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Raman scattering in quantum wells in a high magnetic field: Frohlich interaction
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An explicit expression for the Raman-scattering efFiciency in quantum wells (QW's) under high
magnetic fields is given for the allowed Frohlich electron-phonon interaction mechanism. The basic
features of the theory are studied with a parabolic band approximation, which allows us to under-
stand the physics involved in the selection rules and the double resonance conditions. Furthermore, a
Luttinger Hamiltonian is used to describe the heavy-hole —light-hole admixture in III-V compounds.
Selection rules are derived for backscattering configuration and circular polarizations. Phonons can
couple via Frohlich interaction with either light or heavy components of a QW subband, and both
intrasubband and intersubband scattering become possible, the selection rule being DN = 0 for the
Landau quantum number. The phonon confinement is studied in thin QW's and a comparison among
the different phonon modes is presented: only even phonon modes couple via Frohlich interaction
for qz = 0. We have calculated the Raman polarizability of a 100-A GaAs/AlAs multiple quantum
well and compared it with recent experimental results.

I. INTRODUCTION

Resonant magneto-Raman scattering has become one
of the most suitable techniques for the investiga-
tion of nonparabolicities and valence-band mixing in
III-V semiconductor compounds, quantum wells, and
superlattices. i 7 It has the advantage over other inter-
band magneto-optic techniques that we can go further
in energy without loss of sensitivity, because the Raman
process becomes resonant whenever the laser or scattered
energy corresponds to an electronic transition between
Landau levels (incoming or outgoing resonances, respec-
tively). Backscattering geometry only needs thicknesses
of about 1000 k In the case of quantum wells (QW's)
and superlattices (SL's) the reduction in the dimensional-
ity lifts the valence-band degeneracy of the bulk, and the
information contained in the Raman spectra increases.
With the application of an external magnetic field the en-
ergy spectrum quantizes completely, leading to the zero-
dimensional quantization responsible for the well-known
quantum Hall effect. s

When the energy difference between incoming and out-
going resonances corresponds to a phonon energy, there is
a strong enhancement of the Raman intensity because the
process becomes doubly resonant (DRRS). These dou-
ble resonances have been achieved by applying stress, s

varying the magnetic field, s or changing the thickness of
a SL.io In recent magneto-Raman measurements on a
100-A GaAs/A1As multiple-QW structure, Calle et al. s r

have obtained a huge increase in the Raman intensity at
a particular magnetic field, which has been related to an
exciton-band double-resonant transition.

Theoretical and experimental studies of magneto-
Raman scattering have been performed in recent years.

Ruf et aLz 4 investigated the Raman spectra of InP and
GaAs under high magnetic fields. Trallero-Giner, Ruf,
and Cardonaii developed a theoretical model of one-
phonon resonant Raman scattering under high magnetic
fields, which explained satisfactorily the above magneto-
Raman results. This model was extendeds by taking into
account the valence-band mixing through a Luttinger-
type Hamiltonian. iz The theory of magneto-Raman scat-
tering in diluted magnetic semiconductors was developed
by Limmer et aLis taking excitonic states as interme-
diate states in the process and that theory was com-
pared with experimental results for Cd, Mni Te. Also
some attention has been paid to the experimentali4 and
theoreticalis study of multiphonon Raman scattering in
magnetic fields.

There are only a few theoretical studies of Raman
scattering by phonons in QW's. Huang et aL worked
out a detailed microscopic theory of Raznan scattering
in QW's based on the Luttinger Hamiltonian. is Cros
et aLir developed a model theory of one-phonon reso-
nant Raman scattering in high magnetic fields using for
the electron-phonon interaction the bulk deformation-
potential Hamiltonian. In the present work we study the
Raman scattering induced by the Frohlich interaction in
QW's in an external magnetic field, which requires tak-
ing explicitly into account the confinement of the phonon
modes.

The paper is organized as follows. In Sec. II the Raman
polarizability induced by Frohlich interaction is derived,
and the resulting scattering eKciency is discussed in the
context of a three-band parabolic model. In Sec. III the
previous model is extended to take into account the com-
plexity of the semiconductor band structure using a 4 x 4
Luttinger Hamiltonian. In Sec. IV the previous ealcula-
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tions are compared with experimental results carried on a
100-A GaAs/AlAs multiple QW in a magnetic field while
Sec. V summarizes the main conclusions of the work.

