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Nonlinearly coupled vibrational modes and self-trapped states: Single-vibron-oscillator case
with a-helix parameters
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Quantum molecular-time-scale generalized-Langevin-equation (MTGLE} theory is applied to calcu-
late spectral linewidths and redshifts of a single vibron oscillator nonlinearly coupled by the Davydov
Hamiltonian in the a-helix parameter regime to a chain of linearly coupled molecules. Exact values can
also be calculated for this problem. The MTGLE theory gives very accurate results for linewidths and
less accurate but acceptable results for redshifts over a wide range of temperatures from 10 to 300 K.
These results successfully extend previous calculations carried out in the I.-alanine parameter regime to
the a-helix parameter regime with a 30-fold increase in frequency of the vibron oscillator and a 1000-fold
increase in the square of the nonlinear coupling constant. In constrast to the L-alanine case, the vibron-
oscillator frequency is more than 16 times greater than the largest frequency in the phonon manifold.

I. INTRODUCTION

One of the most important questions for molecular
crystals comprised of two or more nonlinearly coupled vi-

brational systems is the formation of localized states and
their lifetimes. The possibility of such localized states
was brought into prominence by Davydov and Kislukha
in several papers' where they proposed that such states
might exist on one-dimensional molecular chains, such as
the o.-helix, because of the interaction of the intrarnolecu-
1ar carbon-oxygen amide I stretching modes with low-

frequency acoustic phonons. In subsequent work these
localized states have become known as vibron solitons.
As we described in the first paper in this series (hereafter
denoted as I),' many efforts have been made theoretically
to demonstrate the existence of vibron solitons; however,
a survey of this theoretica1 work shows that disagreement
abounds. The experimental situation is little better with

only the work of Careri et al. on acetanilide cited as
proof of their existence. Even the interpretation of this

experiment has been challenged. " Others have sug-

gested that vibron solitons may be present in systems
such as L-alanine where libronic degrees of freedom are
coupled nonlinearly to phonon degrees of freedom. '

The widespread disagreement and confusion as to the
existence of vibron solitons points to the need for a sys-
tematic theoretical approach for studying such problems.
In paper I we introduced the use of quantum molecular-
time-scale generalized-Langevin-equation (MTGLE)
theory' ' as a systematic way of computing the spectral
linewidth (or lifetime) of vibron solitons. This theoretical
approach is reviewed brieAy in Sec. II. In order to test
MTGLE theory and to gain insight into the vibron-
soliton problem, we chose in I to examine a simpler Ham-
iltonian system than that used by Davydov, namely, the
case of a single oscillator, hereafter referred to as the vib-
ron, coupled to a chain of oscillators constituting a pho-

(2c c+—1) g Berk(ak+ak),
k= —E

where c (c) is the creation (annihilation) operator associ-
ated with the single vibron oscillator with uncoupled fre-
quency coo, ak(ak) is the creation (annihilation) operator
for the phonon oscillator of frequency cok, and O.

k is

given by

=2X ~k
O.

k
= sgnk cos 2%+1

sin[a k /(2X + 1 ) ]
2%+1

' 1/2

(2)

where g is the nonlinear coupling parameter expressed in

energy units, 21V+1 is the size of the oscillator chain,
which will be taken indefinitely large, and sgnk is the sign
(+1 or —1) of the index k. The single vibron oscillator
is located at site 0, the center of the chain. The disper-
sion of the phonon-oscillator frequency cok is given by

As shown by others, ' ' the Hamiltonian in Eq. (1) is

particularly useful to study since it can be exactly diago-
nalized. We have shown in I that this also allows one to
compute analytic results for required MTGLE expres-
sions, and it therefore serves as an excellent testing
ground for MTGLE theory while yielding information on

non bath. This Hamiltonian does not display solitonic
behavior because the longitudinal symmetry of the chain
is already broken by the presence of the localized vibron,
but is nevertheless an important test case. Specifically,
we used the Hamiltonian

N
H= g A~„(a„a„+-,')+A~, (c c+-,')

k= —N
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d
dt

y(t) =( —1)"f dco co "p(to),
t=0 0

so that the derivatives of j'(t) at t =0 are simply related
to the moments of p(co). For the parameter domain as-
sumed in I, p(to) represented a single redshifted line
characterized by a maximum frequency co,„and a
linewidth hco related, respectively, to the oscillation fre-
quency and lifetime of j'(t). There is no requirement in
the theory that the line shape be symmetric or Lorentzian
in shape.

