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The universality classes and exact critical singularities for line-depinning transitions in a space of d
transverse dimensions are determined using a renormalization method. Pinning potentials that fall off
faster with distance than 1/r lead to nontrivial first-order phase transitions above the upper critical
dimensionality d =4, and to second-order transitions for d (4. For d =2 the free-energy density has an
essential singularity of the form exp( —1/~), were z is the thermal scaling field. The next-nearest correc-
tions to the free energy will be calculated for the case where the long-range part of the pinning potential
decays faster than 1/r . Pinning potentials containing an inverse square tail can give rise to a nontrivial
first-order phase transition above an upper critical dimension, second-order transitions with nonuniver-

sal exponents, or Kosterlitz-Thouless-like transitions with a multicritical point between the last two re-

gimes, depending on the strength of the interaction. Attractive pinning potentials decaying slower than

1/r prevent depinning transitions at finite temperature, whereas repulsive ones in the presence of
short-range attraction lead to first-order transitions.

I. INTRODUCTION

Our present understanding of surface depinning phe-
nomena, namely wetting and roughening phase transi-
tions (see reviews by Fisher' and Weeks, corresponding-
ly), is based mainly on the analysis of a relatively simple
class of models using the solid-on-solid (SOS) approxima-
tion which accounts for the crucial surface fluctuations
and ignores irrelevant bulk degrees of freedom. The SOS
Hamiltonian describes a structureless interface placed in
an asymmetric potential with an attractive part (for the
case of wetting transition) or in a periodic potential (for
the case of the roughening transition). DifFerent theoreti-
cal techniques have been developed to analyze these
Hamiltonians. The renormalization-group (RG) method
is very successful in finding the critical singularities both
for the roughening and wetting transitions in three bulk
dimensions. The case of wetting phenomena in two bulk
dimensions can be treated by a transfer operator tech-
nique. For short-range potentials this method gives the
exact critical singularities ' found first by Abraham.
Kroll and Lipowsky and Chui and Ma have used a
transfer operator technique to extend the previous stud-
ies to the case of pinning potentials of more general
form. One of the most exciting findings of their treat-
ment is the prediction of a wetting transition in the pres-
ence of an inverse square attraction between the wetting
liquid interface and a substrate, with an essential singu-
larity characteristic of the Kosterlitz- Thouless and
roughening phase transitions. Discussing this curious re-
sult Fisher and Huse expressed the hope that it could be
rederived using a RG, but the linear functional RG
worked out in Ref. 3 was not suSciently accurate to
reproduce this property. Another challenge to the theory
is to explain the new wetting regimes recently discovered
by Lipowsky and Nieuwenhuizen.

In this paper we will demonstrate that most of the
known findings concerning two-dimensional wetting can

be found using a RG. In addition, new exact results are
given concerning the singularities near the depinning
transition for a linear object placed in a space of the arbi-
trary dimension. Some of our findings for suitable choice
of pinning potentials can be obtaining using standard
transfer operator technique, but we prefer to use the RG
for the following reasons: it gives us an easy route to the
critical singularities and makes evident which details of
the pinning potential are relevant; the resulting RG equa-
tions are exact; and the derivation involves a novel inter-
pretation of the RG which may be useful in other con-
texts. We will choose the following strategy: first we will
use a standard transfer operator technique to transform
our problem into one involving the Schrodinger equation,
then we will analyze this equation via a RG.

II. STATEMENT OF THE PROBLEM

Let us consider a linear object (i.e., a vortex line in a
type-II superconductor, a directed polymer, or an inter-
face in the context of two-dimensional wetting) imbedded
in a d+ 1-dimensional space and subject to a pinning po-
tential V(x), where x is the d-dimensional vector denot-
ing the line position. The corresponding continuum SOS
Hamiltonian has the form' ' ' '

H= dt
m dx + V(x)
2 dt

L

where t is the coordinate along the line, I is the line
stiffness and x(t) describes the line trajectory. The first
term of the Hamiltonian represents the elastic energy of a
distorted line, which is proportional to its excess length
with respect to a straight one. The transfer operator
technique ' ' allows us to turn the evaluation of the par-
tition function for (l) into an eigenvalue problem. This
approach has been discussed in detail by Kogut' and is
related to Feynman's formulation of quantum mechanics.
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In the present context it gives rise to a one-particle
quantum-mechanics problem in d dimensions, and the
singular part F of the line free-energy density is given in
the thermodynamic limit t ~~ by the lowest energy ei-
genvalue of the Schrodinger equation

T2
hd+ V(x) 4;(x)=E;4;(x),

where the temperature T plays the role of Plane@'s con-
stant and 5d is the d-dimensional Laplacian. Knowledge
of the bound-state energy EO=F and the wave function
4'0(x) enables us to calculate the moments

(x")=fd"x 40(x)x"%c(x)/ Jd x %0(x)%0(x), (3)

where n is an integer (some of these inoments could be
identically zero by symmetry of the pinning potential).
When there is a bound-state solution (Eo & 0), the
bound-state wave function is well localized, and the mo-
ments are finite. When the bound state disappears ED~0
and (x")~~, indicating a depinning transition. If the
bound-state wave function has a localization length gi,
the moments (3) diverge like gi. In what follows we con-
sider only the cases where gi is large relative to the mi-

croscopic scale, i.e., in the vicinity of the depinning tran-
sition.