II. THEORETICAL MODEL OF ONE-PHONON
RESONANT RAMAN SCATTERING

IN A SEMICONDUCTOR QW

We proceed in a similar way to that in Ref. 17. As a
first step we discuss the physics of the problem through
a simplified model involving the substitution of the Lut-

tinger Hamiltonian by a Hamiltonian with Lande factors
for the holes.

A. Wave functions and matrix elements

Raman intensities are usually given in terms of the
scattering efficiency dS/dA or, equivalently, the Raman
polarizability a. is Within a microscopic theory, the Ra-
man polarizability is directly proportional to the proba-
bility amplitude WEI between an initial state ~I) and a
final state ~F).is is Resonant Raman scattering can be
treated as a third-order process in perturbation theory;
thus, two electron-photon interactions and one electron-
phonon interaction terms appear in the amplitude prob-
ability. Explicit expressions for these interaction Hamil-
tonians are given, for instance, in Ref. 17. There, the
deformation-potential electron-phonon interaction was
studied, while here, our purpose is to study the case of
Frohlich interaction.

The Frohlich electron-phonon interaction Hamiltonian
has been derived for a single QW in Ref. 20. It is based on
a continuum model for the long-wavelength polar-optical
phonons assuming them to be dispersive and completely
confined to the QW. The vibrational amplitude used
in the derivation of the Frohlich Hamiltonian has been
shown to satisfy simultaneously mechanical and electro-
static boundary conditions. i Within this model the elec-
trostatic potential derived from the polarization field by
the usual procedure gives for the coupling constant S~(q)
the following expression:

( I@;(z.)exp(-iqi n. )
4/q q

We take the z axis as the growth direction, the mag-
netic field also along z, and choose the Landau gauge for
the vector potential (V A = 0), with A = B (0, z, 0).

The Schrodinger equation can be separated into three
difFerential equations, and the normalized wave function
is obtained:ir

@Nl = e " Pl(z)&N(+ +0)~0( ) ~~i,
(3)

e h
(~IHERII) =

2 Gl. ,l„~N. ,Ng~tc„. ,k„g+~„

where +N (z —zp) is the wave function of the one-

dimensional harmonic oscillator, centered at &o
——"tc„—:—RzA;„, with Landau number N and pt(z) is

the wave function corresponding to the QW potential.
The envelope function has been multiplied by the corre-
sponding Bloch function Uo(r) calculated at k = 0. The
energy of the system is given by

E = h~, (N + ~) + Et + gm, PEB, (4)

where m, = kz for the two spin states, and Et are the
energies of electrons and holes in the QW potential.

Using the set of wave functions of Eq. (3) we can cal-
culate the matrix elements that appear in the amplitude
probability. For electron-radiation interaction we have

where CF is the Frohlich constant,
(Fl&ERlt ) = e h

mo V u~gs

CE = i 2qrezh(uLO ~—
(Eoo &O)

(2)

stt and s are the static and optical dielectric constants,
and tdq = uLO —ttt q, represents the dispersion of the Lo-
phonon frequency, p, being a constant to be determined
by fitting the experimental phonon-dispersion relations,

p and g~ are the components of space coordinate and
momentum in the plane of the layers, and V = L~d the
volume of the QW. In Eq. (1) the modulation function
C'~(z) takes into account the confinement of the phonon
in the quantum well. zc The quantity q, is quantized, q, =
pqr/d, where p = 1, 2, 3... is a positive integer whose value
is limited by the condition that q, must stay within the
first Brillouin zone of the bulk crystal.

Gt„t = e p ', (z) &t, (z) dz (7)

and p,„is the momentum matrix element between the va-
lence and conduction bands. u is the photon frequency
and g the refractive index, the indices l and s refer to
laser and scattered light, respectively, r, is the photon
wave vector, and m, o is the free-electron mass. The in-

dices l (laser light) and s (scattered light) have been omit-
ted in Ct, ~, . The matrix elements corresponding to the
electron- and hole-lattice interactions are

(6)

where the functions Gt, t, are proportional to the overlap
integrals of the well functions:

(I ltIIEPI&) =
V

QFi,', l, fN, N, e ' N'„,N k'„„,t;„„+q„ t'„,l

q

Ft'„,iqfN N„& ' ~N,',N, 4', ,k„,+q„~l'„t, )~u', c~c',c ~
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where the functions Ej, ~, and fg, N represent

+i„i.(s) = f vf (~,h i (*.)c';(*)&*

+oo

&, „,(q. , &y) = &, „,(&., g~)—= u„', (x)ups, (x+eyR')e '**-dx. (10)

The fact that the Frohlich Hamiltonian does not act on the Bloch part of the wave functions is implicit in Eq.
(8). The processes will be purely intraband as in the bulk case. In the following we will omit the b, , and 6„„for
simplicity.

