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Theory of magnetotransport in two-dimensional electron systems
subjected to weak two-dimensional superlattice potentials
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The recently observed resistance oscillations of a two-dimensional (2D) electron system subject
to a weak lateral 2D superlattice potential and a perpendicular magnetic field are investigated
theoretically. Generalizing previous work on 1D superlattices, we develop a magnetotransport theory
based on a quantum-mechanical picture taking consistently into account the efFect of the lateral
superlattice on the energy spectrum and the efFect of randomly distributed impurities on collision
broadening and transport scattering rate. The superlattice lifts the degeneracy of the Landau levels
and leads to Landau bands with an oscillatory width and a complicated internal subband structure,
visualized by the famous self-similar "Hofstadter butterQy. " The interplay between this peculiar
energy spectrum and collision broadening efFects is shown to provide the key for the understanding
of all the characteristic features of the magnetotransport oscillations reported in recent experimental
work.

I. INTRODUCTION

In recent years magnetotransport properties of two-
dimensional electron systems (2D ES's) with lateral su-
perlattices have attracted increasing interest. In addition
to the Shubnikov —de Haas (SdH) oscillations, which are
known from homogeneous 2D ES's in a perpendicular
quantizing magnetic field B, the periodically modulated
2D ES s exhibit characteristic oscillations at low B val-
ues. The nature of these oscillations depends on the type
of superlattice imposed on the 2D ES.

In their pioneering experiments, Weiss et aL inves-
tigated 2D ES's in Al Gai As-GaAs heterostructures
with a weak 1D superlattice potential. The lateral su-
perlattice was produced by means of an ingeneous holo-
graphic technique exploiting the persistent photoconduc-
tivity efFect in Si-doped Al Gai, As at low tempera-
tures. The resulting high-mobility samples (p, ) 10s
cmz/Vs, mean free path At„, ) 10 ym, modulation
period a 300 nm) showed well-resolved and strongly
anisotropic magnetoresistance oscillations at low mag-
netic fields, which were distinctly difFerent from the SdH
oscillations appearing at higher B values.

Similar to the SdH oscillations, the modulation-
induced oscillations ("Weiss oscillations") are periodic in
B Extrema occ.ur at B values, for which the cyclotron
radius R, = l kp = v~/io, of electrons at the Fermi en-

ergy EF = h kz~/2m becomes commensurate with the
superlattice period a,

2R, =a(A —4), A=1, 2, ... .

Here l = (ch/eB)iI~ is the magnetic length, io, = eB/mc
the cyclotron frequency, v~ = hk~/m the Fermi velocity,
and m = 0.067mo the effective mass of GaAs. Prom a
microscopic point of view, this condition involves three
fundamental characteristic lengths of the 2D ES, namely

the period a, the magnetic length l, and the Fermi wave-
length A~ = 2x/k~, which depends on the area density
N, = kzs/2z (~ 3 x 10ii cm z) of the 2D ES. The min-
ima of the SdH oscillations, on the other hand, occur at
integer values of the filling factor v = 2vrlzN, of the Lan-
dau levels, so that the SdH period in B i is determined
only by the two lengths l and A~.

The Weiss oscillations introduced by weak 1D su-
perlattice potentials have been investigated theoreti-
cally by several authors~ and are now well under-
stood. Certain aspects of the phenomenon can be ex-
plained within a quasiclassical picture. Especially the
large-amplitude magnetoresistance oscillations, observed
when the current fiows perpendicular to the equipoten-
tials, are attributed to the guiding-center drift of cy-
clotron orbits in the weak periodic electric field cre-
ated by the superlattice. s s i2 An alternative semiclas-
sical approach, s emphasizing the importance of magnetic
breakdown efFects, is also able to explain these large-
amplitude oscillations and, moreover, the strong posi-
tive magnetoresistance at very low magnetic fields, which
has always been observed together with these oscillations.
In the present paper we will not consider this low-field

regime, and rather concentrate on the oscillatory efFects
at higher magnetic Belds. For a full understanding of
the Weiss oscillations observed on the different compo-
nents of the resistance tensor, a quantum transport the-
ory is necessary. The key feature is that the superlat-
tice potential lifts the degeneracy of the Landau levels

(LL's) and leads to Landau bands of oscillating width.
This bandwidth becomes minimum for the nth LL, if the
condition (1) is satisfied for the cyclotron radius corre-
sponding to this LL, R, = R„—:l+2n+ 1. This mini-

mum bandwidth is accompanied by a maximum height of
the density-of-states (DOS) peak contributed by this LL
("partial DOS" of this LL). The amplitude oscillation of
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the Landau DOS related to this bandwidth oscillation has
been observed directly in the magnetocapacitance. is i4

Another direct proof of the quantum origin of the phe-
nomenon is the fact that at lower temperatures the Weiss
oscillations occur as an amplitude modulation of the SdH
oscillations. is s As further consequences of these band-
width oscillations, Weiss-type oscillations have been pre-
dicted for the thermomagnetic transport coeEcients 7

and for collective excitations. is The Weiss oscillations
have also been observed in magnetoresistance experi-
ments on samples with microstructured gates, where the
1D modulation strength could be tuned by the gate
voltage. s io If the modulation amplitude becomes too
large, the Weiss oscillations disappear. io

Recently, also the effect of two-dimensional superlat-
tices on the magnetotransport properties of 2D ES's have
been studied experimentally, both in the limit of a weak
modulationis is i~zz and for a very strong modulation,
where forbidden "antidot" regions are punched through
the 2D ES.zs From the theoretical point of view this is
a very interesting situation: The two-dimensional motion
of the electrons in the presence of both a 2D superlattice
of period a [a = (a~a„)i~z for a rectangular symmetry
with periods a and a„]and a perpendicular magnetic
Geld B leads to intricate commensurability problems due
to the interplay of the two length scales a and /. The
single-particle spectrum for this situation has been in-
vestigated theoretically by many authors for more than
three decades. zs si For a simple cosine-potential on a su-
perlattice with square symmetry, the energy spectrum as
a function of B shows a complicated self-similar struc-
ture, visualized by the highly aesthetic graph known as
Hofstadter's butterfly. zs This result is obtained in the two
complementary, but mathematically equivalent limits2r

of, first, a strong lattice potential and a weak magnetic
field in the tight-binding approximation, zs z" zs and, sec-
ond, a weak periodic perturbation of a Landau-quantized
2D ES.zr sosi In both limiting cases, the energy spec-
trum can be calculated by elementary methods only if
the magnetic flux per unit cell, C = Ba~, is a rational
multiple of the flux quantum Co ——hc/e, i.e. , if

O/Co = a2/2n. t = p/q, (2)

with integers p and q which are relative prime. This is a
commensurability condition for the lattice period a and
the magnetic length l.

Historically, the tight-binding calculations, which in-
clude the magnetic field by means of the Peierls substi-
tution, have been studied first. Aiming at the quantized
Hall effect (/HE), later on also the conductivity ten-
sor has been calculated in this spirit on the basis of a
(small-size) lattice model including disorder within the
coherent-potential approximation (CPA).s2 Such calcu-
lations are app1icab1e to situations where the conduction
band at the Fermi energy is energetically well separated
from all other bands. This may be the case for bands
owing to the strong periodic modulation by a natural
(atomic) crystal potential (a ~ 0.5 nm). The situation in
the artificial superlattices studied so far is, however, quite
different. For typical lattice constants (a ~ 300 nm) and

electron densities (N, 3 x 10ii cm z), about 50 spin-
degenerate bands (~ a2N, /2) are occupied, and several
(overlapping) bands are located at or close to the Fermi
energy. In this situation, a quasiclassical description of
the electron motion seems more appropriate. Indeed, the
(nonperiodic) magnetoresistance oscillations observed re-
cently on "antidot" superlattices have been explained
in terms of commensurate classical orbits, 24 ss and the
importance of classical chaotic motion in this case has
been emphasized. ss

Whereas the tight-binding calculations for strong mod-
ulation and weak magnetic field have, at present, no rel-
evance to the 2D ES's in artificial superlattices, the sit-
uation is different for the opposite limit of a weak mod-
ulation and a strong magnetic field, which we will con-
sider exclusively in the following. For systems without
disorder, this limit has been discussed as a model for
the /HE. s4ss ss In the present paper we will incorpo-
rate knowledge about the highly complex single-particle
energy spectrum into a transport theory, which takes the
effect of disorder on the broadening of the Landau lev-
els and on the transport scattering rate into account in
the spirit of the self-consistent Born approximationss for
randomly distributed (short-range) scatterers. Our main
purpose is to demonstrate in a comprehensible manner
that this extension of previous work on 2D ES's with a
weak 1D superlattice~ s indeed is capable of explaining all
the essential features of the Weiss oscillations observed
on samples with a weak 2D superlattice potential.

The assumption of a weak superlattice potential is es-
sential for our approach. It guarantees that, for the range
of magnetic fields we are interested in, the lateral super-
lattice does not lead to a mixing of LL's, and that it
can be treated in lowest-order perturbation expansion.
Then, the most important effect of the 2D superlattice
is to split each Landau band into subbands. For a sim-
ple cosine potential on a lattice with square symmetry,
each Landau band splits into p subbands (which are q-
fold degenerate) if Eq. (2) holds. The overall width of
the modulation-broadened Landau bands, on the other
hand, has the same oscillatory dependence on the LL in-
dex n and the magnetic field as for a 1D superlattice,
with minima if Eq. (1) is satisfied. This is the reason
why the magnetoresistance oscillations observed on sam-
ples with a 2D superlattice have the same period in B
as those with a 1D superlattice of the same lattice con-
stant and with the same density. Experimentally, such
a comparison between 1D and 2D modulation has been
carried out most directly by a successive two-step holo-
graphic illumination (with rotation of the sample by 90'
after the first step) of the same sample, keeping all other
parameters fixed.

The theory to be presented here is also capable of ex-
plaining the striking differences between the Weiss oscil-
lations observed on samples with a 1D and those with a
2D lateral superlattice, respectively. A sample with a 1D
modulation in the x direction shows weak Weiss oscilla-
tions of p„„,the resistivity component measured when
the current flows parallel to the equipotentials of the
modulation, with maxima when Eq. (1) holds. For the
correct explanation of these oscillations as quantum oscil-
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lations of the scattering rate, a self-consistent treatment
of scattering rate and collision broadening has turned out
to be necessary, as we will emphasize in Sec. IV. The
resistivity component p ), measured when the current
flows perpendicular to the equipotentials, shows Weiss
oscillations with much larger amplitudes and a phase
shift of 7r, so that p» has minima if Eq. (1) holds and(zo)

p„„hasmaxima. These large-amplitude oseillations are(io)

attributed to an additional conductance mechanism in
the modulated samples, a "band eonduetivity, " related
to the guiding-center drift of cyclotron orbits in the y
direction. ~ s s s Experimentally, a dramatic reduction of
the large-amplitude oscillations is observed after the sec-
ond illumination step, i.e. , after the modulation in the
second lateral direction, and only the weaker antiphase
oscillations related to the scattering-rate oscillations sur-
vive.

