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Infrared absorption by laterally modulated two-dimensional electron systems
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We present model calculations of far-infrared absorption by the combined system of a grating coupler
plus a laterally modulated two-dimensional electron gas. The response of the electron gas to the optical
fields has been determined in a companion paper and the grating is described as a planar sheet with alter-

nating strips of different conductivity. By varying parameters for the strength and period of the modula-

tion the fractional change of transmission through the system is examined in different response regimes.
We find that a single peak can dominate the spectra in certain limits although the physical origin of this

peak varies. It can arise from a single intersubband transition or be due to either running or confined

plasmon modes. In the crossover regions between these limits there is no simple behavior in the spectra.

I. INTRODUCTION

In the preceding paper, ' referred to here as I, we
presented model calculations of the density-response
functions y and y of laterally structured two-
dimensional electron systems (LS2DEG). We now use
these results as input for evaluations of the infrared ab-
sorption by such systems when they are combined with a
nearby planar grating. This scheme for enhancing the
coupling of radiation to electronic excitations is fairly
common, ' but a theory that allows for spatial modula-
tion in both the LS2DEG and the grating has not been
presented before, to our knowledge. Our analysis of the
fractional change in transmission, hT/T, between the
presence and absence of the LS2DEG is summarized in
Sec. II. This theory is a straightforward, but algebraical-
ly involved, extension of an earlier treatment that ignored
nonlocality and inhomogeneity in the electronic
response. A detailed list of the required matching equa-
tions is given in the Appendix. In Sec. III we illustrate
the theory with parameter choices for the LS2DEG iden-
tical to those used in I. We thus have the same physical
system but now examine its response through the filter of
an infrared transmission experiment. This approach is
useful in allowing one to see which response characteris-
tics are revealed and which are missed by this experimen-
tal probe.

II. BASIC EQUATIONS

The configuration of the grating coupler and the
LS2DEG has the two planar systems parallel to each oth-
er and separated by much less than the (propagating)
wavelength of the infrared radiation, which moves along
the common normal that defines the x direction. The
background dielectric in which the LS2DEG is embed-
ded and on which the grating sits is described by the
dielectric constants

1, x&0
e(x)= . eo, 0&x &h

e„h &x,

where in our calculations h will be less than 50 nm and
E'0=E =E. We evaluate the probability for the incident
radiation, coming from vacuum in x (0, to propagate
into the bulk substrate where x & h.

Both the grating and the LS2DEG are assumed to have
negligible thickness and to be corrugated in a single, corn-
mon direction which defines the y axis. There is no varia-
tion in the plane along the z direction. The modulation
in the LS2DEG is represented by a Kronig-Penney (KP)
model, as described in I. For the grating the corrugation
is characterized by the (two-dimensional, local) resistivity
profile

Pt

p, , a /2 & (y( & d /2, (2)

plus its periodic extension into (y(&d/2. &he»gh-
resistivity strips are centered over the wells of the KP
model. We acknowledge that our simple description of
the grating is not a perfect fit to any one of the various
experimental constructions, ' ' but it is theoretically
quite tractable. For more realistic grating shapes one
needs more involved grating theories, ' even if one just
allows for finite thickness. " However, we do not expect
that new qualitative influences of the grating coupler on
infrared transmission spectra would result from more
structured models. The only obvious exception to this
claim comes from broken symmetry. Our models of both
the grating and the LS2DEG have imposed inversion
symmetry within the y-z plane, which in turn leads to
parity-based selection rules for excitation strengths. Re-
moving this symmetry will affect the number of peaks
that appear in hT/T. Specific cases where this should
occur will be noted in Sec. III.

We next consider how a model system defined by Eqs.
(l) and (2) and a KP modulation potential responds to in-
frared radiation. The microscopic matching equations
are listed in the Appendix. Here we summarize only the
essential ingredients. Compared to the earlier analysis,
we have the simplifications of no static magnetic field and
sufBcient symmetry that the responses to y- and z-
polarized light can be treated separately. For the latter
case, where the electric vector points along the grating
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strips, the grating efficiently shields the LS2DEG from
the incident beam, if pi &&4w/c =377 Q. Thus only the
orthogonal polarization is of physical interest and we will
examine it alone, at the same time omitting Cartesian
subscripts from vectors, tensors, etc. since all components
will be in the y direction.