Taking the wave vectors of the laser and scattered light, i«~ m, 0, and calculating the sum in A,„h(,),

L2
&9 &0,h(e)

2«rR' '*'
A'y h(e)

The probability amplitude can be written as

G G I'„,l I'„l, (q) ~l', ,I, t'„,l„(q)

N, m, , le, l,' lg, l~

(12)

with

esBCJ,, yu)LOKl, =
~Vmoz«l( fl, g(u)u), d

The energy of the intermediate states is

Ep(„) = E~(c(c'), v(v')) + E)„()„)
+EI,().) + her, (u, )(N+ ~~)

+lJ'BmsB(ge(e') + gh(h') ) & (14)

'0, z ( -d/2
@c« = C'„(z) = ( 2[(—1)~ cos +z —I], —d/2 ( z ( d/2

0, z & d/2.

(16)

If p = 1,3, 5. . . we have

'2, z ( —d/2
@c« —= @p(z) = & 2(—1) ~ sin +z, —d/2 ( z ( d/2

2) z ) d/2.

cu, being the cyclotron frequency with the reduced mass
m (m ~ = m, z + m&z), and Es(c, v) the energy gap be-
tween the valence and conduction states involved in the
Raman process. According to Eqs. (12) and (14) the in-
coming and outgoing resonances will occur at frequencies

M)(, ) (l„lh, N) = E~ + E). + E&„+hi, (N + z )
+p~m, (g, + gp, )B. (15)

B. Selection rules

We will consider a QW grown in the (001) direction of a
cubic semiconductor crystal in the Faraday configuration
(B II m~ II z), and derive the selection rules for backscat-
tering geometry. The polarization of the light is referred
to the fixed z axis, with right (+) and left (—) polarized
light corresponding, respectively, to e+ ——(e~+iez)/~2,
e = (e~ —ie„)/~2 polarization vectors

Owing to wave-vector conservation, the optical
phonons excited in the backscattering process propagate
parallel to the z direction. Furthermore, the function
C'~(z) (Refs. 20 and 21) has a definite parity with re-
spect to the bisector plane of the well, being even for
even modes (p = 2, 4, 6. . .) and odd for odd modes

(p = 1, 3, 5. . .): For p = 2, 4, 6. . .

(c~ le- plvhh) =(c~ Ie+ plvhh) =«»

(ct Ie+ plvgh) =(cl Ie-. plv)h) =
3

'

(c t Ie+ plv, ) = (c g Ie plv+) =i—(18)

where P = (xlp lc), and the selection rules for backscat-
tering and circularly polarized light are

(17)

Equation (8) shows that when the electron is scattered,
the hole remains in the same subband. That means that
both electron subbands must have the same parity, in
order for G~ ~, and Gt. ~„not to vanish. If the electron
subbands l', and l, have the same parity, the function
C~(z) must be even. In that case Fj ~. is difFerent from
zero. Odd modes are thus forbidden for Frohlich inter-
action. We can conclude then that only even confined
phonon modes are excited in the Raman process under
consideration.

Once we know the condition for E~ ~ to be nonzero, the
selection rules for the optical transitions are derived from
the momentum matrix elements to be the same as in bulk
materials, with the additional possibility of intersubband
transitions. The only nonzero matrix elements are~
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z a, cr z

»h 1h(1)
Uso ~ &so

z 0-+, a+ z

"hh ~ "hh(l)
»h ~ »h(T)
~..- ~..(I)

(Am, = 0). In the crossed configuration [z(o+, or+)z]
the Raman eSciency is zero.

