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Density response in laterally modulated two-dimensional electron systems
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%'e have evaluated within the random-phase approximation the density-response function of laterally
modulated two-dimensional electron systems, examining both single-particle and collective behavior. By
varying model parameters we can produce crossovers between different response characteristics. When
the lateral period is long compared to the Fermi wavelength, the excitation spectrum evolves as the
modulation strength is increased from a regime of plasmon bands with small gaps to a regime of geome-

trically confined plasmons. Simpler theories which ignore nonlocal effects in the response kernel can
provide a qualitative picture of both these extremes but fail to describe the complicated crossover behav-

ior between them. The simpler theories also fail completely when the lateral period becomes comparable
to or smaller than the Fermi wavelength. Our fully quantum-mechanical evaluations show how in this
limit the response behavior changes from that of Landau-broadened plasmons at weak modulation to
that of depolarization-shifted intersubband transitions at strong modulation.

I. INTRODUCTION

Pl aston

Band structure

Shorter
Period

Landau-broadened

Plasm ons

Stronger
Mo du 1 a t i on

Stronger
No dul a t i on

Confined

P l a srn ons

Oepol ari zat ion-Shi f ted

Period

Intersubband Trans i tions

There has been strong interest over recent years in the
optical and transport properties of a two-dimensional
electron gas in which motion in either one or both direc-
tions is altered by lateral modulation. ' Theoretical work
on the response properties of such laterally structured
two-dimensional electron systems (LS2DEG) has mostly
restricted its attention to particular limits where impor-
tant simplifications are possible. Early work focused
on the bands of plasmonlike excitations that arise when

the lateral structure has a period much greater than the
2D Fermi wavelength. The analysis was based on so-
called semiclassical theories which approximate nonlocal
effects in the response kernel but which were expected to
be valid in the long-period limit. On the other hand, the

objective of most experimental work has been to push to-
ward the regime where quantum effects of the lateral
structure become dominant and to identify features in ex-
perimental results which emerge as a consequence. In
this regime the semiclassical approaches are not appli-
cable and microscopic quantum calculations which prop-
erly treat nonlocal effects are required. Motivated by
continuing experimental advances, recent theoretical
studies' have discussed fully quantum-mechanical
descriptions of LS2DEG but have usually (but not al-
ways, e.g., Ref. 17) assumed both that the modulation is
strong and the period is short so only one or a few sub-
bands are occupied. The response behavior is then dom-
inated by distinct intersubband transitions within a single
well. In this paper we report numerical work which ex-
tends the fully quantum-mechanical theory to the regime
of most present experiments wherein the lateral period is
still several times larger than the Fermi wavelength and
many subbands are partially occupied.

It is useful to distinguish four different regimes in
which the transport and optical properties of LS2DEG
are qualitatively different. These are shown schematical-
ly in Fig. 1. Crossovers occur when the lateral period be-
comes shorter than the Fermi wavelength and/or when
the modulation potential strength becomes larger than
the Fermi energy. We will illustrate the changes which
occur in the density response of the LS2DEG as these
crossovers occur. By comparing the results of semiclassi-
cal and fully quantum-mechanical descriptions we are
able to establish the regime of validity of the simpler
theories used in earlier works. In Sec. II we briefly sum-
marize our theory for the density-response functions of
LS2DEG. Then in Sec. III we present results from
several model calculations and discuss the trends and
characteristic behaviors they illustrate.

II. RANDOM-PHASE APPROXIMATION

FIG. 1. Different regimes of response behavior in laterally
structured two-dimensional electron systems.

