

1 mg(O~y &1;d =1}=—— (1—y)4 2
(16)

and s=(—', )s,„(d =1) or s=( —,')s,„(d =2}(see Appendix
C).

Setting y =s/s, application of the method of steepest

and

g(O~y (1;1„=2)= (1—y}
3

(9m) i
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distances probed by the walkers during migration on the
surface. Here we restrict our attention to the island
pair-correlation function, and just in the case of isotropic
diffusion in two dimensions. We expect similar con-
clusions in the case of anisotropic diffusion. At low cov-
erages, one can define a characteristic separation between
islands, R„—(1/N)'~, with which one expects all
characteristic distances to scale. At low coverages, one
can define a characteristic separation between islands,
R,„-(1/N)', with which one expects all characteristic
distances to scale. The aim, then, is to obtain informa-
tion about the depletion of the concentration of island
pairs at short distances (compared to R,„), to examine
the crossover to the large-separation behavior, and to
demonstrate scaling with R„.

Let N(r) denote the conditional probability of finding
an island (of any size) at the position r (in lattice vectors},
relative to another island (also of any size). In the ab-
sence of long-range order, clearly N(r)~N, as ~r~ ~ ~,
regardless of the direction. As D ~~, the characteristic
separation, R,„,becomes very large compared to the 1at-

tice spacing, and quantities defined in terms of distances
measured in units of R,„vary smoothly and become iso-
tropic. We postulate the following scaling relation for
the pair probability:

N(r)-Nf (18)
R,„

s(rt) "D "
FIG. 10. The scaled island-size densities n, (rt )

' "+"D', at
fixed dose, as functions of the scaled size s(rt)"D ~ for (a) iso-
tropic ( rt =5% ) and (b) infinitely anisotropic diffusion
(rt =10%%uo). The solid line is the fit provided by the solution de-
rived in detail in Appendix C. Identical collapse and analytic fit

is obtained at fixed diffusion ratio but variable dose.

while g(y ) 1)=0, for both values of d . In addition, the
rate equations predict g(0;d„= 1)=0.313 328 5. . . , and
g(0;d =2)=0.3232409. . . . Figure 10 overlaps the re-
sults of numerical integration of the equations in (10)
with the scaling functions g above.

VII. DISTRIBUTION OF ISLAND SEPARATIONS

In this section we want to address a few of the issues
rega. rding the spatial distribution of islands. This distri-
bution contains features dificult to incorporate in a sim-

ple rate-equation treatment, but also important addition-
al information. Of interest, e.g. , are possible deviations
from a random (Poisson) distribution of islands on the
surface, especially at small island separations, where
competition for incoming walkers can introduce nontrivi-
al island-island or island-walker correlations, in size and
separations. Analogously, one could analyze the distribu-
tion of island separations to first, second, etc. neighbors,
or the distribution of island distances from an a,rbitrary
empty site on the surface —this being the distribution of

where f(0)=0, f(x~ oo )~1.
In the simulations it is straightforward to determine

the total number Q(R) of dist' net islan'd pairs at a given
distance R for fixed coverage and diffusion ratio. Since
we are adsorbing on a square lattice, the total number
M(R) of different possible sites on the lattice a given dis-
tance R from an origin [in other words, the number of
distinct pairs of integers (i,j ) with i +j =R ] is almost
always 8 if nonzero. The exact formula for M (R ) is
available (see, e.g. , Ref. 21). In Fig. 11 we plot the rota-
tionally averaged N(r), given by

m Irl)/[M(lrl)NL, '],
for a I.XI. square lattice.

In a manner entirely analogous to our formulation of
the rate equations for the total average island density,
one can construct effective rate equations for N(r), for
~r~ &&R,„. Note that the quantity N(r), with ~r~ &R,„,
will increase whenever two walkers succeed at meeting at
such a "short distance" from an existing island before
they aggregate with that island. Clearly, this must be in-
creasingly more difficult as ~r~ decreases. First denote the
density of walkers already on the lattice a distance 0 (

~
r

~
}

from an island by

n, -n (yr),

where y(r) accounts for any depletion of the walker den-

sity due to the nearby island "sink." The probability for
another walker to land within a distance 0( ~r~ ) of such a
walker is

P„=(~r~/R, „) [ny(r)/N] .
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the average uncorrelated behavior, i.e.,

N. ..(r)~N, , (~r~) -n, n; .

For finite ~r~, one naturally compares N, ;(r) with

n, n, N(r)/N. Should one expect

N. ..(r) & n, n, N(r)/N,

for s, s'&&s,„,due to competition of oversized islands for
walkers? Further numerical and analytical work on this
issue is in progress and will be presented elsewhere.

