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The screening problem has been studied here with the use of an analytically expressed dielectric func-

tion, which was calculated in accordance with the band structure of the graphite intercalation com-
pounds. Due to the special band structure of this system, the screening has been found to be very
effective at short distances from an impurity, and a strong but short-period Friedel oscillation also exists
at large distances. These features are expected to have important effects on, for example, the resistivity
and the ordering of impurities in the system. %'e have calculated the residual resistivity due to the
scattering from charged impurities. Direct comparison with measured results has indicated that a small

amount of such impurities could explain the observed resistivities in the stage-1 CSM compounds (M for
K, Rb, and Cs).

I. INTRODUCTION

Graphite intercalation compounds (GIC's) are very in-
teresting systems and have attracted many recent investi-
gations. ' Upon intercalation, electrons are either
transferred to (from) the carbon layer from (to) the inter-
calants. The Fermi level of GIC's can, as a result, be ad-
justed by employing different intercalants. GIC's can
achieve a conductivity as good as copper, ' with the prop-
er intercalations.

Although GIC's are good conductors, analytic studies
on their screening properties are still lacking. The Lind-
hard dielectric function is well known for providing a
basis of understanding for screening properties in metals.
Unfortunately, the same dielectric function cannot be
employed for GIC's, which have very special structures.
First, graphite compounds are layered systems; the con-
ductivity along the direction normal to the layers is small-
er' by several orders of magnitude than that parallel to
graphite layers. Second, the conduction and valence
bands are degenerate at the U point in k space, where the
state energy is proportional to k=~k~, not the usual
quadratic energy dispersion relation. The special band
structure also suggests important contributions coming
from the valence-to-conduction interband transitions.

Shun g developed for GIC's a dielectric function,
which takes into account the layer structure and the spe-
cial band structure of GIC's. The calculation has been
treated exactly within the random-phase approximation
(RPA) and the result expressed analytically. The dielec-
tric function is therefore expected to work for GIC's in a
fashion similar to what Lindhard's dielectric function
does for simple metals. GIC's, in Shung's approach, are
described by a superlattice model in which different
graphite layers are coupled to each other by direct
Coulomb interaction. The two-dimensional (2D) band
structure of each graphite layer follows from a tight-
binding calculation which yields the Blinowski's band
structure of the form

E"=+V kk —f

0
where U& =2. 13 Ago, and yo is the resonance integral due
to the nearest-neighbor coupling. The superscript c (v)
represents the conduction (valence) band. Such a 2D
band structure has been the basis of many studies —on
both the acceptor- and the donor-type, stage-1 and
stage-2 GIC's. ' One great advantage of the present
approach is that the complicated band structure of
graphites can be included for analytic studies and the re-
sults be directly compared with measurements. It has
been employed with success ' in the study of plasmons
and of other dielectric properties of GIC's.

Shung's dielectric function is used here to study the
screening of charged impurities in GIC's. The impurities
are put either on the carbon layer or on the intercalant
layer. The effective potential and the induced charges are
then derived analytically, which can be applied either to
the donor- or to the acceptor-type GIC's. We choose to
employ it to study the CsM compounds (M stands for K,
Rb, and Cs), since measured resistivities of these com-
pounds are available for comparisons. Complication due
to the intercalant-induced S bands has been neglected
here. There are suggestions ' that the rigid 20 bands
are still available in these compounds. Modification due
to the induced S bands will be studied elsewhere.