Equation (2) cannot be solved for general V(x). How-
ever, some results concerning the vicinity of the phase
transition can be achieved without detailed knowledge of
V(x). Such analysis was performed by several au-
thors ' ' for d =1 and the case where a half-space is not
available for a particle (this imitates the presence of an
impenetrable substrate in the wetting problem). We will
consider another case in which the line is pinned in the
bulk, i.e., the pinning potential is symmetric:
V(x)= V( —x). Among the experimental realizations of
our system would be the pinning of a single vortex in a
type-II superconductor by a twin boundary (this problem
has effective dimension d =1) or by a linear pin (d=2;
pins of this kind have recently been created by bombard-
ing initially clean YBCO samples with Sn ions"). How-
ever, we claim that our results for the symmetric poten-
tial are equally relevant to phase transitions involving de-
pinning from the edge of a sample (like the wetting tran-
sition), since near the wetting point the distance between
the interface and substrate is macroscopically large and
goes to infinity at the phase-transition point; the asym-
metry imposed by the edge of the system is asymptotical-
ly irrelevant in the critical region, and thus does not
inhuence the critical singularities. The asymmetry only
affects the value of the phase-transition temperature,
which is nonuniversal. For example, we will see below
that bulk depinning from a short-range potential is im-
possible at any finite temperature for d & 2 (this result is
an implication of standard quantum mechanics' and has
been noted by several authors ' for d = 1); nevertheless
the knowledge of the localization length behavior for
T~ ~ (near the "phase-transition point" T= ao ) enables
us to determine its singularity, which is the same as that
for a finite temperature depinning transition which be-
longs to the same universality class. This is a significant

advance since the one-dimensional quantum-mechanical

problem in a half-space even for a special choice of the
pinning potential involves quite complicated mathemat-
ics. Moreover, the application of the established ap-
proach to potentials of less model form and higher space
dimensionalities is extremely discult, while the RG
treatment of the bulk pinning problem is relatively simple
for any space dimensionality and the corresponding re-
sults are proved to be rigorous. Using the idea of univer-
sality (see Ref. 1 and references therein) we can extend
the results for the depinning transition to other represen-
tatives of the same universality class (the essential
features characterizing the universality classes also follow
from the RG).

The line-depinning transition involves two length
scales, gi and g1. The latter is the longitudinal correla-
tion length, which characterizes the correlations along
the t direction. ' In the transfer operator forrnalisrn the
longitudinal correlation length is connected to the
bound-state energy by the hyperscaling relation

(4)

(6)

which is well established in the context of the two-
dimensional wetting transitions. Therefore, the problem
has a single independent scale (gi, to be definite) and all
we need is to find it.

III. RG EQUATIONS
AND THEIR PHYSICAL MEANING

Consider the scattering of a "particle" with zero wave
vector into the final state with wave vector k under ac-
tion of the external potential V(x). The amplitude of this
process in the first Born approximation is proportional to
the Fourier component of the interaction potential
V(k). ' Taking into account double-scattering processes
requires the first-order term V(k) to be replaced by its
more exact value V (k), '

2m y& d q V(~k —q~)V(q)
T (2m)" q

(7)

where the second term is the second Born approximation
for the scattering amplitude. The upper limit of the in-
tegral is a momentum cutoff set by the short-range part
of the potential V(x). For weak potentials, the second
term in Eq. (7) can be considered as a small correction to
the first, provided that the integral in (7) converges.

The RG, described below, allows us to calculate the
bound-state wave-function localization length gi (or the
transverse correlation length). To find the bound-state
energy we use the scaling expression

Eo= DT Imgi—,

where D is a constant; this seems quite natural in the
framework of the quantum mechanics. Combination of
(4) and (5) implies a connection between g1 and g'i,
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However, Eq. (7) can have a divergence at the lower limit
q=0; for instance, this integral diverges for d 2 if
V(k)=const. Then we would have to include an infinite
set of terms to go beyond the perturbative regime.

An equivalent and more systematic way is to use the
RG. ' The strategy is to integrate out the shortest wave-
lengths, giving an effective potential V; by repetition of
this process we eventually come to the observable behav-
ior at long wavelengths (or large distances). Since we are
interested in the small-k behavior (our final aim is to find

Eo for Eo~O), we will expand the second-order term of
Eq. (7) in k for k~O. The leading term is just the in-
tegral of V(q ) /q; the nonvanishing corrections in k (for
an isotropic potential depending only on the absolute
value of k) is of order k or higher and, as will be made
clear below, can be omitted. So we shall have after the
angular integration,

2mI( dV"(k)=V(k) — f dqq V (q), (8)

A(1 —dl )

dqq 'V (q),
T

where ICd=Sd/(2m) and Sd=2n ~ /I (dl2) is the sur-
face area of a d-dimensional unit sphere. Let us split the
second integral in Eq. (8) in two parts: from zero to
A(1 —dl } and from A(1 —dl } to A, where dl is
infinitesimal, and integrate over the high-momentum
slice. The result,

2m' A
V (k ) = V(k ) — V (A)dl

T2

A =2 ' 'vr I +1 /I (sl2) .
$

2
(12}

For the important special case s=2 this reduces to
3 =1/Ed. The short-range part of the potential would
add only a constant to Eq. (11). Therefore we consider a
potential of the form

V Ak'
V(k)= Vo+

d s
(13)

and refer to V0 as the short-range amplitude. Since we
have neglected the k contributions to V (k) in the
derivation of Eq. (10), the k-dependent part of (13) is the
leading term only for s —d (2; and we shall see below
that only these values of s and d are of interest. Substitu-
tion of expression (13) into (10) gives the renormalized
values of V0 and V, :

2mK A=V—0 0 T2

, =V, .