The transmission coefficient is then

with g the y,y element of the macroscopic surface con-
ductance. We compute g by adding together the spatial-
ly averaged currents in the grating and the LS2DEG and
dividing by e, the average strength of the electric field
near the surface,

g =jo/e+ o.(0,0)+ g cr(0, n)t„ie
n)0

T =v'e,
I tI',

where the transmission amplitude is

1+Qe, +
C

(3)

(4)

The averaged current in the grating is jp while that in the
LS2DEG has been expressed in terms of the (two-
dimensional) conductivity elements o(n, m) Th. eir unit is
0 ' and they require two wave-vector arguments since
the response is both nonlocal and inhomogeneous. Our
assumption of inversion symmetry within the y-z plane
allows us to work with cosine Fourier transforms so that

2 —&.,p d/2
o(n, m)= dy dy'cos(G„y)cr(y, y') cos(G y'),—d/2 00

with G„=n (2'/d) The r.emaining factor t„ in Eq. (5) is
also a cosine Fourier transform: that at wave vector G„
of the fluctuating electric field along y in the plane of the
LS2DEG.

To calculate jp and the t„requires the microscopic
analysis outlined in the Appendix. This is developed in
terms of the o ( n, m ) of the LS2DEG and the

Pn
2 —5„,p

dycos G„y py (7)

(9)

where co is the driving frequency. The form of Eqs. (g)
and (9) shows that there is less information in the cr(n, m)
than in the y„and is the algebraic way that parity-
based constraints enter the grating theory. The key ma-
trix that describes the effect of Coulomb interactions is
D '(n, m), where

D(n, m)=[e, +eocoth(G„h)]5„+ cr(n, m),4win

vdc
(10)

with 2mc v =co. Our calculations will show that the
inhuence of the grating on collective-mode locations is
well described by replacing the (uniform) background
dielectric constant e with an effective dielectric constant
—,'[e, +eocoth(G„h)]

III. MODEL CALCULATIONS

We consider results for LS2DEG in each of the four
distinct response regimes described in I (see Fig. I 1) and

of the grating. The o(n, m) are related to the (double)
Fourier transform coefficients o.„by

o (n, m) =(1—
—,'5„O)[o„+cr„]

and the o „are in turn related through the equation of
continuity to the density-response functions that were
calculated in I:

l

plot the fractional change in transmission through the
system as a function of the infrared frequency, scaled by
the energy unit t =Pi m /2m *d . The primary inputs for
the calculations are the g„,whose diagonal imaginary
parts are plotted in I, plus the high- and low-resistivity
values in the grating, for which we use pz =1000 Q and
pi=2 Q. The maximum wave vector for which the
o(n, m) a. re nonzero is the same as used for the g in I
while the cutoff for the p„of Eq. (7) is double this value.
The height h of the grating above the LS2DEG is chosen
to be much smaller than, but roughly scaling with, the
modulation period d. Since in our model experimental
configuration the infrared absorption at different accessi-
ble wave vectors cannot be separately measured, we will
have only one plot of AT/T in each case to compare with
the several panels of peaks for the imaginary parts of the
g„„shown in I.

We begin with a LS2DEG in the long period, weak
modulation limit. Its KP parameters are period d =450
nm, well width a =300 nm, and barrier height V/t =50.
Results for AT/T when h =40 nm are shown in Fig. 1,
which should be compared to Fig. I4, with the caution
that the vertical scale in I is relative while that for AT/T
is absolute. The rise that grows off scale as co —+0 in Fig.
1 is from Drude absorption in the LS2DEG. It appears
mathematically in o (0,0), which describes the averaged
current in the LS2DEG driven by the averaged field. The
fine structure on the Drude tail is due to some of the
single-particle peaks evident in the g plots of Fig. I 4. It
is not obvious though which specific low-frequency peaks
in Fig. I 4 appear (shifted in location and strength) in Fig.
1. For the plasmon peaks, starting at %co/t =132.5, it is
easier to identify the physical origins, although only the
first peak is strong. The n =1,2, 3,4 peaks corresponding
to the four panels shown in Fig. I4 appear slightly red-
shifted in Fig. 1 near Ace/t =132.5,228. 5, 302.0, 359.5,
respectively. The strength of these plasmon peaks de-
pends on the efficiency of excitation of the different um-

klapp channels, which in general requires our full self-
consistent calculation to determine. It is however possi-
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20 I

ble to discern certain qualitative aspects in special limits.
For Fig. 1 the appropriate limits to consider are those

of a uniform 2D electron gas' and a perturbative
influence of the grating. " Then the coupling to nonzero
G„ in the electron gas depends on the grating alone and—2G„h
involves factors of p„and e " . The latter shows why
we have chosen h ((d and (partially) explains why the
peaks due to excitations at larger G„are systematically
suppressed in hT/T. Reducing h can enhance their
strength, but they also can be modified via the p„, which
in our simple grating model are given by