We begin with some formal but general expressions for
a 2D system of total area A. In real space the density-
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5n(X, co)= Jd X'X (X,X';co)V, (X',co), (2)

where g is the susceptibility of independent electrons
and the total potential energy V, = V, + V, , with V; the
induced Hartree potential. Incorporating this into Eq. (2)
we obtain an integral equation for y, which in wave-
vector space appears as

x(Q, Q', ~)=x'(Q, Q', ~)

+ gX (Q, Q;~)v(Q)X(Q, Q';~), (3)
Q

where v (Q) =2me /Qe, with e the dielectric constant of
the host in which the 2D system is immersed. Using
Bloch states labeled by (reduced) wave vector K and band
index n, we obtain for y

2 ~A „K e~K+Am —e„K+10+
n'K'

X ( n K
I p&I n 'K' ) ( n 'K'Ip&. In K ),

where the f„K are Fermi-Dirac functions of the energy
e.„ic and the operators (XIp&IX') =e 'q 5(X—X') ap-
pear in the matrix elements.

Since we assume that there is no applied magnetic field,
time reversal invariance holds. This implies that

response function y is defined by the first-order relation

6n (X,co)= Jd X'X(X,X';co) V, (X',cu), (1)

where V, is the external potential energy, 6n is the in-
duced density, co is the driving frequency, and the vectors
are two dimensional. For the random-phase approxima-
tion (RPA) one assumes the system responds like nonin-
teracting electrons to the joint inhuence of the external
potential plus the potential produced by the induced Har-
tree density:

symmetries, we can reexpress Eq. (8) as

c(Q, Q )—,gf„„&nKIIpg, IH, pq. ]]lnK),2

AA„~
and working out the commutators we finally obtain

c (Q, Q') = No(Q —Q') /A, (10)

where No(Q) = f d X e 'q' No(X) is the Fourier trans-

form of the equilibrium electron density and m* is the
(presumed isotropic) efFective mass for the kinetic energy
in H. Thus in the high-frequency limit

QQ' No Q —Q'

I co

The simple expression on the right-hand side of Eq. (11)
is what most versions of the semiclassical theories use for

at all frequencies. Our derivation suggests that the
collective modes predicted by such theories may only be
accurate when their frequencies are well above those of
the single-particle excitations from which they are con-
structed.

Now we specialize to the case where the LS2DEG is
modulated in one direction only (the y direction), and use
a Kronig-Penney (KP) potential to model the eff'ective
ground-state potential-energy profile seen by each elec-
tron. This pararnetrization scheme avoids the difFicult
experimental question of what confining potential need be
applied. If we choose the origin for y to preserve inver-
sion symmetry, then the x (and x) functions obey
X (Q, Q', co) =X ( —Q, —Q';co). We study the density
response as the strength of the modulation potential (i.e.,
the height of the step barriers) is increased from zero to
several times the Fermi energy at various modulation
periods. The external perturbation is assumed to vary
only in the same direction as the KP potential. This
suppresses the appearance of some excitations, ' but
corresponds to the usual experimental configurations. '

Notationally we replace

(nKIp&In'K') = (n' K'
pI&

—nI—K)
and e„K=e„K,which allows us to transform Eq. (4) into

27TS
Q JQ'=y q+

d
(12)

=2 2(e rc e K')
X QQ —

~ gfnK
nK GnK ~n'K'
n'K'

where d is the KP period and IqI (n./d. Since the re-
duced wave vector q is "conserved" in the response func-
tions, we write

X & nKIpqIn'K') & n'K'Ip(, .InK) . x'(Q Q', ~) x', , (q ~» (13)

(6)

In this form we see that for fr~ much larger than the
significant particle-hole excitation energies,

x'(Q, Q';co) c(Q,Q')/~',

wltll

c(Q, Q') =, g f„„(nKIHp~o.—popo. InK),
A'A„K

where HI n K ) =e„z I
n K ) . Again using time-reversal

with a similar replacement for x. The basic RPA Eq. (3)
then becomes the matrix equation

x...(q, ~)=x,', , (q ~)+ gx', —,(q, ~)v(Q')x-, , (q ~)

(14)

at fixed q and co. We have solved Eq. (14) by truncating
the plane-wave expansions at sufficiently large values of
IsI. The accuracy of our calculations was confirmed by
separate checks on the two extreme limits of zero or
infinite modulation strength. In the former case analytic
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results for y are known, while in the latter case of iso-
lated quasi-one-dimensional systems the Hat subbands
also allow some parts of the calculation to be performed
analytically.