Our calculations illustrate that the band structure of
GIC's plays an important role in screening. The inter-
band transitions greatly enhanced the short-range screen-
ing; the finite size of the m bands introduced strong but
rather short-period Friedel oscillations. The latter might
have important effects on the impurity ordering. It
should be emphasized that such band structure cannot be
easily mimicked with, e.g., a superlattice of layers of 2D
electron gas, which has also been calculated here for the
purpose of comparison. In other words, one cannot
properly understand the GIC's without paying due atten-
tion to its band structure. DiVincenzo and Mele em-

ployed a similar band structure and studied the screening
effect numerically. They also discovered the importance
of the band structure in graphite, including a nonlinear
screening effect that is absent in the present theory. It is
noticed that they have studied the response of a single,
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undoped (i.e., EF =0) graphite layer. The nonlinear effect
should be less important in our systems where EF is
about 1.5 eV and the coupling among the graphite layers
is significant. The present linear response theory is ex-
pected to describe well the important screening behavior
of low-stage GIC's. Other features of screening in GIC's
have been discussed by many authors. '

The residual resistivity due to charged impurities is
also studied here as a further illustration of the impor-
tance of the special GIC's structure. The Boltzmann
equation can be directly used here to calculate the resis-
tivity, since the screening properties of such impurities
are now known. The special band structure of GIC's
enhances the carrier mobility in two essential ways: one
is that the effective mass of electrons is reduced, and the
other is that the matrix element for backward scattering
is also reduced. Reducing the strength of backward
scattering clearly enhances the carrier mobility. The
resistivities for stage-1 C8M compounds are calculated
here for specific comparisons. The measured resistivi-
ties' were found to be explained with about less than one
impurity in every 10 carbon atoms. Such low impurity
concentration seems reasonable here. A closer study in
this regard, however, is necessary —with, e.g., impurities
of known properties being doped into GIC's in a con-
trolled manner. The present theory provides a basis for
quantitative analysis in such future studies.

This paper is organized as follows. The screening of a
charged impurity in GIC s is discussed in Sec. II. The re-
sidual resistivities of C8M compounds are calculated and
the results compared with measurements in Sec. III.
Concluding remarks are made in Sec. IV.

II. THE IMPURITY SCREENING

e (q) =@0—V X(q), (2)

where X(q ) =X,(q)+Xb(q). X,~b~(q) is the response
function due to the intraband (interband) transitions. We
have calculated the response functions in detail and a

The stage-1 GIC's have the superlattice structure of an
infinite series of identical graphite layers with one inter-
calant layer sandwiched between two adjacent graphite
layers. Some approximations are necessary for address-
ing the properties of such a complicated system. First of
all, we employ Blinowski's band structure, so that we
have the advantage of taking the band-structure effect
into full consideration, and expressing the dielectric func-
tion in a compact form. This is important for analytical
discussion, and also for numerical studies. We further as-
sume that intercalation merely alters the Fermi energy
EF in the rigid band described by Eq. (1). Finally, we
neglect the electron hopping between different layers.
The Coulomb interaction for electrons on different layers
are, however, taken into consideration. Such a model is
similar to that" used successfully for semiconductor su-
perlattices. The difference in band structures is what dis-
tinguishes the two systems.

Let us first examine E (q), the static dielectric func-
tion of a single isolated graphite layer. Within the self-
consistent field (SCF) treatment, we can express

summary of the results has been given for easy references
in the Appendix. ep is the background dielectric constant
due to all excitations outside the ~ band of the graphite.
V =2ire /q is the matrix element of the Coulomb in-

teraction in two dimensions. We would like to emphasize
that we have actually used the Bloch wave functions in
evaluating the matrix element X(q). Thus, the full band-
structure effect of the complicated GIC's has been taken
care of.

Equation (2) describes an isolated graphite layer. It is
necessary, for GIC's, to take into account the coupling of
electrons on different layers. By assuming that Bloch
states are localized to the graphite layers, we find that the
Coulomb interaction for electrons on layers l and l' is

Vi i (q)= V~exp[ —q~l I'~I, ]—; where I, is the distance
between two neighboring graphite layers.