2 . n m.a
pn~o= (pi pi )sin

m.n

For the case of Fig. 1 (and Fig. 2 below), where a/d =
—,',

one has p3=0, which (almost) eliminates the n =3 peak
from plots such as Fig. 1 for any value of h. We em-
phasize the parenthetical cautions in the above remarks,

80 I I I I

[

I I I I

[

I I I I

[

I I I I

60—

+0

40—
&3

20—

100

I
I I I I I I I I I I I I

200 300 400
Be/t

FIG. 2. Fractional change in transmission hT/T vs photon
energy fico. All parameter values are the same as for Fig. 1, ex-
cept the KP barrier height which has been increased to
V/t =500. The dominant excitation is a confined plasmon.
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FIG. 1. Fractional change in transmission hT/T vs photon
energy Au. The energy unit is t =0.028 meV. The LS2DEG
and grating parameters are given in the text. The dominant ex-
citation is a running plasmon wave.

which are necessary since the LS2DEG is not strictly uni-
form here and since the perturbation theory of the grat-
ing is not sufficient when peaks in AT/T become strong
and sharp.

Similar cautions are necessary when one tries to under-
stand peak positions based on the diagonal element of the
D matrix in Eq. (10), since there is no reference there to
the resistivity of the grating. Still, for our choice of pz,
associating a peak with the frequency at which the real
part of these elements vanish provides a simple and re-
markably accurate estimate for the slight shift in peak
positions between Figs. I4 and 1. If we suppress the
resistivity modulation in the grating by setting

pI =p& = 1000 0, the plasmon peak positions in Fig. 1 are
unchanged to within 0.5t. The peak heights are, howev-

er, considerably reduced since most of the source of um-

klapp scattering has been removed. The n =1 peak, for
instance, drops to a height of AT/T=0. 4%. We can
also remove the shift of peak locations between Figs. I4
and 1 if we completely suppress the grating influence by
going to the limit of an isolated LS2DEG. This requires
a slight reformulation of the basic equations since the
transmission of interest is then through a LS2DEG im-
mersed in an infinite uniform dielectric. The formal
changes are listed in the Appendix. The resulting spec-
trum is similar to that of Fig. 1 but the peak locations
now agree with those in Fig. I4. The peak strengths are
weaker than in Fig. 1, e.g., the n = 1 peak has
6T/T = 1.9%.

A further feature can also be addressed with this last
calculation. It is clear (at least for n =1,2) that our
b, T/T is sensitive to only one member of the pair of
split-plasmon peaks in Fig. I4. This selectivity arises
from the in-plane inversion symmetry that we impose on
our model of the LS2DEG and grating. Comparing peak
positions between Fig. I4 and bT/T for an isolated
LS2DEG, we find that for n = 1 the lower-frequency peak
is seen, while for n =2 the higher-frequency peak sur-
vives. Such behavior is easy to understand within the
picture of (nearly free) plasmon bands. ' ' The plasmon
properties (e.g., induced charge or field) have definite but
opposite parities at a Bragg plane on different sides of a
gap. Since the incident field and grating coupler do not
break the inversion symmetry, b, T/T is only sensitive to
modes at either the upper or the lower plasmon band
edge. Which member of the pair is seen depends on the
sign of the coupling of the two degenerate free plasmons.
For the gap at G„ this sign, which we call s„, is set by
that of the cosine Fourier transform of the equilibrium
density profile at 2G„.' ' In the weak modulation limit
transforms of the equilibrium density are proportional to
transforms of the perturbing potential, which for the
LS2DEG has the KP form. These arguments suggest
that s„ is determined by sin(2mna /d), which does change
sign between n =1 and n =2 for a/d= —', . If one re-
moved the inversion symmetry in the grating, we would
be able to couple to both rnernbers of each split-plasmon
pair. This is readily accomplished experimentally by eva-
porating the metal overlayer from varying angles and one
does see (asymmetric) pairs of peaks. '

Next we increase the modulation amplitude in the
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LS2DEG to move into the regime of confined plasmons.
This is accomplished by increasing V/t to 500, while
holding all other parameters fixed. Results for AT/T are
shown in Fig. 2, which should be compared to Fig. I7.
The lowest confined plasmon produces a very strong peak
while the next one, which should be near 220t, is absent.
This selection rule is again a consequence of inversion
symmetry, which allows the confined modes to possess a
definite symmetry. The structures near 280t and 390t are
less easy to interpret since from Fig. I 7 sharp plasmons
do not exist in this energy range; i.e., one has moved out
of the confined plasmon limit.