III. MODEL CALCULATIONS

I I I I I I I I I

0::, , :. , JL,

0 50
I I I I I

|00 f50

FIG. 2. Imaginary part of density-response functions of a
uniform 2D electron gas vs driving frequency. The solid curves
are Imp and the dashed are Imp. The probe wave vector
Q'=s(2m. /d) with d =150 nm has s =1,2, 3,4 as one moves
from the bottom to the top panel.

All the calculations we will discuss here were per-
formed for LS2DEG at zero temperature with an average
electron density NII(Q=O)/3 =N =1.6X 10" cm, an
effective mass m*/m =0.066, and a background dielec-
tric constant @=12.7. These parameter values are typical
of LS2DEG constructed in GaAs. The effect of lateral
structure on both y and g will be exhibited by showing
how the imaginary part of their diagonal matrix elements
are changed. We use q =0 in these calculations to be
relevant to infrared-absorption experiments, ' and plot
versus energy scaled by

fg ~ 5700 meV
2m'd (d [nm])

The imaginary part of y, , gives information about the
excitation energies which would be important if the elec-
trons did not interact. By examining the differences be-
tween the imaginary parts of g, , and y, , we can see
directly the effect of electron-electron interactions on the
excitation energies of a LS2DEG. These imaginary parts
are conveniently extracted by letting co~co+iy in ap-
propriate places, where y =0.5t. The subtlety of this re-
placement in response functions was first discussed by
Mermin for homogeneous systems. We use the general-
ization of his prescription that was developed for inho-
mogeneous systems by Garik and Ashcroft.

We first present a benchmark calculation, showing in
Fig. 2 the response of a uniform electron gas at integer
multiples of 2m. /d with d =150 nm. For this "period"

which follows from using the asymptotic form (11) in the
Kramers-Kronig relations for y . Since the same for-
mal limit also holds for y, so does the sum rule (16).

There are significant changes in the density response
for increasing g' in Fig. 2. The range of nonzero Imp„
grows more rapidly than Q' does, its upper edge overtak-
ing the collective mode peak in Imp, , Stated another
way, the plasmon merges into the single-particle continu-
um for Q' near kF. In the lowest panel the plasmon peak
in Imp is still reasonably above the particle-hole continu-
um of Imp, and the simplest semiclassical estimate of its
position

2ne NQ'
S

E'm
(17)

yields 29.3t for s =1, which is only 10% below the s =1
peak in Fig. 2. For s =2, Eq. (17) is about 30% too low,
and for still higher s it becomes irrelevant because the re-
sults show that a sharp collective resonance has ceased to
exist. A similar sort of failure of the semiclassical theory
occurs often below.

We begin our numerical study of LS2DEG in the limit
of long periods and weak modulation, where one expects
the semiclassical approaches to be valid. We use a period
of d =450 nm made from a well width a =300 nm and a
step barrier width of d —a. The size of the energy unit is
t =0.028 meV and kFd/~=14. 36, so 15 subbands are
partially occupied in the zero modulation limit. The
large value of k~ also implies that for s ~4, Q' will
remain well below kF.

The first modulation potential that we illustrate for this
period is V/t =50. ( V is the height of the KP step bar-
riers above the energy zero at the bottom of the wells. )

This value of V is weak since it is roughly four times
smaller than the Fermi energy of the unmodulated sys-
tem, which may be found from EF/r =(kFd/m ) The.
KP bands are plotted in Fig. 3 and we label them here
(and below) according to increasing energy starting with
1. Note that only the first few are significantly altered
from free-electron behavior. Not surprisingly then, the
continua of incoherent particle-hole contributions to y
p1otted in Fig. 4 are very similar to those for an unmodu-
lated structure. The deviations, which are especially
strong at low energies, arise from structure in the transi-
tion density of states. We also show in Fig. 4 the effect of
interactions on the response of the system. There are

the energy unit is t =0.25 meV and using k~=(2mN)'~
we find kid/~=4. 187. Hence when the probe wave vec-
tor increases from 2a/d to 8n /d it grows from more than
a factor of 2 below k~ to almost a factor of 2 above kz.
In drawing the separate panels of the imaginary parts of
y, , and y, , we have here (and in later figures) separately
scaled their magnitudes so they fit within a unit vertical
range. One can recreate their unscaled values by using
the sum rule