As summarized in I, with more complete details pro-
vided in a subsequent paper, ' we have extended previous
work on the exact theory to obtain exact expressions for
g(t) and p(to). This allowed extensive comparisons of
MTGLE theory with exact results. In particular, the po-
sition of the maximum of p(to) calculated by MTGLE
theory was in excellent agreement with results of the ex-
act theory and could be accurately represented by the
formula

co~,„=coo [2n (co(, )—+ 1]8',
derived from the exact theory. In this expression

(8)

n(co) = exp —1
kT

COg
—C00 4'g, (10)

the vibron-soliton question. A summary of the exact
theory will be given in Sec. III.

In paper I we carried out a full study of the application
of MTGLE theory to Eq. (1) and found that the theory is
admirably suited for tackling the Davydov single-vibron-
oscillator system in a parameter regime suitable to L-

alanine in which the single-vibron-oscillator frequency e0
ranged from 0.5', to 1.5', . In particular, we focused
on the oscillation frequency and spectral linewidth (or
lifetime) of the time correlation function

g(t)= —,'([c(t),c (0)]+[c(0),c (t)]), (4)

where the brackets ( ) represent a quantum-
statistical canonical ensemble average. The spectral den-
sity of j'(t) is denoted by p(co) and is given by

(X)

p(co)= —f dt j'(t)coscot .
7T 0

If we invert Eq. (5), we have

j'(t) = f dco p(co)costot,
0

and it is then easy to show that

rately represented by co,„given by Eq. (8). Furthermore,
the lifetime ~ calculated by MTGLE theory was in agree-
ment for temperatures greater than about 2 K with the
exact lifetime given by

2/3
COg

32k'
(12)

and obtained from the exact theory as described in the
next section. As shown elsewhere, ' the spectral density
p(co) is related to the dipole spectrum of the system, so
that knowledge of one is equivalent to knowledge of the
other.

In this paper we extend our study of the single-vibron-
oscillator case to the parameter regime appropriate to the
a-helix. We chose the values fico0= 1665 cm ', Rm, = 100
cm ', and g=10 cm ', which are typical of values as-
sumed in the literature. As will be noted later, compared
to the L-alanine system, for the a-helix system co0 has
been increased by a factor of approximately 30 and the
square of the coupling constant by a factor of more than
1000. As will be seen in the following sections, we find
that MTGLE theory with a limited number of moments
ofj(t) con'tinues to make accurate predictions of relaxa-
tion time and satisfactory predictions of the redshifted
frequency co,„even under these extreme conditions. The
main di6'erence is that the moments must be calculated to
higher order in the coupling constant to obtain the best
agreement between MTGLE and the exact theories.

The paper is organized as follows: In Sec. II we review
the essential features of MTGLE theory as required for
the discussion of the results of calculations in the a-helix
parameter regime. Section III will summarize the exact
theory and give the exact expressions for j(t) needed for
comparison with MTGLE theory. Section IV will
present results for a-helix parameters including compar-
ison with exact theory. Section V will contain some dis-
cussion and concluding remarks.

II. REVIE% OF MTGLE THEORY

MTGLE theory is founded on the notion that tine
correlation functions or their spectral density can be built
up from short-tine or molecular-time-scale informa-
tion. ' ' In particular, we focus on the tine correlation
function y(t) given by Eq. (4) and its spectral density
given by Eq. (5). The basic information about the quan-
tum system required in MTGLE theory is the short-time
derivatives of j'(t) [or moments of p(co)] given by

21l

o'"'=( —1)" — g(t)
d
dt t=0

and
= ( [c'"'(0) c'"'t(0)]), (13)

2~k 2g
A co~

The constant k is Boltzmann's constant, and T is the ab-
solute temperature. In addition, the oscillation frequency
of y(t) was in good agreement with the exact result over
the valid time domain of MTGLE theory and was accu-

where

(„)( d c(t)
dt" (14)

To show how these short-time derivatives are used in
MTGLE theory, we first define the Laplace transform of
Eq.(4) by
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y(z)=[z +co, —co, 8,(z)] (16)

and

0~(z)=[z +co, —co, 8 ~)(z)] (17)

where

j(z)= f "dt e "y(t) . (15)
0

From the Laplace transform y(z), we create a set of bath
functions 8 (z) such that

Eqs. (18) and (19) can be computed to bath index
N = ( n + 1 ) l2 (not to be confused with the large number
2N + 1 of oscillators in the chain). With this convention
the maximum possible value for k is 2%=n +1. The
number n of time derivatives of 8)(t) is always 2 less than
the number of time derivatives of g(t).

