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Electronic shell structure of icosahedral and cuboctahedral sodium clusters with 300 to 1500 atoms
has been studied using a potential-well approximation for the effective one-electron potential. The re-
sults show that icosahedral clusters yield the same shell structure as spherical clusters up to the cluster
size of about 500 atoms and that similarities persist until the cluster has about 1000 atoms. The shell
structure of a cuboctahedral geometry begins to deviate from that of a sphere when the cluster size is
about 100. A study on quadrupole deformations of large clusters shows that surface fluctuations in
liquid clusters cannot destroy the shell structure even in the largest clusters.

I. INTRODUCTION

The simplest model for the electronic structure of the
alkali-metal clusters is the jellium model.' > It accounts
for the major magic numbers seen most clearly in the
mass spectra.>’ The magic numbers result from the shell
structure of the valence electrons: a shell closing corre-
sponds to a magic cluster. In the spherical jellium model,
the local-density approximation of the Kohn-Sham
density-functional formalism®* is usually used for deter-
mining the single-electron levels. The electrons then
move in a spherical effective potential that, for large clus-
ters, resembles a square well with a rounded edge.3 This
potential dictates basic features of the observed shell
structure, whereas details depend on the exact shape of
the self-consistent potential.’

Recently, an additional set of magic numbers for large
simple metal clusters has been observed.!”!? These cor-
respond to the geometrical packing of atoms in an
icosahedral structure: complete icosahedral give the ma-
jor magic numbers. It is interesting to note that in the
case of sodium clusters the magic numbers in the same
size region (1500-3000 atoms) can be determined either
by the electronic structure’ or by the geometry,'? depend-
ing upon the experimental conditions.

The purpose of the present paper is to study the effect
of the cluster geometry on the electronic-shell structure.
Two questions are addressed: (i) what is the shell struc-
ture in icosahedral and cuboctahedral metal clusters and
(ii) how do the surface fluctuations affect the shell struc-
ture in liquid clusters? This work is a continuation of an
earlier work!® where a simple Hiickel model was applied
to study the effect of the surface faceting on the shell
structure. The results indicated that the icosahedral sym-
metry can keep up the shell structure even if the cluster
has hundreds of atoms. Our present results show that in
the first supershell®® the main features of the spherical
shell structure are seen also in the icosahedral clusters.
However, in the second supershell the icosahedral clus-
ters will have very different shell closings.

It should be stressed that we are solely concentrating
on the existence of the electronic-shell structure in the
clusters and we do not try to calculate the total energy
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for different geometries. The latter is needed in determin-
ing the most stable cluster sizes and geometries. For the
smallest clusters, ab initio methods have been used for
calculating the total energies'*'* and approximative
methods have been applied for larger clusters.!6~ 18

For liquid clusters the surface tension forces the large
clusters to be spherical. However, due to the finite tem-
perature the surface of the cluster can oscillate. We have
estimated the effect of these surface fluctuations on the
electronic-shell structure. With simple arguments and
model calculations, we show that the surface oscillations
of liquid sodium clusters do not have any marked effect
on the shell structure, and that the relative effect of the
surface oscillations to the shell structure becomes smaller
when the cluster size increases.

The plan of the paper is as follows. In Sec. II we will
describe the theoretical model. The shell structure of
icosahedral and cuboctahedral clusters is discussed in
Sec. II1. Section IV studies quadrupole deformations and
their relation to the liquid clusters. Section V gives the
conclusions.