V AA'
2

Vo+ dl, (14)
d —$

(15)

The original form of the Hamiltonian (1) is recovered by
rescaling k —+k( 1 —dl ), together with x~x( 1+dl ),
t ~t(1+dl ), Vo~ Vo(1+dl), and V, ~ V, (1
+dl)' . There is an additional correction to Vo due to
the elimination of the high-momentum slice (14). This
leads to the set of the RG equations

d Vo(I )

dl
=(2—d)V (I)

can be used to define the renormalized potential

2 E„AV(k)= V(k)—
T2

V (A)dl . (10)

2mE A"

T2

V, (l ) A A'
'2

Vo(I )+
d —s

(16)
This demonstrates that multiple scattering generates a
short-ranged (i.e., independent of k) contribution to the
external potential, even if we had initially just a k-
dependent external potential. This forces us to consider a
pinning potential of more general form. Suppose it is
comprised of a short-range part and a long-range tail of
the form V, /r' where V, is the amplitude, r is the radial
coordinate, and s is some exponent. The Fourier trans-
form of this tail in leading order for k —+0 must have the
form

1/k
V, f d"x e'""r '=constV, dr r"

a a

ks —d d —s
=A V,

d —s

where we have replaced the oscillating factor e'"" by uni-
ty for distances between the small-scale cutoff a =—1/A
and 1/k and neglected the contribution from distances
exceeding 1/k. The small-scale cutoff is necessary since
the integral fd "x e'""r ' diverges for d ~s at the lower
limit. The constant term in Eq. (11) depends on our
cutoff procedure; however, the coefficient A does not, and
is equal to

d V, (l )

dl
=(2—s)V, (l) . (17)

2mEd V, (l) Aa"
u (I ) = Vo(1)+

T a S

2mI{ &3
g(1)= 2 2 V, (l)

T a

(18)

puts Eqs. (16) and (17) into a form more convenient for
analysis:

dQ

dl
=(2—d)u —u +g,

dg
dl

=(2—s)g .

(20)

(21)

These equations are to be solved subject to the initial con-
ditions

Multiple scattering screens the potential so that its ampli-
tudes appear to be different at larger distances; these
difFerential equations allow calculation of the amplitudes
at distance r = ae '.

Introducing the dimensionless variables
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2mEd V, Aa"
uo=u(1=0)=

d Vo+ (22)

2m', W
go=g(1=0) = V, ,

a
(23)

2mY,
R "+ R' — R =0,

r Z2rs
(24)

where we have assumed the wave function is radially
symmetric (nonsymmetric wave functions will have
higher energy). Let us seek R in the form

u(r )drR =const exp
r

We obtain for u the differential equation

du 2
2m V,

r =(2—d)u —u +
dr T~rs —2

(25)

(26)

Introducing the variables 1=in(r /a ) and
g (1)= (2m V, /T a' }e' '" (where a is some cutoff
which is in general different from a) transforms Eq. (26)
exactly into the RG equations (20) and (21). The proper
relationship between a and a is that the dimensionless
combinations 2m V, /T a' [occurring in g (1)] and
(2mEd A /T a' ) V, [in Eq. (23)] are equal. Hence, we
have demonstrated that our RG equations (20) and (21)
together with the initial condition (23) correspond to the
rigorous solution of the Schrodinger equation at large
distances for the state with zero energy. The correspond-
ing wave function has to be matched with its short-range
part for r —=a, which in general demands the detailed
knowledge of the short-ranged part of the pinning poten-
tial; in our case all this information goes into uo. Then

where the potential parameters Vo and V, in the right-
hand sides correspond to the bare values. Since these
conditions are extracted from the small-k part of (13) by
putting k™l/athey are only order-of-magnitude esti-
mates, except for s =2 where the initial condition for g is
cutoff independent. Precise knowledge of the initial
values is necessary for exact determination of the phase-
transition point or other "nonuniversal" quantities. As a
rule this is outside the RG, which treats model-
independent properties.

Before actually applying ~s. (20) and (21), let us dis-
cuss their range of validity. Although they arise from
perturbation-theory considerations, we will argue that
(20) and (21) can be used for exact determination of criti-
cal singularities. The calculation that led us to Eq. (15)
demonstrated that multiple scattering can generate only
analytical corrections to the renormalized potential
V"(k). Therefore, for s —d & 2 the result (21) for the am-
plitude for the nonanalytic part of V" is exact in all or-
ders in g and is just the consequence of the scaling prop-
erties of the long-range part of interaction. To realize
that (20) is exact also we need to clarify the physical
meaning of the variable u (1}.

For r ))a the radial part R (r) of the wave function of
the state with zero energy obeys the Schrodinger equa-
tion

pi=a expl' (27)

can be attributed to the localization length of the Eo &0
wave function. More complicated situations are also pos-
sible, such as a multicritical point (ui =uz) or a periodic
u(l} which falls to —Oo for an infinite sequence of 1 (in
this case there are no fixed points). These cases will be
discussed below. It is interesting that the simple system
(20) and (21) generates this variety of behavior.

IV. DEPINNING TRANSITIONS
IN THE PRESENCE

OF INUKRSK SQUARK INTERACTIONS

Let us start with the marginal case s =2. According to
Eq. (21), the amplitude of the long-range part of the pin-
ning potential is scale invariant, equal to g =2mV2/T
[in this section we will omit the subscript introduced in
(23) since here g(l) =go], and plays the role of a parame-
ter in Eq. (20). The fixed points at which the right-hand
side of (20) vanishes are given by the roots of the quadra-
tic equation

(2—d)u —u +g=O.
This has the real solutions

u, =
—,'[2—d+[(d —2) +4g]'~ ],

(28)

(29)

u (1) as given by Eq. (20) via Eq. (25) gives us the spatial
behavior of the wave function with E=O. According to
the oscillation theorem' the number of zeros of this
function tells us the number of lower (E & 0) discrete lev-
els. In the proximity of the disappearance of the discrete
spectrum the position of the zero(s) of the E=O wave
function will occur at larger and larger distances from
the origin; for a threshold combination of parameters of
the pinning potential this zero will be at r = ~, and E=0
will correspond to the lowest energy state. Therefore we
can use a scaling argument and identify the position of
the zero of the E=0 wave function with the localization
length gi of the lowest energy level Ep &0 for EO~O
((i~ ~ ), and find Eo via Eq. (5).