From Eq. (25) we see that two parameters co, and co,
remain to be determined. If we define the exact spectral
density p)(co) of the first heat bath by

p) (co) =—f dt 8) ( t)cosset,
0

2 (1)
COe

—0 mm

4 — (2)
( a(1))2

m+1 m m

(18)

(19)

then one can show that the finite expansion for 8,(t) in
Eq. (23) leads to the following approximation p) (co) to
the exact spectral density p)(co); namely,

and

d(n)
( 1)n

dt

2n

8 (t)
t=0

(20)

2%

p)*(co)= g a„sink/(co),
'7TCO

where

(27)

The constants co, and ~, are known as the Einstein and
m m

coupling frequencies, respectively. To determine 8 (z)
or equivalently 8 (t), we relate the time derivatives in
Eqs. (13) and (20) by the equation

n —2
(n) 2 (n —1)+ 4 ~ (k) (n —2 —k)
m em m cm+& ~ m+1 m

k=0
(21)

Thus the short-time derivatives o'"' of each function
8 (t) can be computed in a bootstrap process from the
preceding set of moments O'"', . In what follows we
refer to the index I as the bath index. The inverse La-
place transform of Eq. (16) gives an expression for j'(t) in
terms of the first bath function 8,(t),

d2
g(t)= co, j'(t)+—cof dr 8)(t —r)j'(r) .

dt 1 0
(22)

8,(t)= gakGk(t),
k

where

(23)

To make use of the constants 0'"', we have developed
in I a fitting scheme for the first bath function 8((t). We
expand 8, ( t) in a set of GLE functions Gk ( t) such that

COe CO
2 2

cosP(~) =
2' (28)

p(~) =—2$
Imp(ico) . (29)

But from Eq. (16), we have that

As can be seen from Eq. (28), the parameters co, and a&,

determine the lower and upper band edges of p) (co). Al-
ternatively, they can be understood as determining the
center frequency and width of p) (co). In this paper we
present a different approach than the one used in I to
compute co, and co, . The details are given in the Appen-
dix. The new approach is more robust and eliminates the
undesired oscillatory behavior of p) (co) sometimes found
in I. As noted in the Appendix, this approach results in a
more uniform representation of p) (co) in the sense defined

by Levine' and, therefore, in a spectral density of larger
entropy consistent with the set of n moments specified in
Eq. (27) independent of the values of ro, and co, .

Having obtained suitable values for co, and co„8)(t)
and 8, (z) are determined and can be used to determine
p(co) in Eq. (5). We note first that

Gk(t) =—f dx [cos(k —1)x —cos(k +1)x ] (24)
sinQt

0 0
g(ice)=[co, —co —co, 8)(ice)]

Defining

I(co)=co, Im8)(iso)

(30)

(31)
Q=(co —2' cosx )' (2S)

and
The expansion constants ak are determined by matching
the derivatives at time zero of Eq. (23) with the constants
cT~)") as defined by Eq. (20). The sum over k in Eq. (23) is
finite since we are generally limited for numerical reasons
to the first 15—20 derivatives. In Sec. IV we examine the
convergence of MTGLE results as a function of the num-
ber of GLE functions used in Eq. (23). We refer to the
maximum index used in Eq. (23) as the GLE index k. In
particular, we assume that n time derivatives of 8)(t) are
known so that the Einstein and coupling frequencies in

R (co) =co, Re8)(ico),

one can then show using Eqs. (29)—(32) that

2co 1(~)
[co, —co —R(co)] +I(co)

(33)

This form for p(co) and the underlying relationship to
8)(t) is the principal result of this section. To find the
frequency at the maximum of the peak in Eq. (33), which
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2~max

I(co,„)
(34)

In Sec. IV we will present results for co,„and ~ as a
function of temperature using a-helix Hamiltonian pa-
rameters. To show the kind of convergence that is ob-
tained as more moments are used, co,„and v. will be plot-
ted as a function of the GLE index k up to the highest
available value. In these plots the parameters co, and co,
are fixed at the values determined by the fitting described
in the Appendix.