With a strong modulation in the LS2DEG we expect
the grating to be of less importance for excitation
strengths. To demonstrate this we first set pt =ph, which
does not move peak locations but does decrease the
height of the main peak to b, T/T =41%. Then we go to
the isolated LS2DEG limit, which shifts the main peak in
b T/T up to 128.0t (as in Fig. I 7) and increases its height
to 81%. Thus most of the umklapp scattering is being
provided by the LS2DEG itself.

In Fig. 3 we plot AT/T for a short period, weak modu-
lation system. Its KP parameters are d =50 nm, a =20
nm, and V/t =4. We also moved the grating closer by
setting h =5 nm. There is little to analyze since no
strong, sharp peaks appear in Fig. 3, as is expected from
Fig. I 9. The Landau damping (due to the short period) is
too strong to allow plasmons and the single-particle
bands are too broad (due to the weak modulation) to al-
low dominant intersubband transitions. The rise off scale
as co~0 is again due to Drude absorption.

The situation simplifies if we increase the modulation,
holding all other parameters fixed. We show results in
Fig. 4 where V/t =200 and find, as in Figs. 1 and 2, a
single dominant peak. The physical origin of this peak is,
however, quite different from before. It arises from a par-
ticular (depolarization-shifted) intersubband transition.
By comparison with Fig. I11 we see that the second
such peak, which should be near 43t, is missing while the

1 ' 0
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FIG. 4. Fractional change in transmission hT/T vs photon
energy fico. All parameter values are the same as for Fig. 3, ex-

cept the KP barrier height which has been increased to
V/t =200. The dominant excitation is an intersubband transi-
tion.

third one is barely visible near 76t. The reason for the
absence of the second peak is the same as that for the ab-
sence of the second confined plasmon from Fig. 2: a pari-
ty selection rule valid because of inversion symmetry.
More simply, the missing intersubband transition is di-

pole forbidden.
As discussed in connection with Fig. 2, due to the

strong modulation there is only a weak dependence of
b, T/T plots on grating parameters. Replacing pl~pz
leaves the main peak location the same, but decreases its
height to 4.4%. Going to the isolated LS2DEG limit
shifts the main peak up by only 0.5t and changes its
height to 4.0%. These small modifications remind us
that the screening influence of the grating is less impor-
tant for an intersubband transition than for a plasmon.
Most of the former's energy is set by the single-particle
transition energy, which is independent of the LS2DEG
environment. The grating in our model only influences
the depolarization shift.

In summary we note that for three of the four response
regimes discussed in I we have found that the infrared-
absorption spectrum is dominated by a sharp single peak.
A necessary condition for this simple behavior is that
Imp„„must show isolated peaks. The grating coupler
then acts via parity constraints and factors of p„and—26„h
e " to reduce the number of these that appear in plots
of hT/T. When the spectrum of Imp„„ is broadband,
then so is that of AT/T.

0.0—
A.CKNQ% I.EDGMENTS
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FIG. 3. Fractional change in transmission AT/T vs photon
energy fico. The modulation period has been decreased so the
energy unit is now t =2.3 meV. The LS2DEG and grating pa-
rameters are given in the text. No characteristic excitation
dominates.
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APPENDIX

We develop here the microscopic relations between
currents and fields in the vicinity of the LS2DEG and
grating coupler. The analysis is done assuming that the
macroscopic wavelength of the infrared radiation,
1/v= 2m.c /co, is much greater than any microscopic

E=E~+EL, (A 1)

where E~ =ey with fixed e is the transverse field and

length, d, a, or h. The transverse fields may then be con-
sidered constants and the longitudinal fields treated in the
electrostatic limit. We write the total electric field near
the surface as

g r„[sin(G„y),cos(G„y},0]e ", x &0
n)0

EI (x)= . g IA, '„'[—sin(G„y), cos(G„y),0]e " +A(„+'[sin(G„y), cos(G„y),0]e " ], 0&x &h
n)0

(A2)

g t„[—sin(G„y}, cos(G„y),0]e ",h &x,
n)0

hD)= . (V J),4m.

lCO
(A4)

where D is the displacement field given by multiplying E
by the e(x) of Eq. (1) and J is a two-dimensional current
density. The 6 denote "the jump in value across an inter-
face of." We distinguish between the current densities in
the LS2DEG and the grating by using the superscripts s
and g, respectively.

