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Electronic shell structure of icosahedral and cuboctahedral sodium clusters with 300 to 1500 atoms
has been studied using a potential-well approximation for the effective one-electron potential. The re-
sults show that icosahedral clusters yield the same shell structure as spherical clusters up to the cluster
size of about 500 atoms and that similarities persist until the cluster has about 1000 atoms. The shell

structure of a cuboctahedral geometry begins to deviate from that of a sphere when the cluster size is
about 100. A study on quadrupole deformations of large clusters shows that surface fluctuations in

liquid clusters cannot destroy the shell structure even in the largest clusters.

I. INTRODUCTION

The simplest model for the electronic structure of the
alkali-metal clusters is the jelliurn model. ' It accounts
for the major magic numbers seen most clearly in the
mass spectra. ' The magic numbers result from the shell
structure of the valence electrons: a shell closing corre-
sponds to a magic cluster. In the spherical jelliurn model,
the local-density approximation of the Kohn-Sham
density-functional formalism ' is usually used for deter-
mining the single-electron levels. The electrons then
move in a spherical effective potential that, for large clus-
ters, resembles a square well with a rounded edge. This
potential dictates basic features of the observed shell
structure, whereas details depend on the exact shape of
the self-consistent potential.

Recently, an additional set of magic numbers for large
simple metal clusters has been observed. ' ' These cor-
respond to the geometrical packing of atoms in an
icosahedral structure: complete icosahedral give the ma-
jor magic numbers. It is interesting to note that in the
case of sodium clusters the magic numbers in the same
size region (1500—3000 atoms) can be determined either
by the electronic structure or by the geometry, ' depend-
ing upon the experimental conditions.

The purpose of the present paper is to study the effect
of the cluster geometry on the electronic-shell structure.
Two questions are addressed: (i) what is the shell struc-
ture in icosahedral and cuboctahedral metal clusters and
(ii) how do the surface fluctuations affect the shell struc-
ture in liquid clusters' This work is a continuation of an
earlier work' where a simple Huckel model was applied
to study the effect of the surface faceting on the shell
structure. The results indicated that the icosahedral sym-
metry can keep up the she11 structure even if the cluster
has hundreds of atoms. Our present results show that in
the first supershell ' the main features of the spherical
shell structure are seen also in the icosahedral clusters.
However, in the second supershell the icosahedral clus-
ters will have very different shell closings.

It should be stressed that we are solely concentrating
on the existence of the electronic-shell structure in the
clusters and we do not try to calculate the total energy

for different geometries. The latter is needed in determin-
ing the most stable cluster sizes and geometries. For the
smallest clusters, ab initio methods have been used for
calculating the total energies' ' and approximative
methods have been applied for larger clusters. '

For liquid clusters the surface tension forces the large
clusters to be spherical. Ho~ever, due to the finite tem-
perature the surface of the cluster can oscillate. We have
estimated the effect of these surface fluctuations on the
electronic-shell structure. With simple arguments and
model calculations, we show that the surface oscillations
of liquid sodium clusters do not have any marked effect
on the shell structure, and that the relative effect of the
surface oscillations to the shell structure becomes smaller
when the cluster size increases.

The plan of the paper is as follows. In Sec. II we will
describe the theoretical model. The shell structure of
icosahedral and cuboctahedral clusters is discussed in
Sec. III. Section IV studies quadrupole deformations and
their relation to the liquid clusters. Section V gives the
conclusions.

II. ELECTRONIC LEVELS
IN A NONSPHERICAL POTENTIAL VVELL

For large sodium clusters, the effective potential of the
electrons inside the cluster is nearly constant and the
effect of the ionic pseudopotentials on the shell structure
is vanishingly small. ' In order to study the effect of the
geometry of the effective potential, we mimic the clusters
with finite potential wells having required shapes. The
depth of a well is determined by

where P is the work function of the metal and F+ the Fer-
mi energy of a bulk free-electron metal measured from
the bottom of the conduction band. For spherical clus-
ters, the radius is determined by ro =N' r„where N is
the number of atoms in the cluster and r, the Wigner-
Seitz radius. All calculations in this paper have been
done with the parameters for sodium: Vo= —0.205 a.u.
and r, =3.93 a.u.

46 12 649 1992 The American Physical Society



12 650 J. MANSIKKA-AHO, E. HAMMAREN, AND M. MANNINEN 46

The nonspherical clusters are described by using non-
spherical potential wells with the same depth, Eq. (1), and
volume as the spherical cluster having an equal number
of atoms. The difference between the spherical and non-
spherical potentials is restricted within a narrow region
close to the cluster surface. It is then natural to solve the
Schrodinger equation for the nonspherical case by using
as a basis set the solutions for the spherical potential well:

(r) =R„,(r) YI (0,$), (2)

where H0 is the single-particle Hamiltonian for the
spherical potential well.

Because the perturbation potential of Eq. (3) is nonzero
only close to the radius r0, it is convenient to expand the
radial wave function as

R„&(r)=Rnid(ro)+Rnr(rp)(r rp)—
where R„'& is the derivative of R„&. The matrix elements
of the perturbation now give two terms

where YI (0,$) are the spherical harmonics. The radial
wave function (spherical Bessel function inside the clus-
ter) and the corresponding energy eigenvalue are ob-
tained numerically.