' No(Q —Q')
d co co Imp ( Q, Q', aI )=—

0 m'

(16)
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TABLE I. Comparison of relative plasmon gap with semi-

classical theory.

! Xo (4vrs /1 )!/No (0 )
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FIG. 3. Kroni-onig-Penney bands for a model with V/t =50
d =450 nm and a =
line.

d a —300 nm. The Fermi level is at th d h dda — . a e as e

sharp collective excitations at frequencies always located
above the corresponding single-particle continuum. The
plasmon energies are fairly well described by the semi-
classical estimates, especially if one augments E . (17)

erm. Semiclassical theory also successful-

Fi . 4fors=l
y predicts the plasmon splitting that ca b l d

'

ig. or s =1,2. The relative size of the plasrnon gap at
Q' should be set by the ratio ~!No(4~s/d))I/No(0). ' In
Table I we compare this ratio with b,co/co, where for each
resolvable pair of peak locations, co+, we define
hco=co+ —co and co=(co++co )/2.

We have confirmed by our fully quantum-mechanical
theory that semiclassical predictions are fairly reliable in

I I I I I I I I I I I I I I I I I I

(

, l, ...';, ,"'

e„/t = na* (18)

For the bands in Fig. 5, we find that Eq. (18) describes the
first 15 bands to better than 5% with the choice
a /a = 1.043. Thee higher bands quickly deviate from
Eq. 18) and develop dispersion when theireir energy rises

From Fig. 6 we can identify 12 sharp peaks corre-
sponding to transitions from each of the occu i d b d
o e next higher band, 12 peaks corresponding to band

600

the upper left part of Fig. 1. Now we want to illustrate
how moving away from this limit leads to both quantita-
tive and qualitative failures. One might think that the
easiest extension for the semiclassical theories would be

Then
to increase the modulation strength t l

en the basic collective modes remain the plasmons,
with only their dispersion being modified. Qualitatively
t is is true, ut quantitative accuracy is lost. L te usjump
o e limit of strong modulation using V/t =500. The

Fermi energy at this modulation strength allows for the
partial occupation of the first 12 KP subbands shown in

ig. 5. Many of the lower KP bands are flat and the in-
coherent excitations between them are stron l k dn y pea e

ean intersubband transition energies, which them-
selves approach the transition energies of an isolated well.

consider whether

)(L

400—

t/
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FIG. 4. Imaginary part of the diagonal density-response rna-

1 (

Here q =0 and s increases from 1 to 4 as one moves up thro hp roug
e panels. Within each panel the plotted functions have been

separately scaled to fit. The dashed curves are for y and the
solid for y. The Kronig-Penney parameters are those of Fig. 3.

0
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FIG. 5. KrKronig-Penney bands for a model with V/t =500,
d =450 nm and, and a —300 nm. The Fermi level is at the dashed
line.
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r tative change in the response of the system from Fig. 6 is
analogous to that between the curves in Fig. 4. A few
sharp modes appear in place of the many intersubband
transitions. These modes are exactly the confined
plasmon excitations which have long been anticipated
theoretically on the basis of semiclassical theories and
have recently been seen experimentally. The modes
are expected to occur in the simplest approximation at
the frequencies

coc=2n N e k/em*a, (19)

0 0& Jrl t l . I I I I I I I I I I I I

-0 100 200 300 400 500
tin/t

FIG. 6. Imaginary part of the diagonal density-response ma-
trix for independent electrons, g, , (q, co) vs frequency. The plot-
ting scheme is the same as in Fig. 4, while the Kronig-Penney
parameters are those of Fig. 5.