The dielectric function is modified after the inclusion
of the interlayer Coulomb coupling. For an external po-
tential V~'"(q) on the 1 layer, the total effective potential
)s11

eoV&' (q)=V&'"(q)+ g V& &(q)V&' (q)X(q) . (3)

V&' (q)X(q) is recognized to be the induced charge densi-

ty [n~'"(q)]. Equation (3) can be easily solved by first per-
forming the following Fourier transform:

g Vi'"(q)e ' '= V'"(q, k, ),
l

(4)

where ~k,I, ~

~ m", and similarly for V&' (q). The dielectric
function is then expressed by"

e(q, k, )=@0—V S(q, k, )X(q),

E'p

+ sinh(qz)(B —+B —1

+B 1—
where B =cosh(qI, ) —V X(q)sinh(qI, ) leo. Two interest-
ing cases to be discussed later are with z =0 and z =I, j2,
respectively, for impurities on the graphite layers and on
the intercalant layers. The induced charge density
n/'"(q;z) is given by Eq. (6) multiplied by the response
function X(q). The real-space potential is obtained by
the reverse Fourier transform

Vf (r;z ) = J V; (q;z)Jo(qr)q dq,
2& p

where Jo(qr) is the Bessel function of the order zero. A
similar relation holds true for the induced charge density
n/'"(r;z). We emphasize that a valid response function
X(q) is essential in this problem upon considering the

where S(q, k, ) =sinh(qI, ) /[cosh(qI, ) —cos(k, I, ) ].
Our main concern in this study is the potential due to

charged impurities. Let us consider one charged impuri-
ty Ze located at (0,0,z). For convenience, we denote the
first layer below the impurity l =0; thus, 3~z &I,. The
effective potential is expressed by

ZV sinh[q(I, —z ) ](B +B2 1— —
Vi' (q;z)= &B'—1
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~Eos(q) =
eo+S/q(1 —)/1 —x ) if q )2kF,

(8)

where x =q /2kb and S =2g„,eo/a *. Both Eqs. (2) and (8)

complicated band structure of GIC's.
The total induced charges for a good conductor like

GIC's would be expected to be equal to —Ze. The in-
duced charges on the 1th layer are NI"(z) = Vf (q;z)X(q)
at q ~0 and can be easily evaluated by using Eq. (6). It
should be noticed that there is no interband contribution
since V Xb(q)=0 at q~O. The total induced charges
can then be easily calculated g&N&"(z)= —Z; i.e., the
sum rule is indeed satisfied. This is a good indication on
the validity of our calculated dielectric function for the
GIC's.

Equation (7) is ready for studying the screening proper-
ties of the stage-1 GIC's. The result is compared with
that of a superlattice made of 2D electron-gas sheets
(EGS). Suitable parameters are needed here for a mean-
ingful comparison. We choose the stage-1 C8K for this
study. The method, however, can be generally applied to
other stage-1 compounds. It has been measured that
EF=1.5 eV and I, =5.35 A for CsK (see Table I).
yo=2. 4 eV and @0=2.4 have been used here (see later
discussion). As a result, the effective mass
m*=(B E(k)/8 k),„'=E~/vf =0 44mo, . where mo is
the bare electron mass. The same eo, I„and m * are used
here for the corresponding EGS. The same carrier densi-
ty (N, ) and the same valley degeneracy (g„=2) are kept
for both of the systems. They then have the same Fermi
momentum kF ="v/N, n. The Fermi energy of the EGS
is, however, only 0.75 eV in magnitude. The two systems
have the same efFective Bohr radius, a*=@ok fm'e
=2.90 A, and the same r, =(~a' n) '~ =1.18.

The static dielectric function of EGS is given by'

co+S /q 'if q ~ 2kb.

can be expressed as e(q)=eo+q, (q)/q .The q-dependent
screening parameter q, (q) is useful for discussion. With
the chosen parameters, q, (0)=3.31 A ' for both GIC's
and EGS.

q, (q) are shown in Fig. 1. There are two main
differences between GIC's and EGS. The first is that
GIC's (the solid curve) have an important contribution
from the inter-z-band transitions. It greatly enhances

q, (q) in the large-q regime, especially for q between 2kF
and 2kD. If we exclude the interband transitions, i.e.,
putting Xb(q)=0, the resulting q, (q) (the dotted curve)
would be even smaller than that of EGS. The second
difference is in the singular behavior of d "q, (q)/d "q. The
EGS has a first-derivative singularity at q =2k+. The
GIC's, however, are more complicated (details in the Ap-
pendix). GICs have a second-derivative singularity at
q =2k~, and have two extra singularities at q =2kD —2k~
and at 2kD. This is due to the finite size of the m band. It
has been estimated that the band size ED =5.5 eV and

kD =ED fUf
= 1.08 A '. The one at 2kD is the most

singular among the three. Very different oscillation pat-
terns at large distances can be expected here for the two
systems, since the Friedel oscillation is caused by the
singularities in d "q, (q)/d "q.