VIII. CONCLUSIONS

I
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The lifetime of such a walker is reduced to
r„-(~r~/R, „)~. Thus, the rate equation for N(r), with

~r~ &&R,„,has the form

dN(r)
dt

n nI'„-——y(r) 2

N

FIG. 11. (a) The rotationally averaged conditional probabili-
ty N( ~r~ ), normalized by the total density of islands N (see text)
and plotted against the scaling variable ~r~/R, „—~Ir~I1V'~' for
rt =5%%uo. (b) The same as (a) but at fixed di8'usion ratio D = 10',
and variable dose.

In conclusion, we present here Monte Carlo results for
the analytic dependence of the island and walker densi-
ties, and the distribution of island sizes and separations,
on the coverage and on the ratio of diffusion to deposi-
tion rates, for submonolayer irreversible island forma-
tion. A rate-equation approach is also developed for the
average densities and complete island-size distribution.
Knowledge of the scaling functions for the distribution of
island sizes provides further opportunity to check the
theory against experimental data. The effective rate
equations incorporate the equivalence of the walker life-
times for aggregation to other walkers or to islands, a key
feature of the model at low coverages (but above those of
the transient regime). Generally, the rate-equation treat-
ment provides a fairly good description of the nucleation
and growth kinetics of our model, mostly qualitatively
correct. This suggests that for the average quantities, of
experimental interest, the effects of fluctuations in the
growth rates, high-order correlations, and corrections to-
wards the true distribution of walker lifetimes are weak.
Interestingly, the rate equations yield a nonanalytic scal-
ing function for the island-size distribution, identically
zero above some cutoff. Nonanalyticity of the scaling
function is not clear from the simulation data, though a
slower approach to nonanalyticity cannot be entirely
ruled out. Preliminary results are discussed for the distri-
bution of island separations. We emphasize the depletion
in the concentration of island pairs at small distances.
Investigation of finite diffusion anisotropies is also
relevant, and is addressed in a separate report.

which, combined with (6)—(8), yields

N(r) —(rt/D)'~ y(r) —y(r) N .

Close examination of our simulation data in the small-x
region reveals behavior consistent with this dependence
which agrees with the prediction of previous formula-
tions. As ~r~ gets large, the typical distance from a walk-
er at r to the nearest island becomes of the order of
R,„-N ', and one recovers the behavior of the aver-
age quantities, i.e., dN(r)/dt ~dN/dt.

Finally, note that much more detailed information on
the island distribution is available in the probabilities
N. ..(r) for finding and island of size s separated by r from
an island of size s'. Note that the N. ..(r) determine the
diffraction profile. As ~r~ —+ ac, one should again recover
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APPENDIX A:
THE TIME RANGE FOR SCALING

Here we use the scaling relations for n -(rt) D
2/dN-(rt) +'D z, and ~-l/(DN ), for d = l or 2, to

analyze contributions to the rate dn/dt in (5), whose
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dominant terms come from deposition events and aggre-
gation of walkers to islands. It follows that the quasista-
tionary condition dn /dt =0, which means effectively

~
dn /dt

~
&& [ r, n /r], implies

If ho and v denote the hopping rate and average lifetime
of a walker, respectively, then H=ho~. Recall that
n =r~. Substituting the leading expression for ~, as a
function of N and ho, in the rate equation for N gives

for d =1,2, or

XD
1 —y —2g/d

dN n n 1 1 1 1=n+ ln + ln
d(rt) rr N mDN nN ~DN~ nN

'

L

/(~+ 1)
—(d —2y)/f d +2(co+ I ) ]rt» D

Given the scaling relations among a, co, y, and (see
Secs. IV and VI), one gets simply rt;„-D !r~". For
d =1, rt;„-D ', while for d =2, rt;„-D ' . In
practice, for rt =5-10%, the scaling regime should set in
as D »10 —10 .

The question of whether there is an upper dose limit,
beyond which the scaling as postulated in (1) and (4) no
longer holds is related to reaching finite densities of is-
lands at which the interisland separation becomes of the
order of a few lattice spacings. Thus, the condition to
look for is basically 1/N))1, that is, (rt)"+'D r«1,
or rt «D~ ' +". This means, effectively, rt «D for
both d = 1 and 2. The full time range reads, then, as

D ~' «rt «D~" +"

In real systems, where islands have finite extent, the
cutoff will occur much earlier, for 8=0(1), as noted be-
fore in the text. In our model, the scaling form should
certainly apply for 8 not in excess of 10—20%.