II. ELECTRONIC LEVELS
IN A NONSPHERICAL POTENTIAL WELL

For large sodium clusters, the effective potential of the
electrons inside the cluster is nearly constant and the
effect of the ionic pseudopotentials on the shell structure
is vanishingly small.'”® In order to study the effect of the
geometry of the effective potential, we mimic the clusters
with finite potential wells having required shapes. The
depth of a well is determined by

Vo=—d—¢r , (1)

where ¢ is the work function of the metal and € the Fer-
mi energy of a bulk free-electron metal measured from
the bottom of the conduction band. For spherical clus-
ters, the radius is determined by r,=N"'/3r,, where N is
the number of atoms in the cluster and r, the Wigner-
Seitz radius. All calculations in this paper have been
done with the parameters for sodium: V,;=—0.205 a.u.
and r;,=3.93 a.u.
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The nonspherical clusters are described by using non-
spherical potential wells with the same depth, Eq. (1), and
volume as the spherical cluster having an equal number
of atoms. The difference between the spherical and non-
spherical potentials is restricted within a narrow region
close to the cluster surface. It is then natural to solve the
Schrodinger equation for the nonspherical case by using
as a basis set the solutions for the spherical potential well:

Yo (D)=R (N Y,,(0,4) , 2)

where Y,,,(6,¢) are the spherical harmonics. The radial
wave function (spherical Bessel function inside the clus-
ter) and the corresponding energy eigenvalue are ob-
tained numerically.

The difference between the potentials of spherical and
nonspherical clusters is defined as

AV(F)=Vy{O[R(8,4)—r]—0(ro—r)} , (3)

where 6 is the step function. The angle-dependent dis-
tance R(8,¢) is defined as the distance from the center of
the cluster to its surface. The energy eigenvalues for the
nonspherical potential well can now be obtained by di-
agonalizing the Hamiltonian matrix

(nlm|Hy+AV|n'l'm") , (4)

where H,, is the single-particle Hamiltonian for the
spherical potential well.

Because the perturbation potential of Eq. (3) is nonzero
only close to the radius 7, it is convenient to expand the

radial wave function as
R, (PN=R (rg)+R (ro)r—ry) , (5)

where R, is the derivative of R,,. The matrix elements
of the perturbation now give two terms

(nlm | AVIn'U'm’ Y =(V)y+{(V),, (6)
where
(V)o=VoraRy(ro)R i {re M — ) (7)

and
(VY i=Vort[Ru(ro)Ryp(ro)
+R,’ll(r0)Rn'1'(r0)]MIlI'(m._ml) . (8)

Here the matrix elements M}, —,,, over the angle vari-
ables are defined as

M= | d05in6Q,,(0)Q;,,(6)
X [ d¢cos[(m—m"$1L,(6,¢), 9)

where Q,,,(8)=7Y,,(8,¢)/¢"™? and the functions I,(6,¢)
are

Io(e,¢)=3—1—[me,¢)3~r3] (10)
r

oW

and

(11)

_ 1 1R(6,4)* 1R(6,6)
1,(6,¢) 12+4 ré 303
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Group theory dictates the maximum degeneracy a
state can have in a given symmetry. For the cuboc-
tahedral symmetry the maximum degeneracy is three and
for the icosahedral symmetry it is five. If the potential
well has an icosahedral symmetry, it has a five axis and
the matrix elements of M" are nonzero only if |m —m’| is
0,5,10, etc. For cuboctahedral symmetry, due to the four
axis, M is nonzero only if |m —m’| is 0,4,8, etc.

The advantage of the approximation (3) is that the M
matrix depends only on the angle variables of the wave
function and thus on the geometry of the cluster (but not
its size). The disadvantage is that only relatively small
deformations of the sphere can be calculated accurately.
By comparing the Fermi wavelength to the maximum
change in the cluster radius R(60,4) we have estimated
that the results for icosahedral with more than about
1500 atoms and cuboctahedra with more than about 1000
atoms could already be affected by this approximation.

The energy levels for the 309-atom cluster have been
calculated by including in the Hamiltonian matrix all the
bound states in the spherical potential well. For larger
clusters only a limited number of basis functions close to
the Fermi level was used. For the 561-, 923-, and 1415-
atom icosahedral clusters we used 33, 29, and 23 n/ states
around the Fermi level, respectively. Consequently in
each case the total number of nlm-basis functions was
about 450.