Let us first examine the z =0 case, for which
V&' (r;z=0) is plotted in Fig. 2. The screened potential
on the t =0 plane is rather short ranged for the GIC's
(the solid curves). At small r, V&' 0(r;z=0) can be very
well fitted by 6.3 exp( —1.67r )/r (not shown), which cor-
responds to a characteristic screening length of 0.6 A. As
for EGS (the dashed curves), V&' (or;z =0) can be fitted
by 6.5 exp( —1.25r)/r, i.e., a longer characteristic screen-
ing length of 0.8 A. The small-r behavior is mainly relat-
ed to large-q characters of q, (q). The fact that interband
transitions greatly enhance q, (q) of GIC's at q ) 2kf ex-
plains why Vl' o of GIC's drops off more quickly than
that of EGS. The characteristic screening length would

TABLE I. Parameters used in the calculations. We also used
E'p =2.4 and 1/p= 2.4 eV as discussed in the text.

Compounds

C8K

C,Rb

C8Cs

I,
(A)

5 35'

5.65'

5 94'

(eV)

1.50
1.60
1.40'
1.66
1.52'
1.80
1.23
1.45'
1.00

0.57

0.70

0.38

(theo)

0.60'
0.59~

0 43"
0.51~

0.64~

(exp)

0.60'
0.84'

0.70'

0.70'
0.55"
0.5+0.2'

0 30m

O

U

U

U

GIC's
GIC's, Xb(q)=0

~

EGS

'Reference 1.
Reference 7.

'Reference 15~

Reference 16.
'Reference 17.
'Reference 18.
Reference 6.

"Reference 19.
'Reference 20.
'Reference 21.
"Reference 22.
'Reference 23.

Reference 24.

0
0 10

FIG. 1. The screening parameters q, (q) for GIC's {the solid
curve) and for EGS {the dashed curve) are illustrated. Also
shown by the dotted curve is q, (q) for GIC's, in which the con-
tribution from the interband transitions has been neglected.
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FIG. 2. The effective potentials on the planes 1=0, 1, and 2
for a charged impurity at z =0. The solid curves are for GIC's,
and the dashed curves for EGS. Also shown is the effective po-
tential for GIC's if the interband transitions are neglected (the
dotted curve).

FIG. 3. Same plot as in Fig. 2, but with the charged impurity
at z=I, /2. The dotted curve here is, however, for a single
graphite layer system; its difference with that of the GIC's
demonstrates the screening effect due to the superlattice struc-
ture.

sider the intraband transitions of GIC's (the dotted
curve), the screening charge becomes rather extended in
space. Interband transitions of GIC's greatly enhance
the large-q screening (as previously studied) and conse-
quently make the small-r screening rather effective in this
system. As for the l & 1 planes, NI'" of the GIC's becomes
similar to that of the EGS, as can be expected from the
previous discussion here.

The most outstanding feature in Fig. 4 is the strong os-
cillations in N& 0 of GIC's. Such Friedel oscillations of
GIC's behave very differently from that of EGS. For

O
II
N

0.0
0.

FIG. 4. The induced charge distributions on the planes 1=0,
1, and 2 are plotted as functions of n./k+ for a charged impurity
at z =O. The solid curves are for GIC's, and the dashed curves
for EGS. The dotted curve is also the charge distribution on the
1=0 plane of the GIC's but with the exclusion of the interband
transitions. The inset shows the strong Friedel oscillation at
large r on the 1=0 plane is due to the singularity at 2kD. Note
that the horizontal scale is ~/kD for the inset.

be 0.9 A, if only the intraband transitions of the GIC's
are included for calculation (the dotted curve). This is
closer to that of EGS but fails badly in describing the ac-
tual GIC's.