C. Raman e6iciency within the simpli6ed model

(19)

The couplings mediated by the Frohlich interaction
conserve the Landau number, hN = 0, the third compo-
nent of the angular momentum, AJ, = 0, and the spin

]

In order to obtain the Raman-scattering eKciency
dS/dA, we need to calculate the Raman polarizability
corresponding to one phonon mode and add over all
phonon modes with the restriction u2 ) 0. The resulting
final expression can be written as

2

ds
dA

, th .~l'",thai„l 6t'„l +~, l

N, m, l, le l~, lg

(20)

where the constant Ss is

~2r/, esB~ ~C~]~~i,o
~~~r/im. 45 c4ms4

(21)

TABLE I. Parameters used to calculate the Landau levels
in GaAs/A1As QW's. For the band offset the ratio 68/32 has
been used.

Parameters

E~(GaAs)
E~(A1As)

P
mhh(GaAs)
mhh (A1As)

~LO

ge

gs/2
gZ//2

Values

1520 meV
2766 meV
0.65 a.u.
0.34mp
0.55mp
36 meV
—0.44

7.2
—2.4

Reference

25
25
a

25
25
26
27
17
17

B p ~ 2''
a

In thin QW's (d & 50 A) the different phonon modes
are going to have well-defined, different frequencies be-
cause of the bulk dispersion. In that case, the dS/dA
must be calculated for a fixed p. For quantum wells
wide enough (d & 50 A) so that the separation be-
tween individual confined modes is less than their width,
the nondispersive approximation can be made, setting
u~ = uLo and adding all the efficiencies corresponding
to the different phonon modes in order to obtain the total
Raman efficiency. The number of phonon modes we need
to add is not high because of the factor p~ that appears
in Eq. (20).

We have calculated the scattering cross section dS/dA
within this model for QW's of different thicknesses as a
function of laser frequency for the scattering configura-
tion z(o+, o+)z, whose selection rules are given in Eq.
(19). For this purpose we first calculated the energy sub-
bands (including the QW confined electronic sublevels
and their masses in a self-consistent way) and the cor-
responding well wave-functions yi(z) (I = t„lych, Ihh) as
explained in Ref. 17. The matrix elements were then eval-
uated with the wave functions of Eq. (3), and the scatter-

I

ing efficiency was finally obtained by means of Eq. (20).
The parameters used in the calculations are those for
GaAs/A1As QW's, given in Table I. The lifetimes used for
the calculation of dS/dA were taken from a least-squares
fit to a photoluminescence excitation profile. s They are
assumed to increase quadratically with the Landau num-
ber N. The numerical expression used is

I'(N) = 1.2 —0.47(N+ 1) + 0.26(N+ 1)' (22)
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FIG. 1. Calculated Raman-scattering eKciency, according
to Eq. (20), in the z(cr+, 0+)z configuration close to a double
resonance. The magnetic field has been kept at 8 T. The
parameters of Table I have been used.

independently of the light or heavy character of the band.
In Fig. 1 we show the scattering efficiency as a func-

tion of laser energy for 135-, 145-, and 150-A. QW's
in the z(cr+, o+)z configuration with the magnetic field
kept fixed at 8 T. The selection rules given in Eq. (19)
show that only states of the same valence band and the
same parity are coupled by the Frohlich interaction. The
peaks in the spectra correspond to intrasubband transi-
tions. For d = 145 A. the energy difference between the
first and third heavy-hole well states equals that of the
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+pB(ge + gh)meeB. (23)

phonon. Because the Frohlich interaction couples these
two QW levels, a double resonance for the hh3~ hhl
transition is obtained at a laser energy Eg+1.94huLo. In
the parabolic QW model, energy levels of the same sub-
band depend linearly on the magnetic field with the same
slope for levels with the same Landau number, so that
the double resonance condition is independent of mag-
netic Geld. This condition is fulfilled simultaneously for
the difFerent Landau levels of the bands involved in the
transition. In Fig. 1 we can see the double resonant peaks
corresponding to Landau levels N=O, 1, and 2 [labeled
as (in) (out)]. The difFerence in intensity is due to the de-
pendence of the linewidth on Landau quantum number.
When we change the well thickness, the splitting between
hhl and hh3 changes and the double resonance is lost as
the incoming and outgoing resonances separate. The en-
ergy at which the resonances appear depends linearly on
the magnetic field:

Mi=E, +Ei. +E&„+heB
~

+ ~(N+ —,')(
med mhd

QW grown in the (001) direction, and using the 4 x 4 Lut-