Requiring Eqs. (A3) and (A4) yields

—g( —)+g(+ )
n n (A5)

with G„=n (2n. /d) is the longitudinal field. Our bound-
ary conditions across x =0 and x =h are that

(A3)

I

(6) and the grating resistivity transform defined by Eq.
(7). The asymmetric approach and appearance of Eq.
(A9) versus Eqs. (A10) and (All) arises from the physi-
cally different nature of conduction in the two planes.
The (r(n, m), as noted in Eqs. (8) and (9), are readily
found from the g elements of I, while the typically large
difference between ph and pI leads to convergence
difficulties if one uses conductivities to describe the grat-
ing.

There remains the algebraic task of reducing
(A5) —(All). We start by solving for the A. 's from Eqs.
(A6), (A7), and (A9) in terms of e and the t's. The results
are combined with Eq. (A5) to produce equations for the
t's (and hence the A, 's) in terms of e and the r's. These are
substituted into Eq. (AS) to yield

t =k' 'e " +A, '+'—6 h

n n n

G h 4m. Gn
e, t„co[A,'„'e —" —)(,

'+ '] = J"
LCO

G h 4m.G„
co[A,'„'—I,'„+'e " ]+r„= J„' ',

lCO

(A6}

(AS)

g F(n, m)r = J„'g'+I „e,
m)0

where

~0«, 4m.lI „= g . D '(n, l) o(1,0),
) )0 slllll Gnh C

(A12)

(A13)

J„"=o(n,O)e+ g o(n, m)t, n ~0
m)0

plus

(A9)

where the J„'s are cosine Fourier transforms of J~(y).
The constitutive relations for these current densities are
written as

F(n, m)=i [1+eocoth(G„h)]5„~. vd

E'0 E'0

D '(n, m)
sinh(G„h) '

sinh(G h)

(A14)

and

pP(g)+ J(g)

m)0

(A10)

and D(n, m) is given by Eq. (10}. We also can reexpress
Eq. (5) as

-(0,0)- g cr(O, n}D (n, m)
4--™

o(m, O)
cvd

m)0

+ 1+ g o(O, n)D '(n, rn)
n)0
m )0

e —+P(g)+ ( y ~ J(g)
m)0

(Al 1)

with the LS2DEG conductivity transform defined by Eq.

E'0 Pm
X

sinh(G h ) jo
Jo

(A15)
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J-(g) yj 4, g)
n n 0 (A16)

where the unknowns are the fluctuating grating fields,
i.e., the r's, and the averaged grating current jO=JO '.
Independent equations for these come from the constitu-
tive relations Eqs. (A10) and (Al 1). Define the dimen-
sionless ratios for n &0

rm 4w . eg F(n, m) = j„+1„
m &0 JO ~ JO

and substituting from Eqs. (A17) and (A18).
For the limit of an isolated LS2DEG we make the fol-

lowing changes. Equations (3), (4), and (5) are replaced
with

Then Eqs. (A10) and (Al 1) yield

JO
' —1

.Po+2 g PmJm,
m)0

(A17)

1+ g /i/e

g =cr(0,0)+ g o(0, n)r„/e,
n)0

(A20)

(A21)

r
PoJm+Pm+ i X [Pm+t+P~m —!( firn, l )]J!

JO I)0

and the expansion of Eq. (A2) simplifies to

G„x
[sin(G„y), cos(G„y),0]e ", x &0

EL(x)= g r„~ (A22)
(A18) n)0

[
—sin(G„y), cos(G„y),0]e ", 0&x .

so the quantities required in Eq. (A15) are determined by
the fluctuating currents in the grating, the j„'s. The
latter can be found by rewriting Eq. (A12) as

We only need further the matching condition Eq. (A4)
and the constitutive relation Eq. (A9), with r replacing
tm.
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