For l 1, the electric potentials VI' of the two systems
agree better than those in the l =0 case (see Fig. 2). This
is mainly due to the factor exp( qlI, ) in Eq—. (6), which
makes the large-q contributions less important as l grows.
At l =2, the difference has already become negligibly
small. The two should be identical as l ~~, since q, (0)
has been kept the same. It also stands to reason that
there wou1d be a closer agreement in Vi'&o for the two sys-
terns if I increases. Their l=0 potential, however,C

would still be very different.
Next, let us put the charged impurity at z =I, /2. The

calculated VI' is plotted in Fig. 3. At short distances, the
V~' o(r;z =I, /2) of GI-C's falls off somewhat slower than
that of the EGS; the difference is much reduced if com-
pared with the z =0 case. The reason is that, at z=I, /2,
Vi' o (or Vf, ) already carries the factor exp( qI, /2), —
which makes the large-q contribution less important. For
l ~ 2 the screened potentials of GIC's and of EGS are al-

effready very close in their size. V' of a single graphite lay-
er with the charged impurity at z=I, /2 above it (the
dotted curve) is also shown in Fig. 3. The difference be-
tween this dotted curve and V&' 0 illustrates the impor-
tance of the interlayer coupling. This effect can be
enhanced by increasing z and Ep or by decreasing q, (0)
and I, . The interlayer coupling could severely affect the
residual resistivity of GIC's, to be discussed later.

The induced charge distributions N~(r)=2mrnI(r) for
the z =0 case are shown in Fig. 4. Most of the screening
charges on the 1=0 plane are within the 2-A radius
around the charged impurity. NI o(r) of EGS (the
dashed curves) is more extended in space, and most of the
screening charges are within a sphere of -6 A in
radius —about three times that of GIC's. If we only con-
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FIG. 5. Same plot as in Fig. 4, but for the z =I, /2 case. The
inset shows the large distance Friedel oscillation on the 1=1
plane. Two competing oscillations with the wavelengths ~/kF
and m/kD, respectively, exist.

EGS, the oscillations on all planes are described by
sin(2kFr)/r at large r; i.e., a fixed oscillation period of
m /kF exists. Three derivative singularities exist for
GIC's at 2kF, 2kD —2kF, and 2kD, and their relative
strength is I dependent. The oscillation on the I =0 plane
is dominated by the singularity at 2kD. This explains the
strong, rapid oscillation with the period of m/kD =2.8 A
(see the inset). The oscillation at this wavelength dimin-
ishes rapidly for 1 ~ 1 because of the exp( 2kD—II, ) factor
involved. The main feature on the I =1 plane is a weaker
oscillation (not shown) with the period of m. /k~.

The strong, short-wavelength oscillations in NI' o
deserve a closer examination. The singularity at 2ka is
due to the finite size of the m. bands: the Blinowski's band
structure, Eq. {1),has been cut off abruptly at kD in order
to conserve the particle number. The singular behavior
and the corresponding oscillations might have been exag-
gerated. A singularity at q -2kD, however, seems inevi-

table since the m band is actually finite in size. Whether
this singularity is to cause a strong oscillation requires
further investigation. A strong Friedel oscillation of
short wavelength might affect, e.g. , correlations between
impurities.

The induced charge distributions with z=I, /2 are
shown in Fig. 5. The induced charge distributions for the
two systems appear similar in shape at small r. This is
due to the exp( qI, /2) fa—ctor which makes the large-q
difference (Fig. 1) less important, as was previously ex-
plained for Fig. 3. A rather interesting oscillation pat-
tern exists on the l =1 layer of GIC's for large r. The de-
tails are shown in the inset. This has been identified as
being caused by the two competing oscillations with the
respective wavelengths of m/kF and m/kD. The same
factor -exp( qI, /2) puts—different weights on the two
singularities at q =2kF and 2kD. This, as a result, makes
their corresponding oscillations comparable in strength

in the present case. The oscillations on other layers are
found to be dominated by the singularity at q =2kF.