Such a dramatic suppression of the band conductiv-
ity follows from our theory for situations with such a
small collision broadening that (at zero temperature)
the modulation-induced subband splitting of the LL's
is partially resolved. Moreover, by changing the rela-
tive strength of collision broadening and 2D superlat-
tice potential, we can switch between situations in which
the band conductivity dominates the Weiss oscillations
and those in which the oscillations of the scattering
rate dominate, in agreement with recent experiments on
gated samples. M The suppression of the band conduc-
tivity is a genuine quantum effect and does not exist in
a classical treatment. iz An indication of this effect was
found in the recent work of Streda, Kucera, and van de
Konijnenberg, s~ who incorporated only the periodic po-
tential in one lateral direction into the energy spectrum.
Using Fermi's golden rule, they then calculated the prob-
ability of Bragg reflections due to the periodic potential
in the other direction perturbatively. The band conduc-
tivity was related to this reflection probability, and it
was found to be suppressed if the collision broadening
becomes of the order of or smaller than the modulation-
induced width of the Landau bands. Thus, this semiclas-
sical approachsr points towards the correct origin of the
suppression of the band conductivity. A weak point of
this approach, however, is that the 2D superlattice po-
tential is treated differently in the two lateral directions,
and, therefore, the energy spectrum is not taken into ac-
count in a consistent manner.

Several authorszi z2 sass have previously appreciated
the need for a transport theory which correctly includes
the effect of the 2D superlattice potential on the single-
particle energies. But attempts in this context were ei-
ther restricted to the classical limit, or suffered from
an unjustified truncation of the correct generalization
of Harper's equation (see Sec. III) leading to unreliable
results, or the magnetic field was restricted to special
values3 for which the internal structure of the LL's
becomes trivial without subband splitting. A satisfac-
tory theory of all the aspects of the Weiss oscillations,
however, has not been developed before.

The organization of the paper is as follows. In order
to make the paper essentially self-contained, we recall in

Sec. II the results on the single-particle spectrum which
we will need in the following sections. These results are
not new, but they are spread over the literature and it
is, hopefully, helpful for the reader to find them collected
under a unified perspective and with a unified notation.
In Sec. III we adapt the treatment of collision broaden-
ing developed for 1D superlattices to the 2D case, and
we calculate the DOS. In Sec. IV we derive and eval-
uate the corresponding approximation for the conduc-
tivity tensor. For the diagonal components, we discuss
in detail the "band-conductivity" and the "scattering-
conductivity" contributions. The Hall conductivity is
discussed in light of previous work on systems without
disorder, M emphasizing that the subband splitting of the
Hofstadter-type spectrum leads to integer-quantized val-

ues. In Sec. V, finally, we present some numerical results,
and we discuss the achievements and the limitations of
our approach.

The numerical results presented here have been calcu-
lated for simple cosine potentials on a square lattice. This
is sufFicient for the present illustrative purpose. For a di-
rect comparison with experiments, it might, however, be
desirable to include higher harmonics. Therefore, we de-
velop the analytical formulation of our transport theory
for the more general case of a 2D superlattice potential
with arbitrary Fourier coefBcients on a rectangular lat-
tice. Apart from possible future applications, we are thus
able to give a microscopic justification of a recent calcu-
lation of the band conductivity for arbitrary rectangular
superlattice potentials in the quasiclassical limit. Some
preliminary results and model calculations based on the
present work have been published before and quoted
elsewhere. ' A coherent presentation of our approach
in its general form is given here.

II. ENERGY SPECTRUM

A. Model

V(r) = ) Vse*s', g = (n K~, n„K„) (4)

on a rectangular superlattice, where n~ and n„are inte-

gers, and a~ = 2 r/Krand a„=2ir/K„are the lattice
constants. Explicit numerical results will be given for the
simple special case

For typical samples showing the Weiss oscillations, the
mean free path ( 10 pm) is much larger than the lat-
tice constant ( 100—300 nm) and, for B & 0.1 T, even
much larger than the cyclotron radius at the Fermi en-

ergy (R, & 0.9 pm). Therefore, quantum interference
effects due to the superlattice potential have to be taken
into account, and will be included in our model.

We consider the single-electron Hamiltonian

1 e
H = p+ —A(r) + V(r),

2m c

where —e is the charge of an electron and all the vec-
tors are in the x-y plane. The potential has a Fourier
expansion of the general form
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V(r) = V cos(K x) + V„cos(K„y)
+V „cos(Kx) cos(K„y),

i.e., for 2V(+K. ,O) V2;) 2V(o,+K„)= Vy, 4V(pK. yK„)——

V», andV =Oifn +n„)2.
The unmodulated [V(r)—:0] system has energy eigen-

values 8„=Fuu, (n+ z) and, in the Landau gauge for
the vector potential, A(r) = (O, xB), one obtains the
eigenstates [n, k&) with wave functions4~

lation operator 7~ = exp(&R p), since this translation
shifts the argument of the vector potential. Since the
vector potential A(r ) describing the homogeneous mag-
netic field is linear in r, this shift can be compensated
by a gauge transformation ZR = exp[a', r . A(R)], and
the Hamiltonian commutes with the "magnetic transla-
tion operators" PtR = Zn1~. In general, the magnetic
translations do not commute with each other. For the
basis vectors one finds, for instance,

g„i,„(x,y) = L„'~exp(ikey)P„(x —xo), Pl Mb = MbJH exp( —2niC/Cs), (10)

where xs = —I k&, and P„is a normalized oscillator func-
tion. We calculate the efFect of the modulation potential
V(r) by diagonalization of the Hsmiltonian (3) in this
set of basis functions. The matrix element of an arbi-
trary 2D-potential Fourier component follows from

(n'k„'~exp(iq r ) ~n, ky)

=Hi, , i,„+q„exp—-l q (k„'+k„)Z„„(q)(7)

where C = a,a„Bis the flux per unit cell of the superlat-
tice; see Eq. (2). If the flux ratio is rational, C /C c = p/q,
we may take qa and b as the basis of an enlarged unit
cell (magnetic unit cell) which is penetrated by an in-
teger number p of flux quanta. Then, the magnetic
translations corresponding to the Bravais lattice vectors
R' = n(qa) +mb commute with each other and with the
Hamiltonian. Thus, we choose eigenfunctions @ which
diagonalize H and the JAR simultaneously. The eigen-
values of the basic magnetic translations are then given
by

with etglc~c~ @qa )
e'lk c

where m and M are the minimum and the maximum
of n' and n, respectively, q = (qz + q2)i~z, Q = zlsqs,

and L~ (Q) is an associated Laguerre polynomial. In
the following, we will need mainly the intra-LL matrix
elements with n' = n, which allow the simplification

cos q —— , 9

where we have indicated the asymptotic form for large
n, with Jo the Bessel function of order zero and R„=
tv'2n+ 1 the cyclotron radius related to the nth LL.

where k~ and k& are generalized crystal momenta and
can be restricted to the magnetic Brillouin zone (MBZ)
~k [

& vr/qa, ~k„[& vr/a„. Periodic boundary conditions
in the sense that magnetic translations in the x direction
by L~ and in the y direction by L& reproduce the wave
functions are tacitly assumed, where L = N~~ (qa~) ~
oo and L„=Nb a„~oo with integers N~, and Ny. Then
the spacing of the allowed k& values is Ak„=2n/L&
and that of the allowed k is Ak~ = 2n/L~. Thus, the
energy eigenvalues and eigenstates can be classified by
the vector k = (k~, ks) in the MBZ, but may depend on
an additional set of quantum numbers P. The number
of k vectors in the MBZ equals the number of magnetic
unit cells in the sample, N~, Ns = L, I„/(qa a„).The
eigenfunction may be written in the Bloch form

B. Two-dimensional superlattice
y(P) (x y)

iA:.z+iL„y (P)
( „) (12)

f. Magnetic translations

With a modulation in the x direction only, k„remains a
good quantum number, and the eigenstates and energies
can be classified by the quantum numbers n and 2:o. The
modulation in the y direction destroys the translational
invariance in this direction, and the matrix elements (7)
are no longer diagonal with respect to k„.Physically, this
additional modulation leads to additional Bragg scatter-
ing, and thus to a subband splitting of the Landau bands
owing to a 1D modulation. The relevant quantum num-
bers result from a simple consideration of the "magnetic
translation group. " 3 Let us consider a rectangular su-
perlattice with basis vectors a = (a, 0) and b = (0, a&),
so that the potential is invariant under the translations
by R = na+ mb, V(r + R) = V(r). This does not
mean that the Hamiltonian (3) commutes with the trans-

In the Landau gauge we have Z~ = exp(ipK„y) and
8b = 1, so that Eqs. (11) and (12) yield the properties

(x y)
—ai (x y+ g) —e & u& u (x+ qa y)

(13)

v„(k)= 5 'BH(k)/Bk„ (14)

with p = x or y. We now substantiate these results by an
explicit construction in the special case of our interest.

The uk (x, y) are eigenfunctions of the k-dependent ef-
fective Hamiltonian H(k) obtained from Eq. (3) by re-
placing p with p+ hk. The components of the velocity
operator are given in the space of these functions by
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8. The Hofstodter-type spectrum

Following the work of Usov, we assume that the am-
plitudes Vz are so small that mixing of Landau levels by
the superlattice potential can be neglected for the calcu-
lation of the energy spectrum.

The modulation in the y direction couples Landau
states with center coordinates difFering by integer mul-
tiples of /2K„, so that the eigenstates can be written in
the form

~~n;o)) = ) ci, (n, o)[n, ky+AK„) .

To avoid double counting of states, we restrict ky to the
interval ~ky~ & K„/2. From the matrix elements (7),
one obtains for the coefficients cg(n, a,) the eigenvalue
equation

) (e,, , —z„,6, ,i)c,(na) =n, (16)

with the Hamilton matrix

(/'g' l
H~, ~ =).~),~+g (K Vg& 02)

x exp
~

—-/ g [2k„+(A'+ A)K„]~, (17)
2 " ")'

where the eigenvalues of H, Eq. (3), have been written
as E„=h~, (n+ 2) + E„,. Equation (16) is a gener-
alization of Harper's equation,

spin) is pNq~Ni, = L~Ly/(2n/ ), as it should be. For the
discussion of the Hall conductivity, it is usefulsi to intro-
duce instead of the Landau states the new basis states

[n, z k) =N —ik L'[I „+(tp+~)Ã„I
t=—oo

x ~n; k„+(tp+ r)Ky),

which satisfy in the MBZ the translation relations

~n, ~; k + K /q, k„)= e '~'&""+"l~"
~n, r; k, ky),

(22)

~n, r; k, k„+Ky) =
~
n, ~ + 1;k, k„),

where ~ is an integer modulo p, so that ~n, ~+ p; k)—:
]n, ~; k). They satisfy the eigenvalue equations (ll) of
the magnetic translation operators.

In order to have these simple symmetry properties, the
t sum in Eq. (21) is extended from —oo to +oo. In count-
ing states, t/2pK„ is restricted to an interval of length
L, i.e. , to I /qa different t values. The corresponding
Landau states are mapped by the unitary transformation
(21) onto the states ~n, r; k) with k and (the fixed) k„
in the MBZ.