index changes of two and so on. Bandlike features begin
to develop for band index changes of four or more as
transitions to dispersive, higher-energy KP bands become
possible. The peaks with larger band index changes are,
of course, at higher energies and have larger weight in
the higher wave-vector diagonal matrix elements. Since
the bound states within a mell must have an integral
number of half-wavelengths there, the low-lying inter-
band transitions where the band index changes by j cor-
respond to a wave-vector change of jm. /a and in the
limit of wide quantum wells their contribution is like that
of a uniform system at this wave vector. This idea is
confirmed in Fig. 6 by the fact that the envelope of con-
tributions from a band index change of one is similar in
shape to the corresponding free-electron curve.

The effect of interactions is shown in Fig. 7. The quali-

4

Oi rrrr l»r» lrr. r

—0 100 200 300 400 500
tin/t

FIG. 7. Imaginary part of the diagonal density-response ma-
trix for interacting electrons, y„(q,co), vs frequency. The plot-
ting scheme is the same as in Fig. 4, while the Kronig-Penney
parameters are those of Fig. 5.

where k is an integer and X„ is the electron density in the
well. The lowest five resonance energies predicted by Eq.
(19) using N =dN/a for the situation of Fig. 7 are in
units of t 162, 229, 280, 323, and 361, which do not agree
with the RPA peak positions except (accidently) for the
second lowest mode. We have checked by further calcu-
lations under strong confinement conditions that the
dependence of the lowest RPA mode on the well width
and density is, however, qualitatively the same as suggest-
ed by Eq. (19). At the next level of semiclassical approxi-
mation one can solve Eq. (3) for a single well with infinite
confining barriers using Eq. (11) for y with a constant
equilibrium density XII(X)=E within the well. We
then find for the lowest five confined plasmons 139, 214,
268, 313, and 352 in units of t. This set agrees better with
our results. We also tried to further improve the semi-
classical predictions by using the calculated ground-state
density for the whole superlattice in Eq. (11). However,
we found that this more sophisticated evaluation gives
worse quantitative estimates. We obtained for the
specific case of Fig. 7 6, 19, 7S, 112, 197, 211, 274, and
298 in units of t for the eight lowest modes. The spurious
appearance of low-frequency modes when No(X) smooth-
ly varies down to small values is a general defect of semi-
classical estimates.

Matters are even worse for the semiclassical theories at
intermediate modulation strengths. For instance, we
evaluated g and g when V/t =300 and 13 KP subbands
are partially occupied. The spectrum of Imp then has
sharp 5-function-like contributions riding on a smooth
background. The former are due to transitions among
the lowest ten bands which are nearly dispersionless,
while the latter arises from transitions among the higher
bands. However, unlike the cases of either weak or
strong modulation in Figs. 4 and 7, the spectrum of Imp
is bandlike rather than 5-function-like. There are no
sharp collective resonances of the system at this modula-
tion strength, so the semiclassical theories (which predict
plasrnon modes at every modulation strength) fail qualita-
tively.

The semiclassical theories also fail when one moves to
the right-hand side of Fig. 1. Considering first that the
modulation is weak, moving to the upper right of Fig. 1

means examining the plasmon modes at increasing wave
vectors where they interact more strongly with the
particle-hole continuum, physics that is illustrated in Fig.
2 but ignored by the semiclassical theories. To move far
into this regime we consider results for a KP potential
with d =50 nm and a =20 nm. These widths are shorter
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than what is achievable with present-day microstructur-
ing technology. At this period our energy unit is t =2.3
meV and kid/m=1. 596, so there will be two occupied0

subbands in the limit of zero modulation strength. Since
the first nonzero wave vector we probe in the LS2DEG is
2m/d, even it is larger than kz, and hence, recalling the
upper panels of Fig. 2, one should not expect true
plasmon excitations in this system.