The difFerence between the potentials of spherical and
nonspherical clusters is defined as

b, V(r ) = Vp [0[R(0,$)—r ]
—0(rp r) I,—

where 8 is the step function. The angle-dependent dis-
tance R (0,$) is defined as the distance from the center of
the cluster to its surface. The energy eigenvalues for the
nonspherical potential well can now be obtained by di-
agonalizing the Hamiltonian matrix

(nlm ~H +Ix V~In't'm'),

Group theory dictates the maximum degeneracy a
state can have in a given symmetry. For the cuboc-
tahedral symmetry the maximum degeneracy is three and
for the icosahedral symmetry it is five. If the potential
well has an icosahedral symmetry, it has a five axis and
the matrix elements of M" are nonzero only if

~
m —m 'l is

0,5, 10, etc. For cuboctahedral symmetry, due to the four
axis, M" is nonzero only if Im —m'~ is 0,4,8, etc.

The advantage of the approximation (3) is that the M
matrix depends only on the angle variables of the wave
function and thus on the geometry of the cluster (but not
its size). The disadvantage is that only relatively small
deformations of the sphere can be calculated accurately.
By comparing the Fermi wavelength to the maximum
change in the cluster radius R(0,$) we have estimated
that the results for icosahedral with more than about
1500 atoms and cuboctahedra with more than about 1000
atoms could already be a6'ected by this approximation.

The energy levels for the 309-atom cluster have been
calculated by including in the Hamiltonian matrix all the
bound states in the spherical potential well. For larger
clusters only a limited number of basis functions close to
the Fermi level was used. For the 561-, 923-, and 1415-
atom icosahedral clusters we used 33, 29, and 23 nl states
around the Fermi level, respectively. Consequently in
each case the total number of nlm-basis functions was
about 450.

III. SHELL STRUCTURE IN ICOSAHEDRAL
AND CUBOCTAHEDRAL CLUSTERS

Using the above-described model of a finite potential
well, we have calculated the electronic structure of com-
plete icosahedral and cuboctahedral sodium clusters with
309, 561, 923, and 1415 atoms. Figure 1 shows the
electronic-shell structures for spherical, icosahedral, and

(nlm ~AV~n'l'm') = ( V)p+ ( V) &,

where

(6)
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I i I i I I i I i I
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( V)
~
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(7) —0.04
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X f dPcos[(m —m')P]I (0,$), (9)

where QI (0)= Yl (0,$)le' ~ and the functions I (0,$)
are

Here the matrix elements MII [ ] over the angle vari-
ables are defined as

MJ.
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= f d0sin0Q( (0)Qt .(0)
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FIG. 1. Level structure of a 309-atom sodium cluster approx-

irnated with a square-we11 potential. For the nonspherical clus-

ters the angular momentum is only approximately correct. The

long lines represent the levels of the spherical well, the short
lines on the left-hand side represent the levels of the cuboc-
tahedral we11, and those on the right-hand side represent the
levels of the icosahedral well.
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different temperatures, 800 and 371 K (the melting point
of bulk sodium). At the melting temperature the defor-
mation for the 1415-atom cluster is about 0.955 and, con-
sequently, the main shell structure still clearly prevails.
Due to the grouping of the levels, the main features of the
shell structure remain prominent even at b/a=0. 935,
which corresponds to the temperature of about 800 K.

Figures 9 and 10 show the density of states for prolate
spheroids corresponding to 309- and 923-atom sodium
clusters. In each case, densities for two deformations are
shown, one corresponding to an average instantaneous
deformation in 800 K and one for the melting tempera-
ture. In both clusters the effect of the deformation is fair-
ly small even at the higher temperature. A comparison
with Figs. 3 and 5 shows that the liquid clusters are ex-
pected to be much more spherical than the solid
icosahedral or cuboctahedral clusters.

We have only considered the simplest surface-wave
mode, the spheroidal deformation. In a real sample of
clusters, many different surface modes will exist. Howev-
er, the energy of any higher multipole mode estimated
from the surface energy corresponds to an amplitude
smaller than that of the quadrupole mode. This follows
from the faster increase of the surface area for the higher
multipoles. It is then expected that the quadrupole mode
has the largest effect on the shell structure of liquid clus-
ters. The higher temperature considered 800 K is already
difficult to achieve in small clusters, since they would

start to evaporate atoms. We can then conclude that the
surface fluctuations in liquid sodium clusters do not des-
troy the main features of the electronic-shell structure.

V. CONCLUSIONS

We have used a simple square-well-potential model to
study the effects of the cluster shape on the electronic-
shell structure. In the cuboctahedral clusters, the shell
structure already differs markedly from that of the sphere
when the cluster has less than 300 atoms. The
icosahedral shape sustains the basic features of the
spherical-shell structure up to about 1000 atoms in the
cluster. These conclusions are in agreement with the ear-
lier Hiickel model calculations. '

The effect of the quadrupole deformation has been
studied in some large clusters. By estimating an average
deformation of a surface wave from the surface tension
and from the equipartition theorem, we have shown that
the surface fluctuations in liquid clusters do not destroy
the main electronic-shell structure. The relative effect of
the surface fluctuations on the shell structure becomes
smaller when the cluster size increases.
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