For some special choices of the pinning potentials
these arguments can be checked by the direct solution of
the Schrodinger equation. Some references will be given
below.

Relationship (25) provides a physical interpretation for
the different dependencies of u(l). For example, if the
RG equations have a stable fixed point u, =u(l —+ ~ ),
and u(l) is finite for all 1~0, we have a nonbinding pin-
ning potential and for r~00 the radial wave function
behaves asymptotically like r '. The case
u (1~ 00 ) —++ 0o also corresponds to a nonbinding poten-
tial. The presence of an unstable fixed point u2 means
that depending on the relative position of uo (22) and u2
we shall obtain qualitatively different behaviors of the
wave function; therefore uo=u2 corresponds to the
separating value between these regimes. To locate the
presence of a bound state we have to find

aconite

scale 1'
at which the radial wave function (25) vanishes. This evi-
dently corresponds to u (1~1") = —&a. The respective
spatial scale
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up =—'[2—d —[(d —2) +4g] j

whenever g satisfies the inequality

(30) accurate version of (35a) can be obtained by subtracting
from every uo in (35a) the dimensionless energy (5)

E—orna /DT = —(a /g~), giving instead of (35a)

(d —2)g)—
4

(31) uo —u i+(a /(i )

(g, /a) '

uo —u2+(a/g~}
(35b)

The solution of Eq. (20) expressed in terms of u i and u2
is

(u, —uz)(uo —u, )
u(1)=u, +

(uo —u2)exp(u, —u2)I —uo+ui
(32)

while for u i
=u 2

= (2 —d ) /2 [which occurs for
g = —(d —2) /4] this reduces to

This equation has to be solved for uo~u2. Several
different cases are possible here, depending on value of g.
The possible phase diagrams are shown in Fig. 1.

A. u ~

—u 2 & 2 Or g & 1 —{d —2) /4

For u&
—u2 &2, g is bounded by

uo —(2 —d )/2
u(l) = +

2 1+[uo —(2—d )/2]l
(33)

(d —2)g)1— (36)

The solutions (32) and (33) demonstrate that we obtain
different asymptotic behavior of u(1 —+ oo ) depending on
the relative positions of uo, u„and u2. For Qo) Qp the
RG takes us to the stable fixed point u „and the cross-
over behavior depends whether uo is above or below u, .
The consequence of the presence of this fixed point have
been discussed in detail in a different physical context. '

Here we will restrict our attention to the set of parame-
ters that allows the depinning transition. This transition
occurs when the initial value uo coincides with the unsta-
ble fixed point u2 (30), which divides the unbounded
states [for which u(t~~)=u, ] from the bound states
[for which u (1~l*)= —~]:

This is region A of Fig. 1. The leading terms of the local-
ization length and the free energy F=E0 expansions are
given by

D

C ',4 Unbound .

Bound

i( U0

uo= —,'[2 —d —[(d —2) +4g]'~~] . (34) Unbound

Interestingly, this condition for the bulk depinning tran-
sition is very similar to that obtained for the edge (wet-

ting) depinning transition. Lipowsky and
Nieuwenhuizen studied in d =1 a model potential con-
sisting of an impenetrable well for x &0, a square well for
0 &x & a, and an inverse-square interaction for x & a; the
critical condition on pz, the dimensionless strength of the

square well, is that Qpocot+}uo (instead of uo) be equal
to the right-hand side of (34) evaluated for 2= 1. This
occurs because both here and in Ref. 9 the right-hand
side is due to the inverse-square part of the potential, and
the left-hand sides are due to the specific short-range be-
havior.

The denominator of Eq. (32) vanishes for

Bound

{b)

Unbound

(e)

Qo Q)
exp(u, —u2)l*=(g~/a) '

Qo Q2
(35a}

where we have used the determination of gi (27). This
equation is an analog of the matching condition at r =—a
on the logarithmic derivatives of the large distan-ce (left-
hand side) and the short-distance (right-hand side) pieces
of the wave function for the state with the energy given

by Eq. (5). This fact enables us to improve (35a), which
determines the location of the node of the wave function
(25) of the zero energy state. The short-range part of the
pinning potential appears in the Schrodinger equation in
the combination Eo —Vo(x), and so this combination
should appear in the matching condition. Hence a more

FIG. 1. The global phase diagram for a symmetric pinning

potential comprised of an arbitrary proportion of a short-range

part and an inverse-square tail [see Eq. (13) for s =2] in the di-

rnensionless variables uo {22) and g (23). The phase boundary

between the bound and the unbound states of the line consists of
the four distinct subregimes A, 8, C, and D studied in Sec. IV.
The locus of transitions within subregime A is given by the part
of the curve (34) which extends from the point

G(g, uo) = [1—(d —2)2/4, —d/2] to (+ ao, —ao1; the same

curve between the points 6 and C [ —(d —2) /4, (2—d)/2]
gives the locus of transitions within subregime 8; the multicriti-

cal point C divides subregime 8 and subregime D which extends

from C to [—(d —2}~/4, + ao] along the straight line

g = —(d —2) /4: (a) d &2; (b) d=2; (c) d )2; here 6 lies at a

negative value of g for d )4.
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—1/2 (u
&

—
u&

—3)/2
pi=a[(uz —uz) +—,'(u, —u2)(u2 —uo) ],

(37)

=a Q2 Qp

u) Qp

Vj.