The weakest modulation potential that we illustrate for
this period is V/t =4, whose KP bands are shown in Fig.
8. e continuum of incoherent excitations showwn in

ig. is strongly distorted but still recognizably similar
to the corresponding unmodulated results. The various
dips are due to the small gaps between the higher bands.

he infiuence of interactions is also shown in Fig. 9. It
appears that they merely shift the bands of incoherent ex-
citation toward higher frequencies, without producing
any sharp collective excitations. The same qualitative be-
havior occurs in Fig. 2.

The pictures change if we move to strong modulation;
i.e., into the lower right of Fig. 1. We show in Fig. 10 the
KP bands for the choice V/f =200, which is more than
an order of magnitude greater than E~lt The. parame-
trization of Eq. (18j is accurate here to within 5% for the
first five bands with the choice a */a = 1.113. Unlike the
case for V/t =4, only the lowest subband is occupied.
Over the frequency range shown in Fig. 11,we see sharp,
separable contributions to y coming from transitions be-
tween the first band and the second, third, and fourth
bands. The peak locations are consistent with Eq. (18);
i.e., with the energy separations of the eigenstates of an
isolated square well. When we compare y and y in Fig.
11, we notice that the effect of interactions is merely to
shift these excitation peaks up by about four, three, and
two energy units for the 1~2, 1~3, and 1~4 transi-
tions, respectively. These shifts are the depolarization
shifts of the intersubband transitions that determine y .

o
—0 20 40 60 80 100

h~/t.

300

200—

100—

0.0 0.2 0.4 0.6 0.8 1.0
dk„/~

FIG. 10. Kronig-Penney bands for a model with V/t =200,
d =50 nm, and a =20 nm. The Fermi level is at the dashed

line.

FIG. 9. Imaginary part of the diagonal density-response ma-

trices for a LS2DEG, y, ,(q, co) and y, , (q, co), vs frequency. The
plotting scheme is the same as in Fig. 4, while the Kronig-
Penney parameters are those of Fig. 8.
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FIIG. 8. Kronig-Penney bands for a model with V/t =4,
1=50 nm, and a =20 nm. The Fermi level is at the dashed
line.
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FIG. 11. Imaginary part of the diagonal density-response
matrices for a LS2DEG, g, , (q, cu) and y, , (q, cu), vs frequency.
The plotting scheme is the same as in Fig. 4, while the Kronig-
Penney parameters are those of Fig. 10.
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The limit of isolated wells has been discussed by earlier
workers, ' ' ' ' ' and their results may be formally
recovered from the flat-subband limit of our theory. The
depolarization shifts are expected to be of order' '

3 I I I I I I I I I g

b, =e dN/e=0. 18 meUd [nm]=9 meU, (20)

with dN acting as the linear density of an isolated chan-
nel. This estimate is consistent with the size of the shifts
between the peaks in Fig. 11.

When the depolarization shifts are small compared to
the intersubband transition energies, each excitation en-

ergy of the interacting system may be associated with a
definite transition. When the depolarization shifts be-
come comparable to the differences between the intersub-
band energies, the various excitations which exist in the
noninteracting system are strongly coupled together by
interactions and it is no longer easy to associate the peaks
in g with particular intersubband transitions. For the
case where only a few subbands are occupied, the inter-
subband transition energies are, at strong modulation, of
the order of our energy unit while the characteristic ener-

gy scale for interactions is set by the b, of Eq. (20). The
importance of interactions in coupling intersubband tran-
sitions is determined then (for our fixed N) by the ratio

—=3.2X10 (d [nm]) (21)

One should therefore expect intersubband excitations to
be strongly mixed by interactions only for d greater than
100 nm in our systems. This is consistent with our
finding that the intersubband excitations are not strongly
mixed by interactions for d =50 nm, but are so mixed for
the larger d considered below. As an aside we caution
that the crossover value of d depends on the choice of ¹

Li and Das Sarma' produce in their model with a well
width -500 nm a picture of greatly shifted, but not
strongly mixed, intersubband transitions. This occurs be-
cause they choose, in order to assure occupancy of just
the lowest subband, a value for X more than two orders
of magnitude smaller than ours.