we denote by co,„, we use a computer search subroutine
which walks its way to the maximum. In all cases stud-
ied to date, this is very close to the solution of the equa-
tion co —co, +R(co)=0, so that in the following section

we wi11 sometimes designate co,„as the resonant frequen-

cy. Once co,„ is known, we approximate the lifetime ~

by

The explicit form for e (t } is

e (t) =exp 8g
h (t)+ —ln (1—e '~)2

21Tt

2t
(40)

where P=(kT} ' and

&)(x)
h(t)= dx

0

2=-0. 172 118+—1nco, t, (41)

8ge(t) =—exp,
Cdg

0. 172 118+—lnco, t
2

(42)

for co, t ) 2n Th.e function &&(x) is a Sturve function. '

For 2m t «A'P and co, t & 2n, e (t) can be written

III. SUMMARY OF EXACT THEORY

As mentioned in the Introduction, the Hamiltonian in

Eq. (1) can be exactly diagonalized by a canonical trans-
formation so that an exact expression can be found for
the correlation function y(t). In McDowell and
Clogston, ' this is given in the form of a product of two
factors,

8g
e (t) =exp

COg

0. 172 118+—In +2 &co ~ 2t

(43)

which exhibits the nonexponential decay of j'(t) discussed
in McDowell and Clogston. ' For 2mt »AP,

y(t) =f (t)e(t), (35}
so that

ncos—[(coQ 8rtn)t +g (—t)) )D, (36)

where ( )D represents the ensemble average over the
renormalized vibron variables, n is the corresponding
number operator, and g ( t) is given by

where f (t) is an ensemble average over renormalized vib-
ron variables and e(t) is an ensemble average over renor-
malized phonon variables. The explicit form for f (t) is

f (t) = ((n +1)cos[coQ 8'(n—+1)t +g (t}]

Ace,

16'
2/3Ng

32k'
as given in Eq. (12).

IV. MTGLE RESULTS
AND COMPARISONS WITH EXACT THEORY

(44)

8~ ~, ~ J)(x)
g(t)= dx

COg 0 X

(37)

for co, t & 2~. As shown in McDowell and Clogston, ' for
co, t )2m, f (t) can be put into the form

For times much less than 1/8g and temperatures up to
flcoQ Ik, f ( t) becomes approximately

f (t)=cos j coQ
—[2n (cob )+1]8g]t

=cosco,„t,
with co,„defined by Eq. (8).

(39)

2 cos(coQt —2 tan '[ [2n (cob )+ 1]tan4rtt ] )f(t)=
[1+[2n(cob)+1] ]+[1—[2n(cob)+1] ]cos8rtt

(38)

In this section we examine MTGLE results for the a-
helix parameter regime and compare with the results of
the exact theory summarized in Sec. III and more com-
pletely by McDowell and Clogston. ' As a choice of the
Hamiltonian parameters, we use the values Aco0=1665
cm ', %co, =100 cm ', and y=10 cm '. The con-
clusions of this paper are not affected by small changes in
these parameters, and we consider them a representative
set.

For the purpose of understanding the behavior of
MTGLE computations and their relationship to exact re-
sults for the a-helix parameter regime, we have carried
out two types of MTGLE computations. In the first pro-
cedure we compute the constants o0"' to fourth order in
the parameter y using the formula given in I. We find
that numerical stability is maintained in the bootstrap
process defined by Eq. (21) for a starting set of 13
nonzero derivatives of y(t) corresponding to a maximum
bath index of N =6. Although derivatives can be com-
puted for n ) 13, rounding errors involved in the inherent
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P= (c+c ) (45)

and

Q=i
2m cop

1/2

(c —c ), (46)

and can lead to the unphysical result that the spectral
density p(co) has regions in which p(co) (0. We have ex-
amined this problem in detail elsewhere. We describe
the consequences of this problem as it arises in the fol-
lowing discussions.

In the second procedure we compute the constants o p"'

to all orders in y using the computer program described
in I. For this case we are limited by the number of con-
stants O.p"' that can be computed and not by the bootstrap
process. This limitation as described in I is due to the
rapid increase as n increases in the number of individual
terms contributing to op"', which in turn leads to a large
demand on computer time. The maximum number of
constants which can be computed is 9. This translates to
a maximum bath index N of 4 and a maximum GLE in-
dex of k =8.