III. SHELL STRUCTURE IN ICOSAHEDRAL
AND CUBOCTAHEDRAL CLUSTERS

Using the above-described model of a finite potential
well, we have calculated the electronic structure of com-
plete icosahedral and cuboctahedral sodium clusters with
309, 561, 923, and 1415 atoms. Figure 1 shows the
electronic-shell structures for spherical, icosahedral, and
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FIG. 1. Level structure of a 309-atom sodium cluster approx-
imated with a square-well potential. For the nonspherical clus-
ters the angular momentum is only approximately correct. The
long lines represent the levels of the spherical well, the short
lines on the left-hand side represent the levels of the cuboc-
tahedral well, and those on the right-hand side represent the
levels of the icosahedral well.
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cuboctahedral potential wells corresponding to clusters
with 309 atoms. The levels are shown as a function of the
angular momentum eigenvalue. In the polyhedral wells,
the angular momentum is not a good quantum number
and the angular momentum shown corresponds to that of
the maximum amplitude in the expansion with the spher-
ical solutions. The degeneracy of each level, 2/ +1 (plus
the spin degeneracy) in the spherical case, will be re-
moved since the maximum degeneracy in the cubic cu-
boctahedral symmetry group is three and in the
icosahedral one it is five. The splitting of the energy lev-
els increase with increasing angular momentum and radi-
al quantum number. In the case of the icosahedral clus-
ter the splitting remains smaller than the energy
difference between the different shells, whereas for the cu-
boctahedron the splitting is about the same magnitude as
the difference between the shells. Figure 1 demonstrates
that the icosahedral 309-atom cluster will have the main
shell structure closely similar to that of the spherical
cluster. However, it would be interesting to compare the
predicted subshell behavior in detail to the experimental
mass spectra.

We compare in Fig. 2 Fermi energies of complete
icosahedral, cuboctahedral, and spherical clusters of
different sizes. The Fermi energy changes between
—0.083 a.u. <€y=—0.070 a.u., when the cluster sizes
change between 147 <N <1415. The Fermi energy de-
pends more on the electronic shell in which it is located
than on the cluster size. In our model the Fermi energy
is the inverse of the ionization potential. The nonmono-
tonous behavior is an indication of the electronic-shell
effects. Experimentally,10 the icosahedral structures have
been observed for clusters with a minimum in the ioniza-
tion potential as a function of the cluster size. We have
not addressed this topic, since a proper evaluation of the
ionization potential of a rough surface requires a self-
consistent calculation of the surface dipole layer.? For
the spherical jellium clusters with about 1000 atoms we
have estimated that the variation of the ionization poten-
tial due to the electronic-shell structure is about 0.2 eV.
This is slightly more than the variation due to the
geometry for the 1415-atom cluster seen in Fig. 2.
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FIG. 2. Calculated Fermi energy for clusters with various
sizes and geometries.
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In large clusters, the main energy shells consist of a
combination of several angular momentum values. It is
then quite difficult to see the overall shell structure from
the detailed scheme in Fig. 1. It is more illustrative to
plot the density of states."> To this end we have
smoothed the discrete levels with a Lorentzian

r
A= 2 e

(12)
where €, is an individual eigenvalue. We have chosen the
width ’'=0.001 a.u. Figures 3-6 show the densities of
states for icosahedral and cuboctahedral sodium clusters
with varying size. In each figure, the density of states of
a spherical cluster with the same size is shown with a
dashed line. The Fermi level (determined by the number
of atoms in the cluster) changes from about —0.08 to
—0.07 a.u. when the cluster size increases from 309 to
1415 atoms. We can see from Fig. 3 that the magic num-
bers are the same for the icosahedron and for the sphere
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FIG. 3. Density of states of a 309-atom sodium cluster calcu-
lated for a spherical (dashed lines), (a) icosahedral, (b) cuboc-
tahedral square well. The discrete levels have been convoluted
with a Lorentzian. The numbers below the energy gaps indicate
the corresponding magic numbers. Italic numbers denote the
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still above the Fermi level. However, we notice that in
details the subshell behavior in the two cases is different.
For the cuboctahedron, only the lowest energy levels are
the same as in the sphere. The level structure of the
smallest cuboctahedral clusters agree with that obtained
by Martins?! using an ab initio pseudopotential approach.