It is easy to show that matrix elements of the potential
(4), and thus of the Hamiltonian (3), in the basis (21) are
diagonal in k, but in general not in the n and z quantum
numbers. In the first-order approximation of Eqs. (16)
and (17), where mixing of the LL's by the superlattice
potential is neglected, the energy eigenstates (15) can be
written as

V, cos(A/ K —Kxs) —s cg(o.)
~[n; j, k)) = ) u„(k;j, n)~n, ~;k) . (23)

(o):N 1/2 e
—'k i (kp+AK&) u& (k' j n) (19)

+—[c~+i(~) + c~-i(~)] = 0 (»)Vy

2

to which it reduces for the simple potential model (5)
with K, = K„=K and V„=0. In this spe-
cial case, only a single Laguerre polynomial factor oc-
curs in (17), the energy eigenvalues can be written asE„=s l:„(z/zK2), the cq(n, n) are independent of
n, and all the LL's have the same internal energy struc-
ture determined by s~. In the following we call this the
Hofstadter case.

If the commensurability condition (2) holds, the ma-
trix (17) is periodic with period p, Hp+„,g+„=Hp, p,
since / K~Kyp = 2qrq. That does not mean that the
components cp(o.) are periodic in A with period p, but it
allows the Bloch-type ansatz

Here the u„(k;j,n), j = 1, . . . , p, satisfy Eqs. (19) and
(20), and form the components of the normalized eigen-
vector ui»(k; j, n) of the p x p effective Hamiltonian ma-
trix

"( ) =) /I( (Kj„,„Vst„~
S

x exp[ —i/z(g k„—gyk,

+KgzKy + 2&gy)l
(24)

with energy eigenvalue E„~(k). Here [g„/K„]means
g„/K„modulo p, i.e. , the integer satisfying 1

[g„/K„]& p and gy/K„= Nyp+ [g„/K„],where N„
is an integer, and

where the

ug(k; j, n) = ui, +y(k; j, n) (20)
1 if[gy/Ky] = r' —K or r' —e+ p

[e /~ ] ~' —~ 0 otherwise.

now have this periodicity. The eigenstates of the nth
LL then are labeled by the wave vector k, defined in the
MBZ, and by a subband index j = 1, . . . , p. There are
Nq~ allowed k~ values and Nq allowed ky values in the
MBZ, so that the total number of states per LL (and per

For p =1, i.e., if a single fiux quantum threads q unit cells
of the superlattice, the eigenvalues of the Hamiltonian
matrix (24) form a single Landau band,
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E(l)(k) ) V e i—l (galk„y-„jka+ggagk) g (ling )
8

(26)

It is interesting to compare this result with the classical
average of the potential (4) over the cyclotron orbit with
radius R„andcenter at rp,

E"(r,R„)= ) Vs e's'" Jp(gR„),
8

(27)

which reduces in the limit of very strong magnetic fields

(B -+ oo) to Ed(rp, 0) = V(rp). With the suggestive
notation —leak„=zp and Pk~ = yp, and with the asymp-
totic equality (9), Eq. (26) becomes very similar to the
classical result (27). For the simple model (5) one ob-
tains, for instance,

E( )(k) = V cos(K,xp) + V„cos(K„yp)
+(—1)qV „cos(Kxp) cos(K„yp), (28)

where V~ = V C„(lsK~~/2), V„=V„Z„(tK„/2), and

V s
——V»Z„(lz[K + Ksz]/2). There are two important

diiferences between the quantum-mechanical results (26)
and (28) and the corresponding classical formula (27).
First, k = (k~, k„)is restricted to the MBZ. Second, the
quantum result contains a phase factor exp( —zkl2g~gs),
which is +1 or —1 if the integer l g~g„/(2n.) is even or
odd (note that p = 1). This is a consequence of the Bragg
reflections. In contrast to the case of a 1D superlattice,
the classical high-B approximation is not applicable to
the case of a 2D superlattice (if its periods are much
smaller than the phase coherence length).

For p ) 1, each Landau level splits into p subbands,
which can be shown to be q-fold degenerate. s~ For p = 2
the energy eigenvalues can easily be obtained analyti-
cally. The result for the simple model (5) is

0.2 0.4 0.6 0.8 1.0

'h(oc (meV)

FIG. 1. Sketch of the modulation-broadened Landau fan
diagram, calculated from Eq. (30) with !s! & 0.2 meV and

2~/K = 200 nm. Allowed energy regions in the Landau
bands with n = 0, 1, . . . , 9 are darkened. The approximate
flat band energies I p, calculated from the asymptotic form

(9), are shown for A = 1, 2, 3 as dashed lines.

(1), are indicated by the dashed parabolas for A = 1, 2,
and 3. They intersect the Landau fan at the zeros of
the cosine in Eq. (9), i.e. , for large n, at the flat band
situations.

If the allowed s(k; j) are plotted versus the ratio q/p of
Eq. (2), i.e., versus the inverse number of flux quanta per
unit cell of the superlattice, one obtains the self-similar
patternsP 4s 4r shown in Fig. 2, which is known as Hofs-
tadter's butterfly. zs The apparent symmetry of the pat-
tern under the exchange of 1 —q/p with q/p is easily
proven analytically. For q/p ) 1, the pattern repeats
itself periodically with period unity, so that the interval
0 & q/p & 1 contains all relevant information. An in-
teresting and important property of the butterfly is the

E„,= (—1)s ic cos (—k„a„)+V„cos (
—k, a, )

+V,„sin (—k, a,) sin (—k„a„). (29)

i,
s

If V~V„V»P 0, the two subbands are separated by a gap
of finite width. For V» = 0 the subbands touch each
other (at the corners of the MBZ).4s

The energy spectrum is best studied for the Hofstadter
case [see Eq. (18)], where the factorization E(")(k) =
e(k;j)Z„('2LK ) leads to the same internal subband
structure for all LL's, but with a B- and n-dependent
modulation of the bandwidth given by Eq. (9)
q = 2s'/a. In Fig 1we show. the ranges of allowed energy
values

E„=n, (n+ —,') + sZ„(-,'i'K') (30)

for !s!& 0.2 meV as dark areas. The "flat band energies"
sg = smear, a (A —4), i.e., the energies of cyclotron orbits
with radii R, satisfying the commensurability condition

;,
= (' ll Hl

1 '-j

0.0 0.2 0.6 1.00.4 0.8

inverse flux (q/p)

FIG. 2. Hofstadter's butterfly, showing the intervals of
allowed values for the eigenvalue e of Harper's Eq. (18), in
units of Vo ——V = V„,for rational vslues of the flux ratio
Ck/Cio = y/q, as a function of q/p.
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clustering of bands into groups. For a given flux ratio
pp/qp, one gets pp bands. For a rational value p/q close
to pp/qp, one gets p bands which group themselves into
pp clusters close to the pp bands of the previous case. The
band gaps obtained for the previous case remain free of
allowed energies in intervals of finite width.

If a series of rational values q/p converges towards an
irrational number o, the number of narrow gaps increases
in such a way that the probability of finding gaps of width
less than b diverges as b approaches zero. 4s

Some of these features are illustrated in Fig. 3, which
shows calculated energy bands in (one-quarter of) the
MBZ. The fiux ratio is p/q = 3 and 3/4 in Figs. 3(a)
and 3(b), respectively, so that we obtain three bands in
both cases. The energy spectrum in (b) is q = fourfold
degenerate (four periods in the k„direction), however
its projection onto the energy axis is identical to that of
the spectrum in (a). This illustrates the periodicity of
the Hofstadter plot as a function of q/p with period 1.
The comparison of (c) with (a) illustrates the clustering.
For a flux ratio p/q = 10/3 (close to pp/qp

——3/1) one
obtains ten subbands which cluster into three groups, the
inner one containing four subbands and the outer ones
containing three subbands each. The projections of the
subbands onto the energy axis yield ten intervals (the
two innermost are connected) which cluster into three
groups, each of which is located in the close neighborhood
of one of the three intervals obtained for the fiux ratio
pp/qp = 3/1; see Fig. 2. We have also calculated the
bands for p/q = ll/4, and obtained again three well-
separated clusters of subbands, the inner one containing
three and the outer ones each containing four narrow
subbands (cf. Fig. 2 for q/p = 4/11). On the other hand,
no pronounced clustering of the subbands is obtainend
for integer values of the fiux ratio, e.g. , p/q = 10 or 11.

If the Fourier expansion (4) of the superlattice poten-
tial contains contributions with different values of ~g~,
e.g. , for a rectangular lattice with a~ g a„orfor the

model (5) with V „g0, the Laguerre polynomials can-
not be factorized out from the matrix (24). Then the in-
ternal structure is diferent in different LL's, and a highly
symmetric representation of the energy spectrum as by
Hofstadter's butterfly is not possible. This situation is
clarified in Figs. 4 and 5. Figure 4 shows for the Hof-
stadter case, Eq. (5) with K = K„=K, V = V„,
and V» ——0, the eigenvalue spectrum of the Hamilto-
nian matrix (24) for the LL's n = 0 and 1. The only
difFerence from a periodic continuation of the butterfly
of Fig. 2 is due to the Laguerre factors Z„(2K2lz). For
n = 1, this factor vanishes if &K~tt = 1. This leads
to zero bandwidth for p/q ~ x. In general, the Z„are
oscillatory functions of n Ac.cording to Eq. (9) the ze-
ros, i.e. , vanishing bandwidth, are given by Eq. (1) with
R, = R„.

The corresponding spectra for the case V» ——U~ = V„
are shown in Fig. 5. Now the diagonal and the off-
diagonal matrix elements of the effective Hamiltonian
(24) [or (17)] contain Laguerre factors with difFerent ar-
guments, so that their ratio depends on the flux ratio
4/@p and cannot be factorized out.

The occurrence of Laguerre polynomial factors is spe-
cific for the situation of our interest. They result from
the matrix elements of the weak periodic potential in the
Landau basis. In the tight-binding approach one starts
with a periodic s(k) relation. The Peierls substitution
then leads to a set of difference equations, but no such
flux-dependent Laguerre polynomial factors occur, and a
highly symmetric energy spectrum results. Claro has
investigated a model with next-to-nearest-neighbor inter-
action, which is the tight-binding analog of our model (5).
He found a highly symmetric, self-similar energy spec-
trum similar to Hofstadter's butterfiy, although without
reflection symmetry. This lowering of the symmetry is
due to the presence of higher harmonics of the super-
lattice potential. The periodic dependence on the flux
ratio now has a period which is twice as large as in the

0.0 0.0

0.5

Jk /x
().5
ak, / n

I"IG. 3. Energy bends over one-quarter of
the magnetic Brillouin zone. The scaled en-

ergy values s(k, j) (without the Lsguerre fac-
tors; see the text) sre plotted in units of V,
(s)—(c) for the Hoistsdter case V„=V, snd
for the values p/q = 3/1 (s), 3/4 (b), 10/3 (c)
of the flux ratio, snd (d) for s 1D superlsttice
(V„=0) snd p/q = 3/1.

().5
qak„/ K

0.5
ak, /)r

l.0
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FIG. 4. Allowed values for the energy correction E„, (in
units of Vp) to the nth Landau energy owing to the superlat-
tice potential V(x, y) = Vp [1+cos Kz+ cos Kyj, versus ratio-
nal values of the inverse flux ratio l K /2n —= Cp/C = q/p;
(a) forn=0, (b) forn= l.