tinger Hamiltonian (we assume a very large spin-orbit
splitting), we determine the weight coefficients which
characterize the field-dependent mixing of the bands

(C& '"). As a result of the coupling, the wave functions

are given by~5

(df (z)" z(-* *z)zz )1 $2 (z)un —2 (x —ZO) v2 jg„~ (24)Ps"(z)u„ i(x —zp) vs

4 Z Q~ X —Xo V4

+ 3 3% + 3 liHere v1 ——vhh =
2 +2) vs = v)h =

2 +2), v3 ——

3 1 3 3K.
vih —— 2, —2, and v4 = vhi,

—— 2, —2); u„—:0 if n ( 0,
n being the oscillator number. The function (II),. '"(z) is a
linear combination of the QW functions yi, (z):

P, '"(z) = ) CP'"A,. (z) .

The index o, is the new quantum number derived from
the diagonalization of the well Hamiltonian in the pres-
ence of the magnetic field. The mixing increases with
increasing magnetic field and Landau-level index.

III. MIXING EFFECTS A. Scattering e8iciency and selection rules

We derive next the Raman efficiency taking the cou-
pling of the different energy bands into account. For a

I

We derive the scattering amplitude from the wave func-
tions (24). The probability amplitude is found to be

Ki, ~. ~ ~. „b,Fj,i.(q, ) —bp, i.F (q, )
(26)

with the following definitions:

4

Gi. ,
= ) .). dz+zze p,„,. f, i (z)p'd,". "dz, . (27)

i=1

I

tion are only possible with polarizations z(o+, 0+)z and
z(o', o )z. In both configurations, the coupled levels
are such that hn = AN = 0 . As before, only intraband
coupling is allowed.

4

):d -4+',z fd;''" '(z)e; '"(z)e'z(z) dz .
A i=1

(28)

The energies of the intermediate states are now

Ep(dd) = Eg(c(c'), v(v')) + E ( 1 + Ei.~i

+he, (cu,.)(N+ 2) + pBm, Bg,~, 1
. (29)

~ - ~- +~',N+4 —' ~+~,N+4 —~F

l; l~

(31)

The transitions mediated by the Frohlich interac-

In Eqs. (27) and (28), for a particular value of the spin
m, and polarization e, i is fixed [see Eq. (19)],n is then
fixed by the b function, and the expressions reduce to

) ~ ~zz, N+4 —iG

l;

B. Raman scattering in GaAs/AIAs qW's

The simplest, unambiguous way to label the hole Lan
dau levels is by means of (n, n), the Landau oscillator
quantum number, and a new quantum number a aris-
ing from the diagonalization of the Hamiltonian. Un-
fortunately, this labeling does not explicitly display the
physical information that it actually contains. We know
that deformation-potential interaction is interband and
couples light- and heavy-hole states while Frohlich in-
teraction is intraband and couples either light-light or
heavy-heavy states; this restricts the Landau sublevels
involved in the process.

For B = 0 (k~ = 0) the Luttinger Hamiltonian is
diagonal and the different well subbands are purely light
or purely heavy. For small B (also small n and thin
QW's) the eigenvectors that appear in Eq. (24) must have
only one component different from zero. In this case we
can label the state by the well subband index l, instead of
the new quantum number a. For instance, we can label
the first heavy-hole subband with n = 0 as 14(0). It is
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more common to use hh instead of 4. Thus, the label
would be hhl(0 ). This notation has a clear physical
meaning only for small magnetic fields. As an example
of the loss of physical meaning we observe (see Fig. 4 of
Ref. 17) that the lhl and hh2 QW subbands are very
close to each other in a 100-A. GaAs/AIAs QW and there
is an anticrossing around B = 10 T, with the paradox
that a pure light level at B = 15 T would be labeled
hh2(3+).

Figure 2 shows the Raman efficiency as a function of
laser energy for B = 0 and d = 100 A. for the z(o+, o+)z
scattering configuration. The other configuration yields
a similar profile although for the other spin components.
Figure 2 clearly depicts the difference in the intensity
between the heavy and light contributions to the Raman
profile resulting mainly from the closeness of the elec-
tron and light-hole masses. The overlap integrals I'I I

subtracted in Eq. (20) are nearly equal, giving a small
contribution to the Raman-scattering efficiency. The el-
hhl outgoing resonance is larger than the incoming one
because when the scattered light resonates with the e1-
hhl electronic transition the laser light is close to the hh3
level. The same fact makes the el-hh3 incoming transi-
tion larger than the outgoing one. The el-hh2 resonance
is forbidden by parity.

In Fig. 3 we represent the calculated Raman efficiency
as a function of the laser energy for B = 10 T in a
QW of thickness 100 A for both scattering configura-
tions z(o+, o+)z (a) and z(cr, o )z (b). According to