APPENDIX B: LOGARITHMIC CORRECTIONS
IN THE RATE EQUATIONS

For an isotropic random walk on a two-dimensional
square lattice (of unit lattice spacing), the average num-
ber of hops H to visit 1/N distinct sites, satisfies approxi-
mately (for large H)

1 mH

N lnH

Inverting this relation in order to solve recursively for H
gives

lnH 1 1

with D =ho/r. For N «1, the second term on the
right-hand side clearly dominates the asymptotic scaling,
and one obtains N-(3rt/nD)' . However, one can
easily extract the leading corrections in a standard way.
The above rate equation is separable in the variables N
and t. We can then solve for N, keeping only the leading
logarithmic correction, for N «1. The result is

3rt
mD

1/3

ln
1

(3rt /m. D)'~.
1/3

For rt =10% and D =10, applying logarithms to both
sides, one gets an effective exponent of 0.30, consistent
with the values below —,

' always found in the simulations
(see Table I) and in the numerical integration of the rate
equations. This 10% deviation from the asymptotic —,

value decreases very slowly with increasing D, however.
At D = 10 it is still about 5%.

APPENDIX C: SOLUTIONS
OF THE RATE EQUATIONS

In this appendix we give details on obtaining the
asymptotic solution of the rate equations for the island-
size densities n, &2. Since the mean-field limit does not
distinguish the substrate dimensionality, we have only to
examine two cases: d =1 and 2. We will work simply
with the dominant rate terms (corresponding to the most
common events for large D) on the right-hand side of (9).

1. Scaling limit D —+ ~. Region s & s (0 y & 1)

Case I: d = l. In (14) it is convenient to change to an
integration variable

1 1
ln +0 lnln

1

~N ~N

u=( —43)[2D(rt) /~]' [1—[u/(rt)]

in terms of which

1 4/3[2D(rt) /~]
dU

(s —2)! o 4 2D(rt )

Using the notation, s =4[2D (rr )3/~]'~4/3 —(~4)s

1/2
3 7T

1 ——
4 2D(rt )

1/4 —2/3

u' exp( —v) .

1/2

n, )~D' (rt )'~ -g(s Ws) =—
4 2 (s —2)! o

U
1 ——

S

,

—2/3

v' exp( —u) .
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The aim is to verify now the dependence of g on the unique variable y =s /s, as postulated in (1). In terms ofy, with the
substitution w =v/(ys ), and the approximation

(s —2)!=s!= (2n.s )' s'e

one obtains

g(y ) =—1/ ys dw eys(1 —w+)nw)(1 yw )
—2/31/y

8 0

In the scaling limit D ~~, s,„(and s) is a large parameter and the integrand is already in a form suitable for applica-
tion of the method of steepest descents. The saddle point occurs at w =1, for 0&y &1, (i.e., s &s). One thus obtains

' 1/2

g(0&y &1)=—— (1—y)
1 —2/3

4 2

Case 2: d~ =2. The change of integration variables to v = [9trD(rt ) ]'/ [1—[u /(rt ) ] / ], in (15), reduces the expres-
sion for the n, in this case to

1/2[9m D( rt ) ] 3 2U
pg du

2 1/3(s —2)! o [(9 Dn) (rt )]' [9nD(rt ) ]'

' —1/2

u* exp( —v ) .

If we define now s=[9nD(rt) ]' /2-(3/2)s, „,y =s/s, w =v/(ys), and using again Stirling's approximation,
' 1/2

n, &2D (rt)' -g(y)= 3

(9 )
/ 2n

and finally,

f 'dwe&" ~+'" '(1 —yw) '"
0

g(0 y &1)=,/, (1—y)
(9m) /

2. ScalinglimitD~ce: Regions)s(i. e., y) 1)

Cases I and 2: d = 1,2. When y ) 1, the main contribution to the integral in g(y ) comes from the region around the
upper limit, z = 1/y, and has the form

' 1/2

ps(1 —(1/r)+)n(1/p')) 0
y (D —+ oo)

since 1 —1/y+ln(1/y) & 0. Thus for both cases, d = 1 or 2, the function g(y) =0, for y ) 1.
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