(39)

where we have introduced the correlation length ex-
ponent v~ according to standard definition'

vi '=u& —uz=[(d —2) +4g]' (40)

However, the physical values of v~ are frequently restrict-
ed by the inequality' v~& —,', which is opposite to Eq.
(36). The bordering value v~= —,

' then corresponds to the

upper critical dimension' above which the correlation
exponent is constant and equal to —,', and the phase transi-
tion is described by the Landau theory. ' Thus the values
vJ &

p
indicate to us that something may be wrong with

our derivation. As was explained above, the RG equa-
tions (20) and (21) are exact, and the initial condition for
g (23) is cutoff independent for s=2 and therefore also
exact. The weak point of our derivation is the initial con-
dition for u. Hence this inaccuracy can lead to nonphysi-
cal results if condition (36) holds, and some essential
corrections to up have to be introduced. However, even
without these corrections we can find the leading terms of
(37) and (38) by continuity arguments. Using the analogy
with the theory of critical phenomena' we can put vj =

—,
'

F=Ep

DT
2 [u2 —uo —(u, —u2)(u2 —uo) ' '

] . (38)
ma

For d=1 this regime was discovered by Lipowsky and
Nieuwenhuizen with the same condition (36). For g=0,
Eq. (36} reduces to d )4; therefore it is clear that this is
not accessible for physical dimensionalities in the absence
of the inverse-square interactions.

Result (38) has a clear physical meaning. The leading
term (linear in u2 —uo} arose from the short-range part of
the wave function [i.e., the right-hand side of (35b)],
which would be expected to give an analytic contribution.
The second term originates from the large-scale part of
the wave function, and thus is in general nonanalytic and
(for nonzero g) nonuniversal. Equation (38) corresponds
to a first-order phase transition with a jump of the first
derivative of the free energy (remember that the singular
part of the free energy is zero for uo ~ uz). This transi-
tion is very unusual since the correlation lengths (4) and
(6) diverge at the phase-transition point; moreover the
higher derivatives of the free energy (starting from the
second) will be singular for most values of g (36). The ex-
ceptions are special points where Q&

—u2 is an even in-
teger (4 or greater). At these special points some deriva-
tives might have only finite jumps.

The results of the foregoing paragraph have their ori-
gin in the improvement of the initial conditions for up in-
troduced into (35b) "by hand. " However, some indica-
tions of the regimes (37) and (38) are already present in
(35a), as can be seen by writing it in the form

(d -2)' (d —2)'
4

&g&1—
4

(41)

This is region 8 of Fig. 1. The correction term in Eq.
(35b) is irrelevant in leading order for u o ~u 2, and the
localization length is given by formulas (39) and (40).
The bound-state energy Ep and the free-energy density
vanish according to (5), (39), and (40) like

2'DT Q2 upF=E =— (42)
ma u) Qp

Before discussing the general formulas (39), (40},and (42)
let us start from the important special case g =0, which
corresponds to a short-range pinning potential. Accord-
ing to Eq. (41) this involves all physical dimensions less
than 4 excluding 2 =2 (this case will be analyzed sepa-
rately).

For d &2 and g =0 the condition (34) for a depinning

in Eq. (39) for all values of parameters where u, —uz )2,
and via Eq. (5) reproduce the leading terms of Eq. (38).
Although such a matching procedure leads to a slight
difference in numerical factors, the dependence of g~ (37)
and Eo (38) on u2 —uo will be the same.

Experience with other systems above the upper critical
dimension warns us that we could expect some scaling re-
lations to fail. At the upper critical dimensionality (point
6 on Fig. 1), nontrivial logarithmic corrections to the
leading terms of (37) and (38) are expected. It is evident
from (35b) that our method fails to produce a logarithmic
correction for u, —u 2

=2 and a more elaborate treatment
is necessary. Moreover, we do not see here any breaking
of the scaling relations such as (5) and (6); the critical
dependencies of Eo, gl, and ( x") can be reexpressed via
the critical dependence of gj. We have reproduced all
these results, together with a logarithmic correction for
the bordering value u&

—u2=2 (the same correction was
found in Ref. 9 for the two-dimensional wetting problem)
by direct solution of the d-dimensional Schrodinger equa-
tion in the potential comprised of a square well and an
inverse-square tail. Moreover, a part of these results was
found by Lipowsky and Nieuwenhuizen for the two-
dimensional wetting problem. In particular, they have
found a linear dependence of the free energy (38) on the
vicinity to the phase transition, but also noticed a strong
indication of the breaking of one-length scaling for the
transverse correlations of the interface. This last result is
to be expected above the upper critical dimension. The
absence of a similar phenomenon in our system is due to
the symmetry of the pinning potential. It is necessary to
stress that the depinning transition above the upper criti-
cal dimension is not identical to the Landau theory of
phase transitions although the critical dependence of
the correlation length (37} in leading order is the same in
both theories, the behavior of the free energy (38) is com-
pletely different for the depinning transition, and is
characteristic of a first-order phase transition.

B. 0&a, —u2 &2 or —[(d —2}~/4] &g &1—[(d —2) /4]

For 0 & u, —u2 &2, g is bounded by
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v,,'= ld —2I, (43)

transition reduces to u0=0. This means that a depinning
transition is impossible at any finite temperature, since
we assume that Vo is finite in Eq. (18}. This conclusion is
an implication of standard quantum mechanics' that
tells us that an arbitrarily shallow well always has a
bound state for d &2. Let us rewrite (40) and (42) for
g =0 in a form appropriate both for d (2 and d )2:

nonuniversal. For d=1 these results were obtained in
Ref. 9.