The special oscillation pattern revealed in Fig. 5 is
significant in that the oscillations of ~/kF may be adjust-
ed by varying the Fermi-level energy, while the other one
(a/kD) is essentially fixed by the structure. The two com-
peting oscillations may then be made with commensur-
able (or incommensurable) periods by employing suitable
intercalants. The effects that such complicated screening
profiles have, e.g. , on the ordering of intercalants, need to
be closely investigated in the future.

For the z =0 case, the induced charge on the lth plane
is NI'"(z =0)= —V(b —1/b +1)[b —'(/b 1] ',—where
b = 1+q, (0)I, /eo =8. 38, and the induced charge ratio
of two neighboring planes is (b '(/b — 1)=—0.06. There-
fore, 89% of the induced charges are on the I =0 plane,
and the remaining 11% are mostly on the l =+1 planes.
For z=I, /2, the induced charge ratio is also given by

(b ')/b —1)—w—ith the exception of I =0 and 1 planes:
94% of the induced charges are equally distributed on
these two planes.

The essential features of the screened potential are not
expected to differ qualitatively for other GIC's, which
might have different I„EF E'o and yo. The screening
properties of GIC's are essentially shaped by the band of
graphite and the periodic superlattice structure.

J—:p 'E=[I,m*/N, e r(kF)] 'E . (9)

N, is the 2D conduction electron density. The special
band structure of GIC's [i.e., Eq. (1)] has been employed
in deriving this result, so that m *=EF /Uf and

N, =kF/~. The double-valley degeneracy has also been
included. The resistivity p of Eq. (9) has the usual form
of I, rn '/N, e ~, despite the very complicated band struc-
ture involved.

The impurity distribution needs to be specified here in
order to evaluate r{kF), so that the resistivity can be then
determined via Eq. (9). We assume that impurities are ei-
ther all on the graphite layers (z =0) or all on the inter-
calant layers (z=I, /2) with an averaged 2D impurity
density N; . The present calculation can be easily gen-
eralized for other impurity distributions. With
given, the relaxation time is expressed by

1/ ( r)kF(N; kF /REF� ) d —81T„„,I'(1 —cose)j„=„.=„
0 F

(10)

III. THE RESIDUAL RESISTIVITY

We now employ the relations established in the previ-
ous section to calculate the residual resistivity due to
charged impurities. From measured residual resistivities
we estimate that the impurity density in the stage-1
GIC's is about 10 per intercalation atom. The same
impurity concentration, however, is found to be
insufficient in accounting for the residual resistivity found
in the stage-2 GIC's.

The Boltzmann equation within the relaxation-time ap-
proximation is employed here for evaluating the resistivi-
ty. The current density J is then found to be
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where 0 is the angle between k and k'. The scattering
matrix element Tkk within the Born approximation, is
given by Tkk. =g V' (q;z)(%k.(r)le' 'l%k(r)), where
z =0 or z=I, /2. The intervalley and the umklapp pro-
cesses have been neglected here since they involve a large
momentum transfer and are, hence, negligible. With the
use of the realistic Bloch wave functions for GIC's, it is
found that (k' —k=q)

Tkk 1k=k =k =—'l(q) V' (q;z)(1+cos8 i—sin8),

where I(q) = [1+(q/6) ] . It is interesting to note that
lTkk l

-(1+cos8), which cancels the familiar enhance-
ment factor for the backward scattering: [1—cos(8)] in
Eq. (10). This unusual property is caused by the special
band structure of the system and has been explored be-
fore. ' This factor alone could reduce the resistivity of
GIC's by a factor of -2. The angle factors in Eqs. (10)

I

and (11) make 8=m. /2 the most relevant scattering angle
in evaluating 1/r(k~). It is clear from this discussion
that we cannot expect to quantitatively study the system
without addressing its band-structure effect.