Hofstadter case.
In our weak-modulation limit this periodicity is ob-

scured by the Laguerre polynomial factors. The factor

(—1)P in Eq. (28) is indicative of this reduced periodic-
ity. Note that in Fig. 5 the width of the n = 1 Landau
band does not vanish for any B value, since the Laguerre
factors with different arguments do not vanish simulta-
neously.

The inclusion of higher harmonics of the superlattice
potential thus alters the details of the energy spectrum.
Qualitatively, however, the complicated fractal structure
and especially a pronounced subband splitting remains.
Similar complicated energy spectra have recently been
obtained for a lattice model of electrons in a quantum
dot and for a finite array of coupled quantum dots.
In those 2D ES's the gap structure is, however, partially
obscured by edge states. s~

Of course the same formalism can be used to describe a
1D superlattice in the x direction only. Then the efFective
Hamiltonian (24) is diagonal and independent of k~, and
u&(k; j) = 6& ~. The energy eigenvalues are independent
of k, and the j bands are just a backfolding of the simple
1D band into the MBZ. For the Hofstadter case with V„=
0, the sum over j restores q periods of V~ cos(Kxp). s For
a flux ratio p/q = 3, the corresponding band structure

FIG. 5. The same as Fig. 4, but for the superlattice po-
tential V(z, y) = Vp(1+ cps Kz)(1+ cps Ky).

is plotted in Fig. 3(d). Comparison with Fig. 3(a) shows
that, for Vs ~ 0, the gapa between the subbands close at
integer values of ak„/n.

8. Gmuy eelocitie8

The matrix elements of the velocity operator taken
with the zeroth-order states given by Eqs. (15) and (19)
yield

((n, j;kffv„ffn', j', k'))

l(u,' &pV'n+1~, ~pi+ &„'V&4,~-i

(31)

with cr = i and o.„=1, independent of the modulation
amplitude. To improve on this, one has to calculate the
eigenstates to first order in the modulation potential,

//n, j;k)) = /fn, j;k))
((n', j', kllVlln, j;k)&

// ))hu), (n —n')

Prom these states one finds that the velocity operator has
nonvanishing intra-LL (n' = n) matrix elements, which
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are proportional to the amplitude of the modulation and
can be calculated from the eigenvectors u~"~ (k; j,n), Eq.
(23), and the p x p matricessc is

v&"l (k; n) ()h" (k;n)

III. DENSITY OF STATES

The influence of randomly distributed impurities is
usually discussed in the Green's-function formalism.
While the impurity potential acting on an electron at
r,

where p = x, y. If the potential (4) is of the form
V(x, y) = VE(z) + V„(y), e.g. , as the model (5) with

V „=0, then the matrix v~"l(k) is independent of the
modulation V„in the tu direction and depends only on
the modulation in the other direction, just as the classi-
cal drift velocity. Apparently Eq. (33) is a generalization
of the Feynman-Hellmann theorem, which applies only
to the diagonal matrix elements ((n, j;k~~v„~~n,j;k)).

red'P~
z —E„,(k) —Z(z)

A Sg

(38)

Here a high-energy cutoE n ( 2EF/hu, is implied to
make ReZ finite an to guarantee t e anal icity of z
in the upper G+(zj] snd the lower ]G (z)] complex
helfplene. s ss s Since E(z) is assumed to be s c num-
ber (a multiple of the unity operator), G(z) commutes
with H and is diagonal in the ]~n, j;k)) representation,
Eq. (23). The simplified ansatz (38) still contains the
essence of a description of collision broadening efFects in
the SCBA. For vanishing modulation [V(z, y) = 0] and
short-range impurities [u(r) = Upb(r)] it becomes identi-
cal to the SCBA result with

We do not attempt to calculate the complicated quan-
tum number dependence of the self-energy. Instead, we
follow Ref. 8 and make the ansatz of a quantum-number
independent self-energy defined by the self-consistency
requirement

2mtz
Z(z) = I'(2) tr G(z)

Vg(r) = ) u(r —R, ) = ) u~,. (r), (34) 1 h,r, = —n~, —,
27r '7- ' (39)

depends on the specific impurity configuration (Rz),
macroscopic quantities can be expressed by an average
over all configurations.

The impurity averaged Green's-function operator,

G(z) = (g(z)), c
——( imp

satisfies Dyson's equation with the self-energy operator
Z(z), and thus can be written as

G(z) = 1

z —H —Z(z)
' (36)

In the self-consistent Born approximation
(SCBA),ss's 'ss Z(z) is taken proportional to the aver-
aged Green's-function operator,

Z(z) =nr d R uRG(z)uR, (37)

where nr denotes the impurity concentration and
(r]uR) = u(r —R). Equations (36) and (37) form a set
of self-consistency equations for the Green's-function op-
erator G(z).

As has been discussed by Zhang and Gerhardtss for
the case of a unidirectional modulation, the solution of
this set of equations is complicated by the fact that the
operators Z and | neither commute with each other nor
with the Hamiltonian H, Eq. (3), containing the superlat-
tice potential but not the disorder. Thus, in contrast to
the unmodulated system, there exists no representation
in which both Z and G' are diagonal. The only obvious
symmetry of the impurity-averaged system is the invari-
ance under the magnetic translations, which implies that
both G and Z are diagonal with respect to the quantum
numbers k in the MBZ.

where r denotes the corresponding lifetime for zero mag-
netic field. ss

The density of states (DOS) is given by

D(E) = 2 ) D (E) = ) f d hA„,,;s(E),
n phrs

(40)

where A(E) = x iImG (E) is the spectral function, and
the factor 2 takes care of the spin degeneracy. From Eq.
(38) one obtains

ImZ (E) = [all'p] D(E), (41)

i.e. , the width of the spectral function itself is directly
proportional to the DOS. This result is typical for the
SCBA and reflects the mixing of LL's by the (short-
range) impurity scattering. As a consequence, the spec-
tral function A„~,k(E) has side peaks at the other Lan-
dau levels n' g n, i.e. , the probability to find an electron
in state

] ~n, j;k)) at energy E is nonzero where D(E) P 0.
The existence of such side peaks of the spectral functions
is by no means an artifact of the SCBA. Other consistent
treatments of multiple scattering by finite-range impurity
potentials lead to similar results. ss The existence of these
side peaks will become important in the following.

Figure 6 shows the DOS for a modulated system with
a unidirectional (a) and a two-dimensional (b) lateral su-
perlattice, as a function of the magnetic field B and the
energy E.M In both cases the (n-dependent) oscillatory
width of the Landau bands results in an amplitude os-
cillation of the DOS. But, while the intraband structure
in the 1D modulation potential is just due to van Hove
singularities at the band edges, s the 2D modulated DOS
reveals the rich subband structure of the Hofstadter-type
energy spectrum. Moreover, a general result becomes ev-



46 THEORY OF MAGNETOTRANSPORT IN T%'0-DIMENSIONAL. . . 12 61S

Since

~(E-&)=,.5 (E) -&+(E)]

the impurity average is described by the operator

+(» z' v~) = %(z)v~&(z'));,

(43)

(44)

which has to be evaluated in a manner consistent with
the approximation Eq. (38) for the self-energy. This
means that the approximation scheme for the evaluation
of transport coefficients is already determined by the ap-
proximation chosen for the self-energy. Stated in simple
terms, this means that identities such as

Il= 3
n=4

0=2
n=1

I and

&(z)vp&(z) = -[&(z) r~l (45)

J4

~~
CI

FIG. 6. Density of states for a superlattice potential of
the form V(x, y) = V cosKx + V„cosKy, and a collision

broadening I'o = 0035/B [T] meV, for 0.5& B & 1.65 T and
0 & E & 5 meV, for (a) a grating modulation with V = 0.5
meV, V„=0 and (b) a grid modulation with V = V„=0.25
meV.

ident: Collision broadening efFectively smears out the fine
structure due to the many subbands resulting from large
p (and large q) values. In spite of the highly singular B
dependence of the energy spectrum, the DOS appears as
a continuous function of the magnetic field. This was also
observed in CPA calculations in the strong-modulation
tight-binding limit. s~ For small values p/q 3 —5, single
clusters of subbands can be resolved in widely broadened
bands (n = 1,B = 0.5 —1.0 T), while for larger fiuxes
per unit cell even these clusters grow together and form
one single Landau band.

IV. CONDUCTIVITIES

A. Consistent treatment of collision broadening

According to Kubo's formula the static conductiv-
ity tensor is given by

g(z) g(z') = —[g(z) —g(z')l/(z —z') (46)

which follow immediately from v„=i[H, r„]/h and
the analytic structure of the resolvent operator g(z) =
(z —II —Vg), must remain valid after taking the con-
figuration average over the impurity distribution on both
sides of the equations. Thus, the response quantity (44),
being the average of a product containing two g factors,
is directly related to the Green's function G(z), Eq. (35),
i.e., the average of g(z) itself. Exploiting the analytical
structure of G(z), we may write the impurity-averaged
Eqs. (45) and (46) as

and

P(z, z; v„)= G(z) fvz + —(E(z), v„]jG(z) (47)

(49)

and the identities (47) and (48) are satisfied by its
solution. s

Our simplified treatment of collision broadening efFects
can formally be obtained from the SCBA by the replace-
ment

P(z, z';1) = G(*) (1—, )G(z'). (48)

In fact these identities are limiting cases of the more gen-
eral Ward identities relating self-energy and irreducible
vertex part in the standard many-body perturbation the-
ory. In the SCBA, the Bethe-Salpeter equation reads

F(z, z'; v„)

4e2h0„„= dE f(E)
AI d RQRGQR = f trg (5o)

xlmtr b E —H e„dg (E)
imp

(42)

for any operator G. Here Il is the unity operator and
p2 = I'(~)2ml2/I I y.

For 0 = G(z), Eq. (38) results from Eq. (37). With
0 = E(z, z', v„),Eq. (49) yields
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I" (z, z'; v„)= G(z) v„G(z'),
since

tr G(z) v„G(z')

(5i)

The numerator vanishes as a simple consequence of v& ——

i[H, r„]/h and [G(z), H] = 0, which holds in the approx-
imation (38). Thus, current vertex corrections vanish in
our approximation, and identity (47) is trivially satisfied
since, according to Eq. (38), Z(z) oc 1 and [Z, r„]= 0.

The identity (48) is also satisfied since

p2 tr G(z)G(z')
G( )G

Z(z') —Z(z)
z —zI )

where the first equality follows from our approximation
I

& df(E)~a» = dE
~

—
~ o„„(E), (54)

where f(E) denotes the Fermi function and o» is given

by

of the Bethe-Salpeter equation, Eqs. (49) and (50), and
the second one from our approximation of Dysons's equa-
tions, Eqs. (36) and (38). Our simplified approximation
(50) thus provides a consistent treatment of level broad-
ening and current relaxation efFects due to random im-
purity scattering.

According to this result the b function in Kubo's for-
mula (42) has to be replaced by the spectral function
A(E) and the nonaveraged Green's functions by the ap-
propriate averaged ones, which have been discussed in
Sec. III. Integrating by parts and choosing the energy rep-
resentation of the modulated system, the diagonal com-
ponents of the conductivity tensor can be written as

Q2o„„(E)= 2' d k ) ) i((n';n'iiv„iin;o))i A„(E)A„(E)
AjA g jQ

(55)

with o, = (k; j) and o.' = (k; j'). For the Hall conductivity one obtains

2g 00o„= dEf(E) d k Im ) ) A„(E)((n,n~~v, ~~n', cr'))((n', a'~ ~v„~~n, o))
A i fL

(56)

Here we have taken into account that the velocity matrix
elements are diagonal in k.