For clarity, the following presentation of results calcu-
lated in the a-helix regime from MTGLE and the exact
theories is organized into four parts: Section IVA will
contain results for the lifetime of g(t) calculated by
MTGLE theory from Eq. (34) and by the exact theory
from Eq. (12). The lifetime results will be supplemented
with plots of the modulus of j(t), denoted by g(t)~,
versus time to bring out more detail than is conveyed by
lifetime alone. Plots of

~
j'(t)

~
also bring out the fact that

the modulus is only approximately exponential and that
the lifetimes given by Eqs. (34) and (12) are therefore
only approximate representations of the time decay. Sec-
tion IV B wi11 present results for the center of the red-
shifted line, ~ „,calculated from MTGLE and the exact
theories. These results wi11 be supplemented with some
examples of the complete spectra1 density curves to bring
out the close similarity of the MTGLE and exact results,
including the non-Lorentzian shape of the lines. Section
IVC will show the time-dependent radian frequency of
y(t) calculated from MTGLE and the exact theories to
bring out how closely MTGLE theory reproduces the ex-
act time evolution ofj'(t) Finally, Sec. IV. D will present
some summary curves showing ~ and co,„as a function
of temperature for fourth-order and a11-order MTGLE
theory and for the exact theory.

subtractions in Eq. (21) lead to unstable values for co,
n

and co, . In addition, for the a-helix parameter regime
n

we have found that another numerical problem separate
from the stability problem in Eq. (21) arises; namely, the
constants co, andm, can become negative. This problem

is related to both the fact that the derivatives computed
to fourth order in y are only approximate and the fact
that the Davydov Hamiltonian for vibrons is an approxi-
mate Hamiltonian in the sense of the rotating-wave ap-
proximation. This approximation destroys the relation
P =mg, where

' 1/2

In Figs. 1 —5 we show the relaxation time ~ calculated
as a function of the GLE expansion index k for Axed
values of the parameters co, and co, and for T =10, 50,
100, 200, and 300 K. The parameters for these curves
and those that follow are the values given above:
A~p=1665 cm ', Am, =100 cm ', and g=10 cm '. The
calculations are carried out for the MTGLE moments
calculated both to fourth order and all orders. Figures
1 —5 also include the exact lifetimes calculated from Eq.
(12). Both procedures numerically converge to approxi-
mately the same value, although the procedure which
uses exact moments generally converges more rapidly.
The converged values of both procedures approximate
with the exact values for most temperatures except that
agreement of the fourth-order calculation is poor at 10 K.
Agreement of the all-orders calculation is particularly
good except at the highest temperatures. As mentioned
above, this residual disagreement of the a11-orders calcu-
lation is due to the use of Eq. (34) to extract lifetimes
from the MTGLE spectral density. This equation as-
sumes that the line shape for p(co) is nearly Lorentzian,
but as we shall see in the next section, p(co) is asym-

10

T=10K

Exact
Value

MTGLE
4th Order

I I I

2 4 6 8 10

GLE Index k

12

FIG. 1. Relaxation time w as a function of GLE expansion in-

dex k for fixed values of the parameters cu, and co, and T =10
K. The Hamiltonian parameters are given in the text. The
MTGLE calculations are carried out to fourth order in the cou-

pling constant and to all orders in the coupling constant.

In translating the linewidth of the spectral density into
a decay time by using the Lorentzian fit in Eq. (34), one
should recognize [because the vibron number operator
commutes with the Hamiltonian in Eq. (1)j that the exci-
tation of the vibron itself does not decay in time, but is
dephased. The linewidth of the spectral density is thus a
measure of the decay time of the time correlation func-
tion j'(t) due to dephasing of the excitation. In subse-
quent work, as we include nearest-neighbor interactions
between vibrons, the decay of the excitation itself as well
as dephasing will occur and be reflected in the behavior
ofj (t)

A. Lifetime r and
~j(t) ~
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MTGLE
4th Order

T =50K

0.7

0.6

0.5

T = 200 K

0.4

Exact
Value

0.3-

0.2

Exact
Value

MTGLE
All Orders

GLE Index k

20

0.1

0.0

MTGLE
All Orders

GLE Index k

10 15

FIG. 2. Same as Fig. 1 with T=SOK. FIG. 4. Same as Fig. 1 with T =200 K.

metric, having a pronounced tail on the high-frequency
side. In Figs. 6—10 we show the actual decay of

~
j'(t)~

with time for the same temperature range. The MTGLE
result in each case uses the highest available GLE index.
The exact result is based on Eqs. (35), (36), and (40) in
Sec. III. The agreement between the exact result and the
MTGLE all-orders calculation is excellent in all cases in-
cluding the behavior quadratic in t at small times. The
fourth-order MTGLE calculation deviates substantially
in that it decreases too rapidly at low temperatures and
somewhat too slowly at the highest temperatures.