Substituting Eqs. (10) and (11)back to (9), we obtain

2I~kF Xjm 7r/2 2p= d8sin 28 I q
~EF W, o

X
l V"(q;z)l~

Iq —2kF»~8
0

Here, the resistivity is in units of A/e . One may simply
multiply the result by 36 to convert it to pQ cm, which
could be more convenient to use. The l-independent
effective potential V' (q;z) in Eq. (12) is the effective po-
tential due to all impurities. In terms of VI' (q;z), one
can express l

V' (q;z)l = g, l Vf (q;z)l and evaluate the
summation exactly,

Z z V2(8 I sinhz [q (I,—z ) ]+sinh ( qz ) ] +2 sinh( qz )sinh [q (I, —z ) ] )
l
V ff(q. z )l2

~2(g 2
1 )3/2

(13)

An attempt has been made to estimate the residual
resistivity for the C8M compounds. Investigating if the
measured residual resistivities could be reasonably ex-
plained with the charged impurity scattering is the pur-
pose of this calculation. For lack of detailed information
about the impurities, Z =1 is assumed here for the im-
purities and they are put either all on the graphite layers
or all on the intercalant layers. Such configurations seem
appropriate for an order estimation. Also, we put
so=2.4;' i.e., we neglect the modification of the back-
ground dielectric constant due to intercalants. These as-
sumptions can be easily modified once the nature of im-
purities and of intercalants have been more clearly
specified.

For the rigid Blinowski's band structure, EF and the
charge transfer are relapsed by EF =yo(&3n f /p)'
where f represents the charge transferred to the m band
per donor atom and p =8 for the C8M compounds. The
measured EF is used here as the input in our calculation.
The measured values unfortunately fluctuate widely:
Take C8Cs, for example, with an EF range from 1.0 to
1.45 eV. Their simple averages are taken as our input
EF, since no obvious way exists for choosing from the
scattered data. The practice seems appropriate for our
qualitative discussion presented below. Input parameters
are summarized in Table I. The calculated f are in
reasonable agreement with other reported values.

Our results are summarized in Table II. We have used
Eq. (12) and measured resistivity to estimate the impurity
density for each compound with impurities either at z =0
or z =I, /2. The density, expressed by 1V; /I„suggests

0 3the convenient units n; =10 A . For C8M, which
0

has I, =5.5 A, 1n; means 10 impurities per carbon
atom if z=0, and 1n; would suggest 10 per intercalat-
ed atom if z =I, /2.

TABLE II. Measured in-plane resistivity (p,„~) and the calcu-
lated impurity density (n; ). n; is in the unit of 10 A

Compounds

C8K
CSRb
C8Cs

'Reference 10.

a
Pexp

(pQ cm)

8.36X 10
9.66X10-'
4.06 X 10-'

njm

(z =0)

0.52
0.56
2.01

num

(z =I, /2)

2.34
3.73
5.73

These results most noticeably suggest a rather low
charge impurity density at approximately 1n; for all
cases. Such impurity density is even considered low for
graphite single crystals. For example, the K and Rb re-
sults with z=0 suggest an impurity concentration of
about 0.5n; . If the intercalated compounds are made
from 99.995% pure graphite with all the impurities
charged ones, these impurities alone would be sufficient
to explain the observed resistivity. The relatively higher
impurity level for the Cs compounds seems to indicate
that extra impurities are introduced to the system during
the intercalation.

Our theory has also been modified for stage-2 com-
pounds. An impurity density of about 10n; was found
to be necessary in order to explain the measured resistivi-
ty (0.25 )MQ cm) of the C~&K. It seems unlikely that the
stage-2 compounds would have an order of magnitude
more impurities than the stage-1 compounds had. This
result suggests that other mechanisms, e.g., the domain
wall scattering, ' might be more important in stage-2
compounds.

In short, the present calculations provide a strong indi-
cation that charged impurity scattering is essential in
causing electric resistivity for stage-1 GIC s, but probably
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not for stage-2 GIC's. Equations (12) and (13) actually
enable us to analyze this problem quantitatively—
provided that the nature of impurities are known closely.