In the following we distinguish two contributions to the
conductivity, cr»(E) = o„"„(E)+ b,cr»(E). The "band
conductivity" b,o»(E) arises from the intra-Landau-
band (n' = n) part of the above sum, which diverges
in the absence of the random scatterers and vanishes for
the unmodulated system. The "scattering conductivity"
o„"„(E)arises from impurity-induced scattering of elec-
trons between different Landau levels (n' P n) and is the
only contribution in the more familiar unmodulated case.

B. Band conductivity

The magnitude of the band conductivity b,o»(E) is
determined by two factors which depend significantly on
the Landau-band index n and the modulation-induced
bandwidth. First, there are the velocity matrix elements
((n; o.'~ ~v„[]n;a,)) which, according to Eq. (33), are pro-
portional to the amplitudes V of the superlattice po-
tential and, thus, to the effective modulation-induced
width of the nth Landau band. The second factor, the
product of the spectral functions, depends also on the
modulation-induced broadening of the Landau level and
its subband splitting, but also in a delicate manner on
the collision broadening due to random impurity scatter-
ing. If the collision broadening (oc I'c) is so small that
the modulation-induced subband splitting is (partially)
resolved, then the magnitude of Eo»(E) becomes much
smaller than in the opposite situation, where this sub-

band splitting is totally smeared out by collision broad-
ening eKects. We first discuss this latter situation.

Quasiclassical limit

which can be evaluated in the representation (33) using
Eq. (24). The sum over rc, e' and integration over the
MBZ result in a Kronecker b+ +, reducing the Fourier
sums of the two v„factors to a single sum, with the
result

2 2 2
Z ~„"„'(E)= '„)) g„V~"~A„(E) (58)

where g~ = —g„,g„=g, and Vs" ——Vsd„(zl g ).
This is the extension to a 2D superlattice of a formula
derived recently for a 1D situation. In the typical quasi-

Here we neglect the eKect of the superlattice poten-
tial on the spectral functions, i.e., we replace the en-
ergy eigenvalues E„,by h~, (n+ s) and thus neglect the
subband splitting of the LL's, which is of a quantum-
mechanical origin. This quasiclassical approximation,
A„~(E)A„~(E) [A„(E)],is justified only for suffi-
ciently large collision broadening. It allows us to evaluate
the summation over the internal quantum numbers o., n'
analytically, as is shown in Appendix A. The sum over j
and j' reduces to a trace of a p x p matrix,

) ~((n; o, '~ ~v„~~n;o.))~ = tr~"& [v~"&(k; n)]z,
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78Eo„'„'= „)g„~V~
[Jo(gR,)], (60)

with R, = R„atn = n~ This. is a good approx-
imation if the n dependence of the Jp term near the
Fermi level for the relevant Fourier coefficients is suffi-
ciently weak, i.e., to lowest order in the small parameter
kBTgR, /Ez « 27r. The result (60) can be obtained by a
classical calculation taking into account the effect of the
guiding-center drift of cyclotron orbits in the weak lateral
superlattice potential. This classical nature of the band
conductivity was emphasized by Beenakker5 for the spe-
cial case of a 1D superlattice. For a unidirectional sim-
ple cosine potential and with the asymptotic expression
(9), Eq. (60) assumes the form first given explicitly by
Winkler, Kotthaus, and Ploog. s

We note in passing that Eq. (59) can also be evaluated
for finite temperature, assuming only k~T && Ez. The
result is (see Appendix B)

qadi 4«
akim h, Ep

(61)
where « = e2N, h j(I'pm), E~ = F(gaT/2+T ) with
F(x) = x/sinh(x), and k~T, = ak~h~, /(2vr)2 defines
a critical temperature T, above which the Weiss oscilla-
tions are washed out. Formulas of this type have been
given by Beton et aLss As is well known ss the low-field
SdH oscillations show a similar exponential temperature
damping with a prefactor F(T/T, ), where the critical
temperature T, is given by kBT, = her, /(2x ). [Note
that considerable overlap of only thermally broadened
LL's sets in for T ~ 2T, and that F(T/T, ) reduces the
amplitude of the oscillations by more than an order of
magnitude for T 5T~.] Since T~/T, = ak~/2 && 1, the
Weiss oscillations survive to considerably higher temper-
atures than the SdH oscillations. We see from Eq. (61)
that, due to the factor Fz, the oscillatory contributions of
higher harmonics (larger g) are increasingly smeared out
with increasing temperature. Only for gaT && 2+T, i.e.,
for n gR.k~T && E&, are the terms in Eq. (61) equivalent

classical situation one has many LL's occupied, i.e., the
Fermi energy is Ep = hio, (np+2) with np )) 1, the LL's
have small collision broadening, hid, /I'p = rid, &) 1, but
the LL's are smeared out by thermal broadening. Then,
in the spirit of the SCBA, where A„(E)= (7rl'p) [1—
(E —E„)/4I'p] ~, one may for k~T )) I'p approximate
IdEf'(E) [A„(E)]s—f'(E„)/I'per and replace the La-
guerre polynomial by its large index approximation, cf.
Eq. (9). This yields

2 2
Ao'„'„'= ) [

—f'(E„)]) g„VsJp(gR„) . (59)
n 8

Replacing the n sum by an integral over E„and f'(E—)
by b(E —E~), one obtains

to those of Eq. (60).
To make contact to previous work, ' we note

that for the simple model (5) with V „=0 the minima of
the band conductivity occur if the flat band condition (1)
is satisfied at the Fermi energy EF = znuu, R„i.e., for
2R, = a(A —4). The energetic distance between adjacent
flat bands is estimated as Ap = BE~/BA, i.e., b, ~ =
EFa/R, = 2x k~T . This energy determines the critical
temperature T for the thermal damping of the Weiss
oscillations, T~/T, = hp/hid, = k~a/2 )) 1. (In typical
experimentsi sP with a —300 nm and N, 3 x 10ii
cm s one has akF = 41.)

We want to emphasize the following important feature
of the classical approximation: If the superlattice po-
tential, Eq. (4), is additive in the sense that V(x, y) =
V~(x) + Vs(y), i.e. , if Vs ——0 whenever gags g 0, then
bog' depends only on V~(x) and not on Vs(y). Thus,
if we start with the 1D modulation V~(x) and then add
a modulation V„(y)in the other direction, the value of
dos~'„' does not change. For sufficiently small collision
broadening, this prediction of the classical approximation
is neither in agreement with experimental results2P is nor
with the quantum-mechanical result.

8. Select of subband aphtting

If the collision broadening is so small that the
modulation-induced subband splitting of the Landau lev-
els is (partially) resolved, the quasiclassical approxima-
tion, neglecting the dependence of the spectral functions
A„,(E) on the internal quantum numbers o, = (k, j),
is not allowed. In order to calculate the band conduc-
tivity to lowest order in the modulation strength, one
may still replace [A„z,i, (E)] by [A„(E)]. The product
A„o.,i,(E)A„,~ .,k(E) for well resolved -subbands j' g j is,
however, much smaller, and may be neglected. As a con-
sequence, the matrix elements /((n, j', kJ] v„]fn,j;k))/
are missing from the sum in Eq. (55), which thus has
a smaller value than that corresponding to the complete
trace (57) obtained in the quasiclassical limit. As a re-
sult, the full quantum-mechanical calculation yields a
smaller value for the band conductivity than the quasi-
classical approximation. For a fixed value of the magnetic
field B (p/q = 5), this reduction has been demonstrated
previously. sP sP In Fig. 7 we demonstrate the suppres-
sion of the band conductivity Acr» with increasing ra-
tio V„/V~ for the simple model (5) with V „=O. M For
V„=0, the matrix elements of v„",Eq. (33), are diago-
nal in xp = —t k„,or, in the back-folded band-structure
picture over the MBZ, in n = (k, j), and the j,j sum in
Eq. (55) contains only diagonal elements j' = j. With
increasing V„,gaps open between the subbands (differ-
ent j values) [cf. Figs. 3(a) and 3(d)], the eigenstates of
the Hamiltonian matrix (24) rotate in the p-dimensional

space, and o6-'diagonal matrix elements of v~(" arise.
While tri"l [vs" ]2 is unchanged, the reduced weight of the
off-diagonal (j' g j) matrix element due to the reduced
overlap of the spectral functions, A„,z,k(E)A„&,k(E),
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has satellite maxima near the band centers of the other
LL's (n' g n), as we have emphasized below Eq. (41).
Assuming the level broadening due to both the modu-
lation potential and the impurity scattering to be small
compared to the cyclotron energy, ~e„+Z (E)—fur, (n+

(& 4u, for all n, one obtains for E = e„from Eqs.
40 and 41,

O. l

0.2 0.4 0.6

B (T)

0.8 1.2

FIG. 7. Band resistivity b,p for V(z, y) = V cosKz+
V„cosKy as a function of the magnetic Geld B for different
values of V„/V . From top to bottom: V„/V = 0.0, 0.5,
0.75, 1.0. (a = 27r/K =300 nm, V = 0.175 meV, I'p

0.015/8 [T] meV, N, = 3 x 10' cm, T = 4.65 K.)

leads to a suppression of b,o» with increasing V„.The
parameters in Fig. 7 are chosen such that, at B = 0.5 T,
the total width of the Landau band at the Fermi level
is W~ = 0.3 meV, and the flux ratio (2) is O/C p = 11.
Then, according to Fig. 2 for q/p

—0.1, the subbands
group into about ten clusters, most of which are well
resolved for the chosen collision broadening I'p —0.01
meV.

Due to thermal broadening (T = 4.65 K), the Shubni-
kov —de Haas (SdH) oscillations are not resolved in Fig.
7. (For B ) 0.8 T, SdH oscillations begin to occur lead-
ing to structured line shapes. ) Therefore, the oscillatory
structure of Ap» oc Ao» (see below) as a function of
the magnetic field reflects the Weiss oscillationsz which
show minima in the band conductivity whenever the cy-
clotron radius of electrons at the Fermi surface satisfies
the commensurability equation (1).

C. Scattering conductivity

Consistent theory

Besides its main peak at E —e„,the spectral function

=1 ImZ (E)
7r [E —e„—ReZ (E)] + [ImZ (E)]

(62)

A nonzero band conductivity related to the guiding
center drift occurs only in modulated systems. This con-
duction mechanism adds to the usual conduction mech-
anism in quantizing magnetic fields, i.e. , the scattering
of electrons between adjacent Landau levels owing to the
impurity potentials. The contribution of this impurity
scattering to the conductivity is determined by the over-
lap A„(E)A„+q,(E) o. f the spectral functions of ad-
jacent LL's, which vanishes in the absence of impurities
(within the framework of negligible LL mixing by the
modulation potential) .

1 ImZ (E) 2 (vrll'p)
7r (h~, ) ~ ( h~, )

where the last step is consistent with our leading-order
approximation.