C. Multicritieal point: g = —(d —2) /4,
uo =(2—d)/2

This case is the point labeled C on Fig. 1. For the mar-
ginal case u, =uz or g = —(d —2)~/4 we have to use Eq.
(33) to find the scale I * at which u ( I ~ I *

) = —oo:

DT' IdolF=E0=—
ma' 2 —d+ lao I

' 2/(2 —d)

(44)
l'= 1

(2—d )/2 —uo
(47)

where we have written uo = —Iuol to be explicit on signs
(the bound state arises for uo &0). For d=l, Eq. (43)
reduces to the exact result of Abraham, and (44) demon-
strates the correct quadratic dependence near the "criti-
cal value" u0 =0. These conclusions are consequences of
the universality principle discussed in Sec. II. For d &2
and luol «1, Eq. (44) reduces to

' 2/(2 —d)
Dz' lao IF=E0=-
ma

(45)

This is a generalization of the one-dimensional result
fnr the energy level in a shallow well (see Problem 1, Sec.
45 of Landau and Lifshitz; ' recall that here the tempera-
ture plays the role of Planck's constant). Equation 44 en-
ables us also to go to the limit a ~0. Since in this case
uo ~0 [see Eq. (22)] we get the a-independent expression

d /(2 —d)
mF=E = —const0 T2 I

v I2/(2 —d) (46)

%'ith the appropriate numerical factor this is the exact
result for the ground-state energy level of the 5-function
well.

For d & 2 and g =0 the condition for the depinning
transition (34) reduces to uo=2 —d which tells us, ac-
cording to quantum mechanics, that an energy level
arises if the potential well is suSciently deep. This result
means that there is a finite temperature depinning transi-
tion. For d=3 Eq. (43) and the exponent of Eq. (44)
agree with the explicit calculation for the square-well po-
tential (see Problem 1, Sec. 33 of Landau and Lifshitz' ),
and the critical depth of the well luo I

= 1 has the same or-
der of magnitude as found in the same problem. We al-
ready have noted that we have confirmed these con-
clusions for general d by direct solution of the
Schrodinger equation for a model potential comprised of
the square well and inverse-square tail. For general d and

g =0 the results (43)—(45) and their analogs for d )4 [see
Eqs. (37) and (38)] have been found by Grosberg and
Shakhnovich' in the closely related physical context of
the collapse transition for a Gaussian polymer in an
external attractive potential. The same singularities have
been obtained more recently by Lipowsky' for an un-

binding transition from a short-range asymmetric poten-
tial by direct solution of the Schrodinger equation.

For the case of nonzero g Eqs. (39), (40), and (42) tell us
that the critical exponents depend upon g and thus are

The expressions for the localization length and the free
energy follow from (47), (27), and (5):

1

(2 —d )/2 —uo
(48)

F=E0=—DT 2
exp

ma (2 —d )/2 —uo
(49)

The condition for the phase transition (34) reduces now
to uo=(2 —d)/2, and the localized region is given by

uo &(2—d)/2. Using the determination of g (23) for
s=2 we obtain the following exact expression for the
multicritical temperature:

2(2m
I Vz I)'i

(50)

Since g is temperature dependent (g =2m V& /T ) we can

go through the multicritical point holding g fixed at its
critical value —(d —2) /4 only by changing uo while

keeping the temperature constant [for example, by chang-
ing Vo (22)]. The same qualitative result and Eqs.
(48)—(50) were obtained by Lipowsky and
Nieuwenhuizen for d =1.

In the special case d=2 (g=0) Eqs. (48) and (49)
reduce to

pi=a exp(2m. T /m I Vo I ), (51)

DTF=Eo = — exp( 4nT/m I Vo I
)—,

.
ma

(52)

where we have used the determination of uo (22). These
expressions tell us that a phase transition is impossible
for any finite temperature just as a quantum particle in an
arbitrarily shallow two-dimensional potential well has a
bound state. ' Note that (52) represents the familiar ex-
pression for this energy level (see Problem 2, Sec. 45 of
Landau and Lifshitz' ). Moreover we can conclude from
(52) and the universality principle that any finite-

temperature depinning transition for d =2 in the absence
of the long-range forces must have an essential singulari-

ty of the free-energy-like exp( —1/r}, where r is a dimen-
sionless variable denoting the vicinity to the phase-
transition point. For the case of the edge-depinning tran-
sition this result has been obtained by ballade and
Lajzerowicz.
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D. Kosterlitx-Thouless-like transition

Up to now we have analyzed the cases where the RG
equation (20) has fixed points. For

the terms of b u = (2—d }/2—us and 1(, (55) as follows:

gj=a exp Q(A, /b, u )
1

(62)

(d —2)g(—
4

(53} where the shape function Q goes as

the roots (29) and (30) are complex and we shall obtain,
instead of Eqs. (32) and (33}, and

Q(0}=1 (63)

2 d uo —(2—d )/2
u (1)= +&A,tan arctan —&A,l

2

(d —2)
4

(54)

(55)

Equation (54) has an infinite periodic sequence of values
of l ~ at which u ( 1 ~ 1' )= —ac. This corresponds to the
presence of an infinite number of nodes in the radial func-
tion R [Eq. (25)], implying the presence of an infinite
number of energy levels having negative energy. For
small A. the asymptotic behavior of l' is found to be

Q(y)=m. /&y for y~ac . (64)

jig

The Kosterlitz-Thouless-like singularities (58) and (59)
have been found first by Kroll and Lipowsky and Chui
and Ma in the context of the two-dimensional wetting
transitions. The results (58)—(64) have been obtained by
Lipowsky and Nieuwenhuizen for a more general model
potential by direct solution of corresponding one-
dimensional Schrodinger equation.