X,(q)=, dw,
—

q I (q) e F(w) —F( —w }

277
q

where

(A 1)

IV. CONCLUDING REMARKS

In this work, we have studied the screening properties
of GIC's and calculated the residual resistivity for the
CSM compounds. The band structure of GIC's has
several unique features: the valence band and the con-
duction band are degenerate in energy at the U point, are
linear in the energy dispersion relation, and have finite
sizes. The systems are also highly anisotropic: it is a lay-
er system. Including these features in the dielectric func-
tion is important; we achieve this by employing Shung's
dielectric function, which analytically takes into account
these unique structures of GIC's.

The closeness in the energy of the valence and the con-
duction bands makes it necessary to include both bands
in the calculation. The strong interband transitions were
found to have greatly enhanced the screening at short
distances. The finite size of the bands, however, causes a
strong and rapid Friedel oscillation at large distances
from an impurity. Such an oscillation is expected to
affect the impurity ordering. A closer investigation in
this regard is needed.

The linear energy dispersion is found to have impor-
tant effects on the mobility of electrons. It reduces the
effective mass of electrons, and leads to a vanishing
backward-scattering amplitude. This practically explains
the excellent conductivity of GIC's. The residual resis-
tivities of the C8M compounds have been calculated and
the results compared with the measurements. A sma11

amount of charged impurities has been found to be
sufhcient in explaining the measured resistivity. Howev-
er, this part of study is not quantitatively conclusive,
since the nature of the impurities is not clearly known. It
should be possible to examine this problem closely, e.g.,
by doping impurities into GIC's in a controlled manner.

This study has illustrated the importance the unique
structure has on the screening of GIC's. A dielectric
function has been employed here that is calculated in ac-
cordance with the band structure of GIC's and is good to
within the random-phase approximation and analytic in
form. This method provides a basis for further investiga-
tion on screening-related properties of the layered graph-
ite compounds.

and

F(w)=e[T(w) —1]jT(w)+T (w) 1—
—ln[ T(w)+ +T (w) —1]],

(A2)

2EF+N
T(w) = (A3)

X, (q) has a second-derivative singularity at q =2k+. The
singularity at q=2k~ is due to the presence of a filled
Fermi sea as in the case of an electron-gas system. The
difference is that the singularity for the electron gas is a
first-derivative one. The cause for this difference can be
understood from their response functions. For GIC's, we
found

'«k+, ) — '(Ej )
X,(q)=2I (q) g

Ek+q Ek

k+q cos(P)
[lt+ q/

(A4)

Xb(q) =2[H &
(q)+H2(q) ],

where

(A5)

and

H, (q) = J [8,—0.5 sin(28, )]d8, (A6)
I (q)q 84—
2~'E

q

I (q )qkz-
Hq(q ) = (82 —8)),

7T p

where g is the angle between lt and q. The Coulomb in-
teraction, due to the special linear m band of GIC's, con-
tains the factor expressed inside the curly bracket. The
corresponding factor would be one for the electron gas.
The singularity at q=2k~ corresponds to excitations
from states at ~lt~=~k+q~=k~, i.e., when f=n. The
factor becomes zero at the singularity and, as a result, the
singularity for GIC's has a reduced strength.

The response function for the interband transitions is
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0&
= arccos

E
2EF+E

APPENDIX
02= arccos

The response functions of the GIC's, and their singu-
larities are summarized here. Both intraband and inter-
band excitations exist in the system. For the intraband
transitions, the response function X, (q ) is (E =U&q)

0=.
3

arccos

0 if EJ (E
if E~)E
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E
arccos

F q

arccos
D

if Eq & 2E~ 2EF

if Eq & 2E~ —2EF
K2(q) is a well-behaved function within q =2kD —2kF.

K& (q) has first-derivative discontinuities at q =2k&& —2k~
and at 2kB. These singularities are caused by the finite
size of the m. band, and they are the most singular ones
for the GIC's.
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