The overall conclusion of this section is that excellent
agreement between the exact and MTGLE theories is ob-
tained for the lifetime of g(t) provided the MTGLE cal-
culation is carried to all orders. If the calculation is car-
ried only to fourth order, agreement is only approximate

and considerable disagreement is found at the lowest and
highest temperatures and longer times.

B. Spectral density curves and resonant frequency

In Figs. 11-15we show the resonant frequency co,„of
the spectral density curves calculated as a function of the
GLE expansion index k for fixed values of the parameters
co, and co, and for T =10, 50, 100, 200, and 300 K. The
parameters for these curves are the same as those as-
sumed in Sec. IV A. The calculations are carried out for
the MTGLE moments calculated both to fourth order
and all orders. Figures 11-15 also include the exact
value of tom, „calculated from Eq. (8) or the exact expres-
sions for j(t) given by Eqs. (35), (36), and (40). We note
first that the MTGLE all-orders calculations of co,„con-

T= 100 K

0.5

T= 300 K

0.4

0.3

MTGLE All Orders

10

Exact
Value

20

0.2

0.1

0.0

MTGLE
All Orders

I V I

2 4
I I

6 8

Exact
Value

l

10

GLE Index k

FIG. 3. Same as Fig. 1 with T = 100 K.

GLE Index k

FIG. 5. Same as Fig. 1 with T =300 K.
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1.0

0.8

0.6

T = 10 K

t
GLE 4th Order
GLE All Orders

1.0

0.8

0.6

T =200 K

Exact
MTGLE 4th Order
MTGLE All Orders

0.4 0.4

0.2 0.2

0.0

t (ps)

FIG. 6.
~
j'(t)

~
as a function of time for T =10 K computed

from the exact and MTGLE theories. The Hamiltonian param-
eters are given in the text. The MTGLE calculations are car-
ried out to fourth order and to all orders in the coupling con-
stant.

0.0
0.0

1.0

0.8

0.2 0.4 0.6 0.8 1.0

t (ps)

FIG. 9. Same as Fig. 6 with T =200 K.

T = 300K

1.2

1.0

0.8

0.6

T=50K

th Order
All Orders

0.6

0.4

Exact
MTGLE 4th Order
MTGLE All Orders

0.4
0.2

0.2
0.0

0.0
I

0.2
s ~~~~ISRfgl

0.4 0.6
t (ps)

I

0.8

0.0

1.0

t(ps)

FIG. 7. Same as Fig. 6 with T =50 K.

=100K

1.00

FIG. 10. Same as Fig. 6 with T =300 K.

T=10K

MTGLE

0.8

0.6

0.4

Order
rders

0.99 „

0.98

MTGLE
All Orders

Exact
Value

I ~ I 0 I S I

2 4 6 8 10 12

0.0
0.0

I I I I

0.2 0.4 0.6 0.8 1.0
t (ps)

FIG. 8. Same as Fig. 6 with T = 100 K.

1.2

GLE Index k

FIG. 11. Convergence of co,„at T =10 K as a function of
GLE index k. The Hamiltonian parameters are given in the
text. The MTGLE calculations are carried out to fourth order
and to all orders in the coupling constant. The predicted value
is taken from Eq. (8).
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1.000

T =50 K

1.000

T=2QQK

0.998 0.998
MTGLE
4th Order

0.996

0.994

0.992

MTGLE

Exact
Value

0.996

0.994

0.992

MTGLE
All Orders

Exact
Value

0.990

10

GLE Index k

FIG. 12. Same as Fig. 11 with T =50 K.
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FIG. 14. Same as Fig. 11 with T =200 K.

15

verge toward the exact value at all temperatures, al-
though the convergence is slower for ~,„than for the re-
laxation time ~.