2 d
mn/&1, for u0%

2

2 —d
(n —1/.2)/&A, for uo=

(56)

(57)

where n is an integer. The negative n are unphysical
since l ~0 by definition. Thus the energy levels can be
found by the combination of Eqs. (27) and (5) with (56)
for non-negative integers n, or (57) for positive integers n
The lowest energy level, which gives us the line free ener-
gy, must correspond either to n =0 or n =1. If it corre-
sponds to n =0 we have from (56) 1*=0and from (5) and
(27) Ec + DT /ma — as—A, —+0. This applies to
9p & 2 —d /2 for which a bound state exists even for
g )—(d —2} /4. If the ground-state energy is given by
n = 1, one has l *~ 00 as A, —+0, which applies to
uo )2 —d /2. In the latter case, one finds from (56), (57),
(27), and (5)

{a)

u

gj =a exp(m/&A, ), (58)

DTF=ED = —
z exp( —2m /&1(, )

ma
(59)

for uo) (2—d)/2, and

pi=a exp(n /2V A, ), (60) (c)

DTF=Ec=—,exp( —m/v'X}
NlQ

(61}

for uo=(2 —d}/2. The latter equations reflect the ther-
modynamic singularities for passage through the mul-
ticritical point (see previous subsection) at fixed
un=(2 —d)/2. Previously [see Eqs. {48} and (49)] we
have found the critical behavior if one passes through the
multicritical point for fixed g= —(d —2) /4. Therefore
we can rewrite Eqs. {48}and (60) in more generic form in

FIG. 2. Flow diagrams for the RG equations (20) and (21)
displaying a second-order depinning transition for s & 2. The
arrows show the direction of the RG How. Values of u and g
which are carried by the RG transformation to the stable fixed
point u =u& (29) correspond to the unbound state of the line.
Potential parameters which are carried by the RG to u = —~
correspond to the pinned state of the line. The separatrix be-
tween these two regimes gives the locus of the phase-transition
points (a) d & 2; (b) d =2 [this case is degenerate since the posi-
tions of the stable u

&
(29) and the unstable u& (30) fixed points

coincide]; and (c) d & 2.
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V. LONG-RANGE TAILS DECAYING FASTER
THAN 1/r2

If the long-range part of the pinning potential has a tail
decaying faster than 1/r, the variable g (21) is irrelevant
in the RG sense. ' Thus the critical singularities in lead-
ing order are given by the results of the previous section
for g =0. However, the presence of a tail leads to a shift
in the locus of phase transitions represented by the
separatrixes in Figs. 2. Note that Figs. 2 clearly show
that, in the presence of long-range forces, a finite-
temperature bulk depinning transition always occurs,
even for cases (such as d ~ 2) for which depinning from a
purely short-range potential is impossible.

We will now demonstrate how to find the correction to
the free-energy density in the presence of an irrelevant (in
the RG sense) tail. The simplest way is to use the general
ideas for calculating of corrections to scaling. ' We will
restrict ourselves to the case d &4. To simplify the for-
mulas we will use a thermal scaling field ~ to denote the
(dimensionless} proximity to the phase-transition point
(vicinity to the corresponding separatrix in Figs. 2), and
omit all dimensional and irrelevant numerical factors,
keeping only the relative signs of the leading- and next-
order term.

Consider first the case d%2. Here the leading term of
2vi pthe free-energy expansion is given by I-~ with v~o

from Eq. (43). The value of g(l)=goexp(2 —s)l (21}eval-

uated at the correlation length scale e' =~ "is equal
v~ p(s —2)

to g*=go~ " and is small compared with unity for
~«1. Therefore we can seek the free-energy singularity

2v&p v& p(s —2)
in the form F-r ' f(gor ' } where f(x) is an ana-

lytic function behaving for x ((1 like f(x)=1—x. This
leads to the desired expansion of the free energy

ing to completely new physical picture. The outcome de-
pends on the sign of the long-range tail of the pinning po-
tential. For the case of a repulsive tail (go )0) and an at-
tractive short-range well a first-order depinning transition
is possible. In this case the E=O wave function has a
finite localization length; the moments (3) are finite at the
phase-transition point and jump to infinity above the
phase transition. The How picture of the RG equations
(20) and (21) corresponding to this case is displayed in
Figs. 3 for different space dimensionalities. A separatrix
in the g &0 region of Figs. 3 gives us the locus of bare
values which correspond to first-order transition points.
The separatrixes end at the critical end points which have
coordinates (u, g ) =(0,0) for d ~ 2 and (2—1,0) for d ~ 2.
Comparison of Figs. 3 and 2 clearly demonstrates the
difference between the second- and the first-order transi-
tions in terms of the renormalization How; in the latter
case we have no fixed points corresponding to either
phase, and only a separatrix between distinct regimes of
the runaway of the RG trajectories: u~ —oo (bound
state) and u ~+ ~ (unbound state). On the other hand,
the RG flow describing a second-order transition (Fig. 2)

2vj p Vi ps
go (65)

itg

A very similar result has been obtained by Kroll and

Lipowsky for d =1, where v~o=1. They also found for
integer s a logarithmic term in the correction. This is in

agreement with the results of the correction-to-scaling
theory (see Ref. 13 and references therein), according to
which logarithmic corrections are always to be expected
for integer exponents.