Eq. (19) for z(cr+, o+)z the resonances are either incom-
ing or outgoing and involve the via ~ vih or vugh

~ v

matrix elements of the electron-phonon interaction. The
number of possible transitions is notably reduced by these
selection rules. Outgoing transitions are larger than in-

coming ones due, as in the B = 0 case, to the energy
denominators. The light and heavy components of the

l5

CP
C

~~0
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E

�03
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z(o, o') z
B=io T
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O
II2

I

CDA A+

0
I

CV 0

'O

O
II2

0

0

Landau levels make new resonances possible as compared
with the parabolic approximation [Fig. 3(b)]. This is the
case for the 1hlf N = 0(3 )(in) and (out) resonances in
which the transitions takes place via the +z (i.e. , spin
up) light-hole band (with weights 0.32 and 0.54, respec-
tively).

In Fig. 4 we show the Raman eKciency as a function of
magnetic field for z(o, o )z (solid line) and z(o+, o+)z
(dashed line) configurations. The laser energy is so that
the transition el-lhl (1 ) remains outgoing resonant.
The first peak around 5 T (solid line) appears when
the el-lhl (2 ) transition crosses the e1-lhl (1 ) tran-
sition. The second peak is due to the virtual transition
el-hh3 (0 ) ~ el-hhl (0 ) and it appears because the
different slope with respect to the transition that the laser
is following makes the product of energy denominators a
minimum. The dashed line shows that no resonances
show up in the other scattering configuration. Figure
4(b) displays the experimental data (Ref. 7) supposedly
obtained in the z(o+, o+)z scattering configuration. If
the configuration of these measurements were the oppo-
site of the nominal one (as a result of an experimental
error), the first observed peak would be qualitatively ex-
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FIG. 2. Calculated Raman-scattering efBciency, accord-
ing to the scattering amplitude given by Eq. (26), for a
GaAs/A1As QW with d = 100 A. and Fuji,o = 36 meV at
B = 0 in the z(o+, o+)z scattering configuration.

FIG. 3. Magneto-Raman-scattering efBciency for a
GaAs/A1As QW with d = 100 A and Fuji,o = 36 meV at
B = 10 T for both z(cr+, o+)z (a) and z(o, o )z (b) scat-
tering configurations.
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plained if we correct for excitonic efFects taking a smaller
binding energy for upper levels. After this correction, the
theoretical peak moves to higher values of magnetic field.
The same arguments shift the second theoretical peak to
the left.

Figure 5 shows the calculated scattering efficiency as a
function of laser energy for a well width of 25 A. Since this
well is very narrow, the difFerent confined phonon modes
can be resolved. The difference in intensity between the

p = 2 and 4 modes is rather large, but it saturates quickly
for larger p's.

As can be seen, only even phonon modes are excited.
This is due to the fact that in the present analysis we
have assumed the same effective-mass Hamiltonian for
the diamond and zinc-blende lattices, which means ne-

glecting the very small linear terms which are odd under
inversion in the zinc-blende structure. Then, the eigen-
states of the Hamiltonian have a definite parity since we
operate only with envelope functions, i.e., we neglect the
asymmetry of the periodic part of the Bloch functions.

IV. CONCLUSIONS

We have developed a theory for the Frohlich-
interaction-induced one-phonon Raman scattering in
quantum wells in the presence of high magnetic fields
assuming uncorrelated electron-hole pairs. This theory
takes into account the confinement of the phonons by the
quantum-well potential. The mixing of the valence bands
has been treated with a 4 x 4 Luttinger Hamiltonian. We
have shown that only even phonons can be excited due
to the parity of the envelope functions involved.

The Frohlich interaction is allowed for the z(o+, o+)z
configurations and forbidden in the z(o+, o+)z config-
urations even when the mixing of the valence band is
considered. The intensity of the Raman efficiency varies
as Bz and increases with decreasing d in a nontrivial way.
For narrow quantum wells (d & 50 A) the difFerent con-
fined phonon modes have to be treated independently.
We have calculated the Raman polarizability for a 100-A.
GaAs/A1As QW and compared it with recent experimen-
tal results.
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