For clusters from 561 to 1415 atoms, we have calculat-
ed only the shell structure close to the Fermi level. From
Figs. 4 and 5 we can see that up to the Fermi energy the
main shell structure of the icosahedral clusters is still
quite similar to that of a sphere. The exact numbers cor-
responding to the shell fillings are somewhat different,
however. It should be noted that the grouping of the lev-
els of different angular momentum values is sensitive to
the exact profile of the spherical potential: For example,
a Wood-Saxon potential gives slightly different magic
numbers than the square-well potential. It is not surpris-
ing, then, that when the spherical potential is replaced
with an icosahedral potential, the exact magic numbers
can change even if the shell structure is still very similar
to that of a sphere. This is clearly seen in the case of the
309-atom cluster, where the sphere gives a deeper
minimum for the shell closing at 186 electrons, whereas
in the case of the icosahedral cluster the competing
minimum at 196 electrons is deeper.

In the case of the 923-atom cluster, the shell structure
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FIG. 4. Density of states for 561-atom sodium clusters.
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of the sphere is not as clear as for the bigger 1415-atom
cluster (Fig. 6). This is a supershell effect. The node be-
tween the first and second supershells in the square-well
potential corresponds to a cluster with about 1000 atoms.
In the 1415-atom icosahedral cluster, the shell structure
is already markedly different from that of the spherical
cluster.

In the case of the cuboctahedral clusters, the results
are only approximative for clusters with more than 561
atoms due to the approximation made in Eq. (5). Howev-
er, Figs. 2—4 clearly demonstrate that the disturbance to
the shell structure is much larger than in the case of the
icosahedral clusters.

The existence of the electronic-shell structure is a
necessity for observing its effects, for example, on the
mass spectra. However, total-energy calculations are
needed for answering the question of whether the
electronic-shell structure or the cluster geometry
(atomic-shell structure) determines the most stable clus-
ters. Many authors have tried to solve this problem with
models based on the spherical jellium approxima-
tion.'®%272> However, as shown earlier’>?* these models
have the drawback that they exclude the possibility of
crystalline ground-state structure, since the surface is
forced to be spherical. Moreover, if these models are
used for the crystalline geometry the surface energy of
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FIG. 6. Density of states for 1415-atom sodium clusters.

the cluster is strongly overestimated in large spherical
clusters. In fact, the same problem arises in calculating
the formation energy of spherical voids in bulk metals.?®
Thus, we believe that the recent prediction of Maiti and
Falicov, '8 concerning the transition from electronic- to
geometry-determined magic numbers when the cluster
size exceeds 100 atoms, is not conclusive.

IV. LIQUID CLUSTERS:
QUADRUPOLE DEFORMATION

The large magic numbers corresponding to the
electronic-shell structure have been observed for warm
clusters’ that could be in liquid state. The surface tension
will force the liquid clusters to be spherical but at finite
temperatures there will be fluctuations at the surface
structure. Using the potential-well approximation, we
can study the effects of such surface waves on the
electronic-shell structure. The energy of the surface-
wave excitation can be estimated from the change in the
surface energy. In a more accurate description, the
change of curvature energy could also be included.?’