For d =2 in the absence of a long-range perturbation
the correlation length and the free energy have singulari-
ties exp(1/r) and exp( —2/r), respectively [see (51) and

(52)]. The value of g(1)=goexp(2 —s)1 evaluated at the
( 4'

correlation length scale e =exp( 1/r ) is given by

g =goexp[(2 —s)/r]. The scaling argument now leads

to the expression

~MY

(b)

ll g

F—exp( —1/r ) 1 —go exp
2 —$

(66)

VI. LONG-RANGE TAILS DECAYING SLOWER
THAN 1/r2

If the long-range part of the pinning potential falls off
slower than 1/r, it is relevant in the RCx sense and
grows under rescaling like g(l ) =goexp(2 —s)l (21), lead-

(c)

FIG. 3. Flow diagrams for the RG equations (20) and (21)
displaying a first-order depinning transition for s & 2. Here the
unbound and bound states are characterized by the runaway of
the RG trajectories to u =+ ~ and —~, respectively, depend-

ing on the relative position of the initial values with respect to
the separatrix: (a) d & 2; (b) d =2; (c) d & 2.
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2/( —s )

I' =Eo-
(d —2)

(68)

For d =1 these functional dependencies have been found
by Kroll and Lipowsky. They also noticed that the last
expression has an important special case. Let us imagine
the presence of an additional term in the Hamiltonian (1)
imitating an external field term which localizes the line
and destroys the phase transition. For the edge-
depinning transition this term is proportional to x'.
Therefore it corresponds to a relevant long-range tail
with s= —1. Then we obtain from (68) the free-energy
density above the depinning transition in an external field

~go~ =h for h ~+0 in the form

F h2/3 (69)

The exponent of this expression is the known exact re-
sult for d =1. Hence we can conclude that it holds
for all physical dimensionalities d &4 excepting d=2,
where a logarithmic correction is expected (see below).

~"j.oWe can combine (69) with F-r "
[vt o is from (43)] for

h =0 and rewrite Fboth for nonzero ~ and h in the form

where the scaling function Q has the properties
Q(0)=const and Q(y)~y ~ as yahoo. We will not
write down the corresponding formulas for the sym-
metric field (-x ) since they follow from (68) for s = —2
in the same way.

Consider now the case d =2. Here the prefactor of Eq.
(68) diverges for d ~2 but the exponent of go is dimen-
sionality independent and well determined. This implies

contains a separatrix dividing the bound state with
u = —00 from an unbound one which corresponds to a
Pnite stable fixed point u '.

For the case of an attractive tail (go & 0), the g &0 part
of Fig. 3 shows that the RG trajectories run away to
u = —ao for any value of the short-range part of the pin-
ning potential. This demonstrates that the line is pinned
at all finite temperatures. We will consider this case in
more detail to show how to calculate the ground-state en-

ergy (and the line free-energy density) in the limit

~go~ &&1. We need to know the spatial scale of the
ground-state wave function, which evidently is given by
g(l*)-=1. We can, however, give a more accurate condi-
tion. The inequality ~go~ &&1 implies that our picture of
the depinning transition holds for intermediate scales less
than the spatial scale e' imposed by the presence of the
long-range tail. For small ~g(l) ~

and A %2 the equation of
state can be described by the effective scale-dependent ex-
ponent (40). It is clear that the maximal scale at which
such description is still meaningful is given by the zero of
the expression in the square brackets of Eq. (40):
(d —2) —4~go~exp(2 —s)1'=0. Therefore the localiza-
tion length of the wave function and the ground-state en-
ergy are given by [see Eqs. (27) and (5)]

' 1/(2 —s)
(d —2)

(67)
gp

that for d=2 we have to obtain the same functional
dependence for F that Eq. (68) does, with a logarithmic
correction going to infinity for go —+0 instead of the
divergent combination 1/(d —2) . Let us demonstrate
how to get this correction. For d=2 and intermediate
scales less than e' our system can be described by the
theory of subsection IVD. Therefore the scale at which
this description fails is given by Eq. (56) for n =1 and
A, =~go~exp(2 —s)l' [see Eq. (55) for d=2]. Hence we
obtain

exp
v'Igol

$ —2
2

The solution of this equation for ~go ~
~0 to the necessary

accuracy leads to the following expressions replacing Eqs.
(67) and (68) for d =2:

g) =—a[/go/in(1//go/)]' "
F=EO —[/go/In(1//go / )]

(71)

(72)

So for the case of the edge-depinning transition we have
the same dependence (69) on the external field h with an
additional logarithmic term ln (1/h). The analog of
Eq. (70) looks like

F=[h ln(l/h)] Q ~

[h ln(1/h)] ~
(73)

VII. CONCLUSIONS

Using the SOS Hamiltonian (1) for a linear object in a
d + 1-dimensional space we have given a complete
classification of the possible depinning transitions via an
exact RG analysis of the related Schrodinger equation (2).
For the special case d =1 we have recovered most of the
known results for the two-dimensional wetting transition.
For pinning potentials falling off faster than I /r the

~l0leading-order free-energy singularity is given by r "(43)
for d &4 and d%2, exp( —1/~) for d =2, and r for d )4.
At the upper critical dimension d =4 the free energy van-
ishes like v with a logarithmic correction. The behavior
above the upper critical dimension is nontrivial: from one
side the free-energy singularity refiects the first-order
phase transition, while the correlation lengths diverge at
the phase-transition point.

The presence of long-range tails falling off faster than
1/r leads to corrections nonanalytic in ~. We have cal-
culated these corrections for d (4.

The presence of an inverse-square tail in the pinning
potential leads to a rich phase diagram with regions of a
nontrivial first-order phase transition above the upper
critical dimensionality, second-order phase transitions
with nonuniversal exponents, or Kosterlitz-Thouless-like
transitions with a multicritical point between the two last
regimes.

Attractive pinning potentials decaying slower than
1/r prevent line depinning at any finite temperature.

where the scaling function 0 has the properties
Q(0) =const and Q(y)~y asy~ co.
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For this case the free-energy density and the related be-
havior in an external transition-destroying field have been
calculated. Repulsive pinning potentials in the presence
of a short-range attraction can lead to first-order depin-
ning transitions.

The system we have studied is interesting since it al-
lows us to perform rigorous RG treatment while exhibit-
ing most of the known types of the phase transitions, in-
c1uding the Kosterlitz-Thouless type, second-order phase
transitions both with universal and nonuniversal ex-

ponents, and first-order phase transitions. On the border
between the latter regimes unusual phase transitions are
found which have features characteristic both of first-
and second-order transitions.
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