The inter-LL (n' P n) contributions to the conduc-
tivity formula (55) are dominated by the zeroth-order
velocity matrix elements given in Eq. (31), which yield
(after rearranging the sum)

ezh l2(u2sc (E) c
2' 2

x) ~
2(n+1)

nj

d kA„, (E)A.„+g, (E) ~

. .

(64)

In the energy range of the LL with number n, i.e. , for

~E —hu, (n+ ~~)
~

&& h~„only the terms with n = n and
n+ 1 = n contribute considerably to the n sum in Eq.
(64). Then, one finds from Eq. (63) together with Eq.
(40)

2

o„"„(E)= —) (2n+ 1)[27rl I'pD„(E)] .

2„-„=
2 h ) .[—f'(E )] (2 + I)l' . (66)

Here

r„=2~ dE [2«'rpD„(E)' (67)

defines an eEective scattering rate 7„=I'„/h. Whereas
the integral over D„(E)itself is normalized and indepen-

The same analytical form has been derived for the ho-
mogeneous 2D ES.M In Eq. (65), however, D„(E)is the
contribution of the nth LL to the DOS of the rnodu

lated 2D ES, which reflects the n-dependent oscillatory
width of the modulation-induced Landau bands. Thus,
Eq. (65) describes amplitude-modulated SdH oscillations
with maximum peak height for minimum bandwidth. For
the simple model (5) with V» ——0, the maximum peak
heights occur if the flat band condition, Eq. (1) with
R, = R„,is satisfied. Note that under this condition
the guiding-center drift velocity vanishes and the band
conductivity becomes minimum. Similar to the Weiss
oscillations of the band conductivity, the amplitude os-
cillations of the scattering conductivity (65) survive to
higher temperatures (k~T & hu, ) where the individual
SdH oscillations are smeared out. Inserting Eq. (65) into
Eq. (54), one obtains (for kBT much larger than the total
width of the Landau bands)
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dent of n, I'„,being an integral over the square of D„(E),
oscillates as a function of n I.t becomes small for broad
Landau bands and large for narrow ones, with the value
for the unmodulated system as an upper limit.

For the general case, a further analytical evaluation
of the oscillatory behavior of the scattering conductivity
seems hardly possible, since the origin of these oscilla-
tions is hidden in the width of the D„(E)peaks, i.e. ,
ultimately in the quantum-mechanical energy spectrum.
This was much easier in the quasiclassical limit of the
band conductivity, where the oscillations were dominated
by those of the velocity-matrix elements, and the modu-
lation effect on the energy eigenvalues could be neglected.

For our simple model (5) with V„=0 we know

that I'„,Eq. (67), has maxima for flat bands. For
T, « T « T~, the n sum in Eq. (67) is easily evalu-
ated, and with nJP = Ep/h~, and E~ = 5 N, vr/m one
obtains the Drude-type result

~„-„=(e'N, /~,') ~„,'. (68)

8. Deficiencies of inconsistent approach

To obtain the leading-order modulation-induced oscil-
lations of the scattering conductivity in terms of the scat-
tering rate, Eq. (67), it was essential to evaluate the
Kubo formulas with the correct spectral functions, i.e.,
the spectral functions obtained from the SCBA-type ap-
proximation (38) of the self-energy which satisfies the
self-concistency requirements (47) and (48). These spec-
tral functions have satellite peaks at adjacent LL's, so
that the overlap of spectral functions belonging to ad-
jacent LL's leads, according to Eqs. (41) and (63), to
the square of the partial DOS in Eq. (65). Mathemati-
cally, this property of the spectral function is hidden in
the energy dependence of the self-energy. If we neglect
this energy dependence and ad hoc replace the self-energy
with a constant,

Z (E) ~ Z~ = b, r, —-I'I. ,
2

(69)

the spectral function (62) reduces to a simple Lorentzian,
and instead of Eq. (63) we obtain A„~q,~
I'I, /[2z'(fuu, ) ]. Then, one of the factors D„(E)in Eq.
(65) has to be replaced with I'I, /(2vrtl'p)z, and one ob-
tains

2

o„„(E)= —„lI'I, ) (2n+1)D„(E).
L

(70)

These considerations demonstrate clearly that the Weiss
oscillations of the scattering conductivity result from
quantum oscillations of the transport scattering rate.
They also explain that, at a given temperature, these
oscillations can be observed down to much lower mag-
netic fields than the modulation-induced oscillations of
the magnetocapacitance. ~s ~as~ The latter result from
amplitude oscillations of the contributions D„(E)of in-
dividual LL's to the DOS and disappear when these are
not resolved.

A numerical comparison of band and scattering con-
ductivity is given in Sec. V below.

Furthermore, if k~T is much larger than the total width
of the Landau bands, one obtains now Eq. (66) with the
n-independent scattering rate

I'„=2+i dE I'I.D„E= I'I. , (71)

since the number of states is the same in all Landau
bands, independently of their width. Thus, with the in-

consistent approximation (69) one loses the leading-order
oscillations of scattering rate and scattering conductivity.
For lower temperatures, one may insert Eq. (70) directly
into Eq. (54). If one neglects collision broadening, one
has, assuming Eq. (2) to hold,

MBZ
(72)

which reduces for a 1D superlattice in the x direction
[Ei"l = h(u, (n+ -)+ E~"~) E„I,„,y „]to

a /l
Dp(E) = dk„b(E—E„,k„) .

2''G~ 0

With this form of D„(E)in Eq. (70), the result is

(73)

&2 ~2p

~
/le

h a dk„) (2n+1) —f'(E„,g„)

(74)

Exactly this formula has been obtained by Vasilopoulos
and Peeters, s who also tried to explain the Weiss os-
cillations of the scattering conductivity [in their paper
I'L, = N~Upz/(7rtzl')]. They did not evaluate the Kubo for-
mula directly, but started with a "quantum Boltzmann
equation, " which does not include collision broadening of
the spectral functions in a consistent manner. Their re-
sult, however, is not in agreement with characteristic fea-
tures of the experiments. ~s'~s s~ First, it cannot explain
why the Weiss oscillations of the scattering conductiv-
ity can be resolved down to much smaller B values than
the Weiss-type oscillations of the DOS (magnetocapac-
itance). Since Eq. (74) can be obtained from Eq. (65)
by replacing one D„(E)factor with an n-independent
term, it predicts the same type of oscillations for scatter-
ing conductivity and DOS. Second, these oscillations are
much smaller (more than two orders of magnitude)s than
those of the band conductivity, in disagreement with the
experiments. From a systematic point of view, the prob-
lem with Eq. (74) is that it omits the leading-order oscil-
lations (see above), but includes terms of second order in
the small ratio of modulation potential over cyclotron en-
ergy. The same holds for the correction terms introduced
later by Refs. 17 and 40, which correspond in our formu-
lation to modulation-dependent higher-order corrections
to the zeroth-order inter-LL (n P n') velocity matrix el-
ements (31). If one wants to include such higher-order
effects in the conductivity, one should for consistency rea-
sons calculate the energy spectrum also to higher order
and include LL mixing due to the superlattice potential.

In conclusion, we want to emphasize that for a correct
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understanding of the Weiss oscillations of the scattering
conductivity a consistent inclusion of collision broaden-
ing effects in the transport calculation is inevitable. In
our SCBA-type approach this leads to the result that,
at zero temperature, the conductivity is proportional to
the square of the DOS (of the actual 2D ES in the pres-
ence of both the superlattice and the disorder) at the
Fermi energy, as it should be for elastic scattering. The
results obtained with the inconsistent approach used by
Vasilopoulos and Peeterss ~7 underestimate the oscilla-
tory effects. This critique applies also to the recent work
of Xue and Xiao, who adapted this approach to the
case of a magnetically modulated 2D ES.

D. Hall conductivity

The 2D ES in a 2D lateral superlattice has
been discussed in connection with the quantized Hall
effect. 3 ~ If, at zero temperature, the Fermi energy
falls into a gap of the Hofstadter-type energy spectrum
(say for C/Co = p/q), then the (spin-degenerate) Hall
conductivity has a quantized value o» ——r(2e /h), with
an integer r. For large values of p and q, large positive
and negative values of r are possible. The net change
of o», obtained while sweeping E~ across a whole Lan-
dau band, is 2ez/h. We now briefly discuss the relation
between these results and the physical situation of our
present interest.

1. Absence of disorder

In the absence of disorder, one can evaluate Eq. (56)
with the exact eigenstates (12) and the exact energy
eigenvalues Ep (k) satisfying

[H(k) —Ep(k)] u~~l(x, y) = 0. (75)

For a weak periodic potential perturbing the Landau
quantized 2D ES, the quantum numbers P = (n, j) can be
chosen as a LL quantum number n and a subband index

j, although the eigenstates @k,Eq. (12), are superposi-
tions of the states (21) with different n and rc values. For
zero temperature (T —+ 0) and EF in a gap, Eq. (56) re-
duces to a sum over occuPied subbands, o„=Pp" oP~,
with the contribution of subband P given by

p
&'&

dz~l ) - (P klU*IP' k)(P' kluylP k)
[Ep(k) —i0+ —Ep (k)]z

Im
2 P P

vrzh
d ~™

Bk" Bk
(77)

I

Here the completeness of the states 4k in the subspace
of states with fixed k was exploited, as well as the fact

(76)

Note that the diagonal matrix elements (P' = P) are real
and do not contribute to the sum. Taking the derivatives
of Eq. (75) with respect to k and k&, and using Eq. (14),
one obtains

uP(r) = ) u„(k;j, n) f„"'"(r), (78)

with

f„"'"(r)= e '"'(rl nr; k)

determined by the basis states (21). Inserting Eq. (78)
into Eq. (77), we obtain derivatives of the fk'", which
can be evaluated using Eq. (21) and the properties of
the Landau functions (6), i.e. , of the Hermite polynomi-
als. Due to the orthogonality and normalization of the
basis functions (21), the contributions of the fk'" can be
evaluated explicitly, with the result

p e z 2 z Bu 8u~
o.»= dklm -l +)

7r
(80)

where the arguments (k; j, n) of the u„have been sup-
pressed. The first term in the square brackets is imme-

diately evaluated to yield

26 1gP, O (81)

This is just the contribution of one out of p spin-
degenerate subbands to the free-electron Hall conductiv-
ity

cr„=ve /h = e N, /mes, , (82)

with v = 2vrl N, the filling factor. Apparently this result
follows directly from Eq. (56) if we neglect the superlat-
tice modulation and use the zeroth-order velocity matrix
elements (31), leading to inter-LL contributions only.