In a small cluster, there is an interplay between the
shell structure and the deformation (Jahn-Teller effect) of
the clusters that has been studied using spheroidal (quad-
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rupole),zg’29 or recently also with octupole, deforma-
tions.>® Since we are concentrating on large clusters, the
shell-structure effects on the deformation can be neglect-
ed. For simplicity, we assume the liquid to be incompres-
sible. The equipartition theorem requires that each sur-
face model has an energy of the order

E,=kgT . (13)

The energy of the surface wave can be estimated from the
increase of the surface area A 4:

E,=0cAAd, (14)

where o is the surface tension (for sodium, o =200
erg/cm?). The long-wavelength limit of the surface wave
corresponds to the quadrupole deformation, where the
sphere deforms to a spheroid. The change in the surface
area AA and the volume for a prolate spheroid with
semiaxes a and b and eccentricity € can be written as
Ad=A,,— 4 =277'b2—}-27r—a£arcsine—47rr(2)N2/3 ,
(15)

sph

V=~4mab? .

Defining the ‘“amplitude” of the surface wave by
x=(b—ry)/ry, it is straightforward to derive from Eqgs.
(14) and (15) that for small deformations
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From Egs. (7) and (8) we notice that the change in the en-
ergy eigenvalues due to the deformation

Aew > (17)
To
Combining Egs. (13), (16), and (17), and using the fact
that r, < N1/3, we get the following important result:

V'kpT
€ —
N2/3

This means that for a given temperature the effect of the
surface waves on the energy levels decreases when the
cluster size increases. The energy difference between the
major shells in a spherical cluster is proportional to
N ~1/3. The relative disturbance of the surface waves on
the shell structure decreases when the cluster size in-
creases and depends only weakly on the temperature.
Figure 7 shows the level structure of a 1415-atom clus-
ter as a function of the degree of the deformation (b /a
ratio). Only the prolate case and the levels close to the
Fermi level were considered. Figure 8 shows the average
deformation determined by Egs. (13)-(15) for two
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different temperatures, 800 and 371 K (the melting point
of bulk sodium). At the melting temperature the defor-
mation for the 1415-atom cluster is about 0.955 and, con-
sequently, the main shell structure still clearly prevails.
Due to the grouping of the levels, the main features of the
shell structure remain prominent even at b/a =0.935,
which corresponds to the temperature of about 800 K.

Figures 9 and 10 show the density of states for prolate
spheroids corresponding to 309- and 923-atom sodium
clusters. In each case, densities for two deformations are
shown, one corresponding to an average instantaneous
deformation in 800 K and one for the melting tempera-
ture. In both clusters the effect of the deformation is fair-
ly small even at the higher temperature. A comparison
with Figs. 3 and 5 shows that the liquid clusters are ex-
pected to be much more spherical than the solid
icosahedral or cuboctahedral clusters.

We have only considered the simplest surface-wave
mode, the spheroidal deformation. In a real sample of
clusters, many different surface modes will exist. Howev-
er, the energy of any higher multipole mode estimated
from the surface energy corresponds to an amplitude
smaller than that of the quadrupole mode. This follows
from the faster increase of the surface area for the higher
multipoles. It is then expected that the quadrupole mode
has the largest effect on the shell structure of liquid clus-
ters. The higher temperature considered 800 K is already
difficult to achieve in small clusters, since they would
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start to evaporate atoms. We can then conclude that the
surface fluctuations in liquid sodium clusters do not des-
troy the main features of the electronic-shell structure.

V. CONCLUSIONS

We have used a simple square-well-potential model to
study the effects of the cluster shape on the electronic-
shell structure. In the cuboctahedral clusters, the shell
structure already differs markedly from that of the sphere
when the cluster has less than 300 atoms. The
icosahedral shape sustains the basic features of the
spherical-shell structure up to about 1000 atoms in the
cluster. These conclusions are in agreement with the ear-
lier Hiickel model calculations.'?

The effect of the quadrupole deformation has been
studied in some large clusters. By estimating an average
deformation of a surface wave from the surface tension
and from the equipartition theorem, we have shown that
the surface fluctuations in liquid clusters do not destroy
the main electronic-shell structure. The relative effect of
the surface fluctuations on the shell structure becomes
smaller when the cluster size increases.
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