We have so far only shown results from well inside the
different regimes noted in Fig. 1. Now consider the
choice of d =150 nm, which puts us near the vertical
boundary through the center of Fig. 1. One then has
EF /t =22.9, so the values V/t = 10, 50, and 250 should
put us in weak, intermediate, and strong modulation re-
gimes, respectively. In Fig. 12 we show results for both
Imp» and Imp, , for each of these three cases.

For weak modulation we see a broad plasmon peak in
Imp. The fine structure on its side is better interpreted as
a remnant of the single-particle peaks in Imp than as a
split-plasmon resonance. In the middle panel of Fig. 12
we have a messy broadband spectrum for both Imp and
Imp. Such spectra are typical of the response at inter-
mediate modulation strength. ' '

For strong modulation, one again has sharp peaks but
their interpretation in Imp is unclear. The peaks in Imp
are directly related to intersubband transitions. There
are three occupied subbands and, e.g., the first three
peaks in Imp are at the energies of the 1~2, 2~3, and
3~4 transitions. The question is what happens to these

2

(tf

1

I

0 50 100 150

FIG. 12. Imaginary part of y, , and y„ for s =1, d =150
nm, and a =60 nm vs frequency. The solid curves are Imp and
the dashed are Imp . The modulation strength increases
through V/t =10,50,250 as one moves from the bottom panel
to the top.

peaks when interactions are included. The answer de-
pends on one's point of view. Within the scenario of the
lower right of Fig. 1, one can argue that the peak due to
the 3~4 transition has acquired most of the others' os-
cillator strength and appears in Imp with a strong depo-
larization shift at 55.5t. Alternatively, with the view from
the lower left of Fig. 1, one can claim that the peaks at
55.5t and 100t are simply the two lowest confined
plasmons. We favor the first interpretation over the
second since it gives one a picture of how the spectra
evolve as the interactions turn on. This is illustrated in
Fig. 13, where we treat the background dielectric con-

I I I I I I I I

I I I I I I I I

50
tin/t

FIG. 13. Imaginary part of y, , for d =150 nm, a =60 nm,
V!t =250, and variable e vs frequency. As one moves from the
top to the bottom of the plot, e has the values 320, 160, 80, 40,
20, 12.7 and the results are vertically offset but scaled the same
way.
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stant as a free parameter in the calculation of g from g"
via Eq. (14). Consider first the three lowest peaks. As
the electron-electron coupling is increased (by decreasing
e), oscillator strength from the bottom two is smoothly
transferred to the top one, until it alone is visible at a
strongly shifted position. The same qualitative behavior
occurs for the three highest peaks in —Imp . For this
trio the strongest peak in the absence of electron-electron
interactions is the middle one (near 62t), but it, along
with the bottom one, eventually loses all of its oscillator
strength to the top peak. We found similar evolution pat-
terns for other choices of lateral period at strong modula-
tion strength. Thus, although we have spoken of strong
interactions "mixing" intersubband peaks, it is more ap-
propriate to say that excitation strength is transferred
among depolarization-shifted peaks rather than that
peaks coalesce.

To summarize our results let us return to Fig. 1. Our
evaluations have been carried out in and between all four
regimes shown there and we found the different charac-
teristic behaviors noted. We claim that only a fully
quantum-mechanical theory is capable of quantitatively
describing each regime and the complicated crossovers

between them. Ours is certainly not the most sophisticat-
ed quantum-mechanical theory one could imagine for this

task, but it has allowed us to carry through an initial nu-

merical survey. In future work one might attempt to cal-
culate the self-consistent ground-state potential-energy
profile from an a priori confining potential, include esti-
mates of exchange and correlation energies, and deter-
mine quantities that may be directly compared with ex-
perimental data. ' These and other omitted effects will

certainly change the quantitative results, but should not
modify the qualitative classifications in Fig. 1.
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