The remaining term AoP = oP —oP c in Eq. (80)
is the intra-LL contribution. It can be obtained directly
from the n' = n terms of the sum in Eq. (56), using the

that the contribution of P' = P is zero.
From the form (77) it has been recognized that

the Hall conductivity is related to a topological in-
variant on a torus (the MBZ with periodic boundary
conditions), which is the mathematical reason for the
quantization. 'ss For the explicit evaluation of Eq. (77),
one may express the integrand as the curl (in k space) of
the vector with the components a„P(k)= (u&~lou&/Bk„),
and apply Stoke's theorem to obtain a contour integral
along the boundary of the MBZ. The quantized result is

non-trivial owing to the (phase) singularities of u& con-
sidered as a function of k in the MBZ.4s s'

In view of our decomposition of conductivities into
intra-LL ("band" ) and inter-LL ("scattering") contribu-
tions, the following procedure due to Usovs~ is illuminat-
ing. Note that the scalar product in Eq. (77) involves
the 2D integral of wave functions over real space. In our
lowest-order perturbative treatment of the superlattice
potential, this can be reduced to the simpler scalar prod-
uct in the p-dimensional space. Since the discretely quan-
tized values cannot change if we change the amplitude of
the modulation potential continuously (while closing no

gaps), we may replace the exact eigenstates 4'&pl, with

p = (n, j), by the approximate ones, Eq. (23). Then
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eigenvectors u("1(k;j, n) and the eigenvalues E„"(k) of
the p xp Hamiltonian matrix (24), and the representation
(33) for the velocity components. This contribution can
be written as a contour integral along the boundary of
the MBZ of the vector

y u

a(k jn)=) u„' "=i)
tc= 1 ~=1

(83)

where the notation u„=Iu„Iexp(iy„) is used. As shown

by Usov si this "band" contribution can be written as

gp qSp (84)
h p

where the integer SP is the sum of the winding numbers
of the phase (of a representative component u„)around
the singularities contained in the (p/q)-fold of the MBZ.
These integers have the properties that qSP + 1 = rp is
an integer multiple of p, and that the sum over all the SP
belonging to the same LL vanishes, Q".

z
S(& "1 = 0. For

the simple model (5) and a flux ratio 4/C'o ——p/q with

p = 2, it is easy to evaluate the contour integral around
the MBZ explicitly. With the notation of Eqs. (28) and
(29), we obtain (p = 2, q odd)

SU "1 = (—1)~sgn (—1)( -'»'V V V (85)

provided V V„V„g0, and the two subbands (j = 1,2)
are separated by a gap. Note that for the Hofstadter
case, V „=0, the gap (for p = 2) closes, and Usov's
formalism is not applicable.

The quantized values of the Hall conductivity are ob-
tained if the Fermi energy falls into a gap of the energy
spectrum. It seems reasonable to assume that o„inter-
polates smoothly between the adjacent quantized values
as E~ is swept through a subband.

It has been arguedss that weak disorder does not de-
stroy the quantization if it does not smear out the corre-
sponding gap.

g. Sgect of disorder' and temjwruture

=-2~1 —
I ):g*g, v(g)(l)

i&)
(86)

We now include the effect of disorder within the sim-

ple, but consistent treatment of collision broadening dis-
cussed in Sec. IV A.

We first consider the quasiclassical limit of large colli-
sion broadening, where the effect of the superlattice po-
tential on the energy spectrum, i.e., on the spectral and
the Green's function in Eq. (56), can be neglected.

The analog of the band conductivity is the intra-LL
(n' = n) contribution h, o.». Following the procedure of
Appendix A, we can evaluate, in the quasiclassical limit,
the sum over the internal quantum numbers exactly,

fd'&) .((» ~llv*ll» ~'))((n ~'llv II» ~))
2'l2

d k tr(") v~") k n v(" k;n

Since this expression is real, one can evaluate the imagi-

nary part in Eq. (56), obtaining

Im A„(E)dG„(E)/dE= (x/2)d [A„(E)I/dE.

Integrating by parts introduces the derivative of the
Fermi function, and Eqs. (54) and (58)—(61) for the diag-
onal conductivity her&& hold also for 6o» if one replaces

Ig&I by —g g„.For model potentials (5) with a reflec-

tion symmetry, e.g. , V(—x, y) = V(x, y) or V(x, —y) =
V(x, y), the intra-LL contribution to the Hall conductiv-
ity vanishes in the quasiclassical limit,

so~" = Soq" =0. (87)

Thus, in the quasiclassical limit, there is no "band-
conductivity" contribution to the Hall conductivity.

The inter-LL contribution to the Hall conductivity (56)
is dominated by the zeroth-order velocity matrix ele-
ments (31). In the quasiclassical limit, these lead to
the Hall conductivity of an unmodulated 2D ES, show-

ing at sufficiently low temperature SdH oscillations su-

perimposed on the free-electron Drude result, but no
Weiss oscillations. s4 ss Modulation-induced oscillations
can arise only in higher orders of the small ratio of mod-
ulation potential over cyclotron energy. Such terms have
to be neglected in our leading-order perturbation theory,
which neglects the coupling of LL's by the superlattice
potential.

In the quasiclassical limit we assumed that all effects of
the (weak) superlattice potential on the energy spectrum
are smeared out by the (large) collision broadening, and
obtained as a leading-order result for the Hall conduc-
tivity the classical Drude result. The same arguments
hold for the inter-LL contribution to cr» if the collision
broadening of the LL's is of comparable magnitude to
or even smaller than the modulation-induced bandwidth,
but both are much smaller than hu, . Then, the leading-
order inter-LL contribution is just the classical Drude
term (82). There is no analog of the mechanism which
leads to the Weiss oscillations of the scattering conductiv-
ity. According to Eq. (31), the matrix elements of v~ are
imaginary, and those of v„arereal, so that Re dG„, , /dE
enters Eq. (56). For E = E„,one has to leading order
Re dG„+i,/dE = —(~,), instead of the correspond-

ing Eq. (63) for cr„"„.Whereas for k~T )) ~, the E
integral in Eq. (55) for the diagonal components of the
conductivity tensor leads to Eq. (67), the E integral in
Eq. (56) does not lead to an oscillatory n dependence,
since the integrand contains only the first power of the
normalized factor D„(E),but not its square as in the
case of the diagonal scattering conductivity.

Finally we comment on the intra-LL contribution b,o»
for small collision broadening, where the subband struc-
ture is partially resolved. For T ~ 0, one expects a
result Eo»(EJ:) intermediate between the zero value in
the quasiclassical limit and the fluctuating result in the
absence of disorder, with quantized values in the energy
gaps. In the absence of disorder, all the subband contri-
butions to Ao.„~from a given LL add up to zero. Thus,
the thermal average of b,o„for each Landau level will



12 622 DANIELA PFANNKUCHE AND ROLF R. GERHARDTS

also be zero if k~T is larger than the modulation-induced
width of a Landau band, and certainly for k~T )) hem,

In summary, in our leading-order approximation we
have to replace the Hall conductivity with the classical
Drude result (82). For cu, w )) 1, i.e. , to leading order in
the collision broadening, we then obtain for the resistivity
tensor

~yy &xx = 1
r pig& ~yy i p g~ Py~-
&~yx) (&,.) 0'y~

(88)

V. SUMMARY AND DISCUSSION

We have generalized the self-consistent magnetotrans-
port theory previously developed for two-dimensional
electron systems with a periodic modulation in one lat-
eral direction to the case of 2D ES's with a weak 2D
lateral superlattice potential. The theory includes the
correct energy spectrum, which is determined by two dif-
ferent types of commensurability effects. The internal
subband splitting of the Landau bands reflects the com-
mensurability of the lattice constant a and the magnetic
length t, expressed in terms of the flux ratio (2). The
total width of a Landau band is determined by the ra-
tio of a and the cyclotron radius R„=tv'2n+ 1 of this
Landau band. For a simple cosine potential on a square
lattice (the Hofstadter case), this width oscillates as a
function of n and becomes minimum, if Eq. (1) holds
with R, = R„.This oscillation of the Landau bandwidth
is the origin of the observed Weiss oscillations of the re-
sistivity components, which are periodic in B . The
resistivity is governed by two additive contributions to
the conductivity, which are of different origins and have
different properties. The first, called "band conductiv-
ity, " is closely related to the classical guiding-center drift
of cyclotron orbits in the periodic electric field of the su-

perlattice. It is proportional to the square of the group
velocity of the modulation-induced Landau bands. It be-
comes minimum if flat bands are located at the Fermi en-

ergy, i.e., if Eq (1) ho.lds, and it vanishes identically for
the unmodulated, homogeneous 2D ES. The second con-
tribution, called "scattering conductivity, " reflects the
properties of the scattering rate owing to the scattering
of electrons by randomly distributed impurities. It is de-
termined by the thermal average of the squared density of
states, and becomes maximum if flat bands are located at
the Fermi level, i.e. , if Eq. (1) holds. Thus, both the band
conductivity and the scattering conductivity oscillate as
a function of B with the same period given by Eq.
(1), but with opposite phases. In both cases the Weiss
oscillations survive at elevated temperatures, where the
SdH oscillations are already smeared out. All this has
been nicely veri6ed in experiments on samples with a 1D
modulation, where both the band conductivity and the
scattering conductivity can be observed separately on the
same sample.

To obtain the correct leading-order oscillations of the
scattering conductivity, it was important to treat the col-
lision broadening of the Landau levels and the transport
coefficients in a consistent manner.

The relative magnitude of band conductivity and scat-
tering conductivity depends sensitively on the relative
magnitude of the superlattice potential and the collision
broadening. If the collision broadening is so large that
the internal subband structure of the LL's (see Fig. 2)
is not resolved, we obtain for the 2D superlattice essen-
tially the same result as for the 1D superlattice with the
same period. Then the band conductivity is given by
the quasiclassical approximation, Eqs. (58)—(61), being
proportional to the square of the modulation amplitude
and inversely proportional to the collision broadening I'o

(oc w ). The scattering conductivity in this situation
is, according to Eqs. (66) and (67), on the average (i.e. ,

apart from the modulation-induced oscillations) propor-
tional to I'o, in agreement with the classical Drude result.
If, however, the collision broadening is so small that the
internal structure is, at least partially, resolved, then our
theory predicts a drastic suppression of the band conduc-
tivity by the 2D superlattice below the value obtained for
the corresponding 1D superlattice. This is demonstrated
in Fig. 7, and also, for a fixed value of the magnetic field

and variable Fermi energy, in Ref. 20.so We believe that
the dramatic suppression of the band conductivity ob-
served on holographically structured samples at elevated
temperatures (T 4 K) is correctly described by this
mechanism. The resolved subband splitting tends to en-

hance the scattering conductivity, as is easily understood
from Eq. (67).

At low temperatures the Weiss oscillations occur as
amplitude modulation of the resolved SdH peaks. In
this situation the dependence of the conductivity contri-
butions on collision broadening and superlattice potential
is very complicated. Whereas the scattering conductivity
decreases on the average with decreasing collision broad-

ening, particularly narrow Landau bands (or subbands)
may lead to particularly high peaks, thus opposing the
general trend. For the band conductivity, on the other
hand, decreasing collision broadening ( I'o) means on
the average less overlap of difFerent subbands (or clusters
of subbands), and therefore an overall reduction. The
peak due to a well-resolved subband (or cluster) will,

however, increase inversely proportional to I'p, similar to
the case when no subbands are resolved.

In Fig. 8 we show, for two different situations, the cal-
culated band and scattering contributions together with
the resulting total resistivity, according to Eq. (88).
From the classical formula (61) (with Vz

——0 for g &

2~/a) one would expect the band conductivity to be pro-
portional to V /I'0. Then the band conductivity in Fig.
8(a) should be larger than that in Fig. 8(b) by a factor of
= 3. This is roughly true near B = 0.54 T (LL n = 11)
and near B = 0.37 T (thermally overlapping LL's n = 16
and 17), but certainly not near B = 0.96 T (LL n = 6),
where the factor is only 1.3.

From Fig. 2 we understand that the situation must be
much more complicated than predicted by the quasiclas-

sical approximation. According to Eq. (9), the effective
bandwidth at the Fermi level is W~ = 4V (m zR, /a)
For B = 0.96 T (0.37 T) this means W~ =0.4 meV (0.25

meV) for Fig. 8(a) and WF =0.28 meV (0.175 rneV)

for Fig. 8(b). The collision broadening at B = 0.96 T
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(0.37 T) is I'p = 0.01 meV (0.006 meV) for Fig. 8(a)
and I'p = 0.015 meV (0.009 meV) for Fig. 8(b). This is
so small that in all cases the band conductivity is con-
siderably reduced below its quasiclassical value due to
subbands with nonoverlapping spectral functions.

From Fig. 2 we also understand that this quantum sup-
pression of the band conductivity at B = 0.96 T should
be more important in Fig. 8(a) than in Fig. 8(b). The
flux ratio (2) at B = 0.96 T is 4'/4p —5.2, and we
see from Fig. 2 that for q/p 0.19 the subbands are
grouped into five clusters. The two outermost clusters
are narrow and well separated from the three inner clus-
ters. The widths of these inner clusters ( 0.1WF) are
comparable to each other, and to the width of the gaps
between them. In the situation of Fig. 8(a) the overlap of
spectral functions belonging to difFerent inner clusters is
safely negligible (0.1W~/I'p = 4), but not in the situation

1.5-
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FJG. 8. Calculated resistivity p for a 2DEG of mean
density N, = 3 x 10 cm at temperature 1 K in a
square superlattice of period a = 150 nm. Arrows in-
dicste Rst band positions. For (s) s collision broadening
I'p = 0.010' B [T] meV snd s potential strength V
V„=0.250 meV the total resistivity (solid lines) is domi-
nated by the band resistivity (dotted lines), snd (b) s collision
broadening I'p = 0.015+B [T] meV snd s potential strength
V = V„=0.175 meV the total resistivity is dominated by
the scattering resistivity (dashed lines).

of Fig. 8(b) (0.1W~/I' 2).M
At B = 0.37 T, on the other hand, we see no such

qualitative difference between the situation of Fig. 8(a)
and that of Fig. 8(b). The flux ratio is 4/C p = 2.02, and
at q/p 0.495 the subbands in Fig. 2 are grouped into
two well-separated clusters in both situations.

We see from Fig. 8 that the suppression of the band
conductivity, owing to better resolution of the sub-
band structure as a consequence of smaller collision
broadening, may be magnetic field dependent, with a
stronger suppression below the quasiclassical value at
higher magnetic fields. This is in agreement with recent
experiments, M in which the band conductivity was found
to dominate the Weiss oscillations at low magnetic fields
and to be suppressed at high magnetic fields.

The important message of Fig. 8 is the following. For
high-mobility samples (y, & 10s cm ~/Vs) with a 2D
superlattice (a 150 nm) there exists a regime of modu-
lation strengths, where the band conductivity is so sup-
pressed below its quasiclassical (1D) value that it is of
the same order of magnitude as the scattering conduc-
tivity. In this regime, tuning of the superlattice poten-
tial can lead from a situation like that in Fig. 8(a) to
a situation like that in Fig. 8(b). In the former, the
total resistivity is dominated by the band conductivity,
with minima of the envelope function if the flat band
condition (1) holds. In the latter, the resistivity is gov-
erned by the scattering conductivity, with maxima if Eq.
(1) is satisfied. Exactly these band-conductivity domi-
nated and scattering-conductivity dominated situations
have recently been observed on high-mobility samples
with nanostructured gates which allowed tuning of the
modulation strength. ~s

In Fig. 8 the temperature (T = 1 K) was chosen such
that each individual Landau band is resolved, but not,
however, its internal subband structure. The result looks
very similar to the experimental data~s obtained at a
much lower temperature, T = 50 mK, i.e. , k~T = 5 peV.
Naively, one should expect the subband structure to be
resolved at these low temperatures, but this is not seen
in the experiment. This can attributed to spatial fluctu-
ations of the conduction-band edge. In order to resolve
in a transport measurement a gap at the Fermi level of a
width of several peV, the fluctuation of the conduction-
band edge due to electrostatic fields (e.g., due to fluctu-
ations of the charged-donor distribution in the Si-doped
Al Gaq, As behind the spacer) must be smaller than
a few peV over the entire sample. This seems unreal-
istic. Taking an average over long-range ()) a, Ag, )
mesoscopic fIuctuations has a similar efFect to taking a
thermal average. Prom the experiment we estimate for
such fluctuations a distribution with an energetic width
of about 0.1 meV.

Finally we want to comment on some basic assump-
tions made in our approach. In the experiments, the
superlattice potential is created at some distance from
the 2D ES, either by a nanostructured metal gate or
by a holographic modulation of the charged-donor dis-
tribution behind the spacer. According to Poisson's law,
the Fourier coefm[cients of this potential decay exponen-
tially towards the 2D ES, so that higher Fourier coeffi-
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cients die out more rapidly than the simple cosine po-
tential of the fundamental periodicity. Moreover, the
superlattice potential is screened by the 2D ES itself.
The resulting screened potential should be the input of
our model. Within the Thomas-Fermi approach, the
screening length is determined by the thermodynamic
density of states. If the temperature is so high that
,he individual Shubnikov —de Haas oscillations are not re-
solved in the transport coefBcients, then, according to
both the theory and the experiments, is the thermody-
namic DOS and, thus, the screening is independent of
the magnetic field. In this situation our assumption of a
fixed, B-independent superlattice potential is well justi-
fied. If the superlattice potential is created by a (close
to harmonic) modulation of the charged-donor distribu-
tion or by a structured gate at a sufficiently large dis-
tance (+ a) from the 2D ES, our assumption of a weak,
purely harmonic superlattice potential as in Eq. (5) with
V „=0 is also reasonable.

The inclusion of higher Fourier coefficients of the su-
perlattice potential has been discussed in the analyti-
cal part of this paper. It modifies the single-particle
spectrum, but qualitatively the Hofstadter-type subband
splitting of the Landau bands will last; cf. Figs. 4 and
5. As a consequence, the mechanism for the suppres-
sion of the band conductivity will remain qualitatively
unchanged On the other hand, the additional Laguerre
factors with different (incommensurate) arguments will
destroy the exact periodicity of the conductivities in B
and both the maxima and the minima of the oscillations
will become less pronounced. iz

The extension of our theory to stronger superlattice
potentials (V~ ~ V&

& h,u, ) requires more numerical ef-
fort. Then, the lowest-order perturbation treatment is
no longer adequate, and the mixing of difFerent Landau
levels by the superlattice potential must be taken into ac-
count. This immediately leads to much larger dimensions
of the Hamiltonian matrix to be diagonalized. Neverthe-
less, such an extension of our theory seems of interest for
an understanding of the modification, and eventually the
disappearance, of the Weiss oscillations with increasing
modulation strength. io Moreover, it seems also inevitable
for a consistent inclusion of the oscillatory contributions
to the scattering conductivity considered by Vasilopoulos
and Peeters. s

If the temperature is so low that the contributions

of individual Landau bands, or in future experiments
even of individual subbands, to the thermodynamic DOS
are resolved, the situation is expected to become even
more interesting. Then screening e6'ects become strongly
magnetic 6eld dependent, and the treatment of the
single-particle spectrum on the basis of a fixed super-
lattice potential may no longer be adequate. Instead,
it may become necessary to base the transport theory
on efFective single-particle properties calculated from a
self-consistently determined superlattice potential, which
takes many-body effects into account.

At present, no direct experimental proof of the realiza-
tion of a Hofstadter-type energy spectrum in the 2D ES's
in GaAs/A1~Gai ~As heterostructures exists. However,
we have shown that the characteristic subband splitting
of the Landau levels predicted by the Hofstadter-type
spectrum has specific consequences for the magnetotrans-
port coefficients. Our theory, which takes these effects
into account and exploits the consequences of +his sub-
band splitting, explains all the characteristic features of
the Weiss oscillations observed in experiments on 2D ES's
with weak 1D and 2D superlattice potentials. We are
not aware of any alternative explanation of all these fea-
tures. We therefore consider the existing experiments as
a strong, although rather indirect, indication of the real-
ization of the Hofstadter-type energy spectra Thus . we

would like to encourage the preparation of high-mobility
samples with lower electron density (N, ( 10ii cm z)
and smaller superlattice period (a 50 nm). In such
samples a direct resolution of the subband splittings
should become possible. This would open a decades-old
playground of theorists to the band-structure tailoring
nanostructure physics. Hopefully, an idea of the fragile
beauty of Hofstadter's fractal butterfly will survive its
birth into experimental reality.

ACKNOWLEDGMENTS

We gratefully acknowledge many stimulating, encour-

aging, and helpful discussions with Dieter Weiss, and
also the fruitful cooperation of Ulrich Wulf, who per-
formed the first numerical model calculations illustrating
the mechanism for the suppression of the band conduc-
tivity.

APPENDIX A

In this appendix we sketch the derivation of the quasi-classical result for the band conductivity from the quantum-
mechanical Kubo formula. According to Eqs. (24) and (33), the velocity matrix elements can be calculated from the

p x p matrix,
'2

) g V (g)6~"1
( (~ )exp{—il [g ky gyk +g (re+ 2gy)])

with g = —g„,g„=g, and V„(g)= V+K„(~tg ).
This yields
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2

tr(i ) v(g) (k n) —
i ~ ) g yi V (g)V (gi) e ii Kg~+ga!)~w (gv+gy)~~+ 5 (g&gll+gagy)l
I rnid, )

S~S
p pxi i 6 e ~* "6 eX ~ ~ (1(K)

+'=1 le=1
(A2)

n

) e-il [(g' +g )rcR'„+g g„jP
+=1

(A3)

Since [
—n„]= [p

—[n„]]and exp( —il K„g„p)= 1, the
sum over rc' can be evaluated, and the last two sums in
Eq. (A2) reduce to

APPENDIX B

To evaluate Eq. (59) for bio, « k~T && E~, one
replaces the sum over n with the integral over E„=
hu, (n+ s), and uses the asymptotic expansion (9) to
obtain

Next, one evaluates the k„integral over the MBZ,

K„) e-il (g'+g )(k„+~K„) with

7l Q 8
(B1)

yK„
dk e'"(g-'+g*)" =pK ~, .9~i 9~ '

0
(A4)

From (A3) we know that g&
——gg + tpK&, with an integer

t Then . the k, integral over the MBZ yields a bi o,

dE df 2 E
Ig ——

dE ngR, E
E

X COB
~ gRg ') ' (B2)

K/q 2ii (gy+gy)Al~

Since pK Kz/q = 2m'/l, one finally obtains

(A5)
where EF = sirniosRc2. To leading order in the small
parameter 2k~T/E~ && 1, one has

cos (gR, —
4 + xgR, k~T/EF)

Ig —— dz 2—00 s.bio,gR, cosh z

d k tr") v(")(k;n) =2+i —
i ) g„iV„(g)[

MBz - - k~)

(A6)

The quasiclassical result (58) for the band conductivity
follows immediately.

Since

one obtains Eq. (61).

cos(n + Pz) m P cos 2n
dz =1+

cosh z sinh srP

(B3)

(B4)
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