For a MTGI-E fourth-order calculation of ~m», satis-
factory convergence is not found, although at lower tem-
peratures the value of ro,„calculated at the largest GLE
index k is close to the exact value.

These results for co,„contrast with results reported in
I for the L-alanine parameter regime. In that case there
was no signi5cant change in going from a fourth-order
MTGI.E calculation to an all-orders calculation. This
difference can be understood by noting that the coupling
constant g appears quadratically in leading terms. Thus,
although the single vibron frequency mo has increased by
a factor of approximately 30 in going from %coo=60 to

1665 cm ', the nonlinear coupling has increased by a fac-
tor of more than 1000 in going from g =(0.3 cm ') to
(10 cm ') . We conclude that in the a-helix parameter
regime care must be taken to ensure convergence with
respect to the order to which the moments of j'(t) are cal-
culated.

Figures 16-20 show the full spectral density curves for
j'(r) for r=10, 50, 100, 200, and 300 K calculated by
MTGLE theory from Eq. (33) using all-orders moments,
the exact p(co) calculated from Eq. (5), and the exact ex-
pressions for j'(t) given by Eqs. (35), (36), and (40). There
are small differences in the position of the center of the
spectral line at 10 K, reflecting the difference between
~,„for the exact and MTGI.E all-orders theories shown
in Fig. 11. In all other cases the position and shape of the
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FIG. 13. Same as Fig. 11 with T = 100 K. FIG. 15. Same as Fig. 11 with T =300 K.
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FIG. 16. Spectral density p(~) as a function of ~ at T = 10 K
for the MTGLE calculation using short-time derivative comput-
ed to all orders in the coupling constant and for exact theory.

spectral density curves calculated by MTGLE theory are
in close agreement with the exact theory. This agreement
extends to the MTGLE theory reproducing the substan-
tially non-Lorentzian shape shown in Figs. 16-20.

C. Frequency modulation of y(t)

The frequency of oscillation of j'(t) is not constant, as
is evident from the fact that the cosine functions in Eq.
(36) contain the function g (r). The time-dependent radi-
an frequency of j(t), which we will denote by co(t) and
call the radian frequency per period, can be calculated by
locating successive peaks in g(t) and computing co(t) as
2nlht) whe. re At is the time difference between succes-
sive peaks. This can be done for the exact theory using

FIG. 18. Same as Fig. 16 with T=100K.

Eqs. (35), (36), and (40) for MTGLE theory by first calcu-
lating p(co) and then using its Fourier transform given by
Eq. (6).

Figures 21—2S show co(t) as a function of time calculat-
ed from the exact and MTGLE all-orders theories. The
MTGLE fourth-order results are not very reliable, as
mentioned above, and have been omitted for clarity. The
general course of these curves is as follows. The time-
dependent frequency co(t) starts at co, as it must accord-

0

ing to the definition of co, and Eq. (22). It then decreases
0

sharply over many cycles to a value of ca(t) close to corn, „
given by Eq. (8). This sharp descent represents an initial
contraction of the lattice about the vibron oscillator, and
it is remarkable how well MTGLE theory reproduces the
exact theory in this region. Following the sharp descent,
~(t) calculated from the exact theory shows small oscilla-
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FIG. 17. Same as Fig. 16 with T =50 K. FIG. 19. Same as Fig. 16 with T=200 K.
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FIG. 20. Same as Fig. 16 with T =300 K. FIG. 22. Same as Fig. 21 with T =50 K.

1.000

0.998

T= 10K

tions about co,„and asymptotically approaches co,„
after a few cycles of the radian frequency co, . In this
same region co(t) calculated from MTGLE theory flattens
out at a value somewhat below co,„. Considering the
detailed nature of this test of MTGLE theory in the a-
helix parameter regime, it is clear that MTGLE theory
reproduces the exact results in a very satisfactory way.
In Figs. 22 —25 it should be noted the the calculation has
been cut off in time at a point where t is approximately 4v
and the modulus ofj'(t) has become small and co(t) is no
longer of significance.

The failure of MTGLE theory to reproduce the oscilla-
tions in c0(t) found from the exact theory is of consider-

able theoretical interest. In I we showed that MTGLE
theory gives an accurate representation of the first heat
bath function 8&(t) out to a time not less than

t=k
N C

(47)

where k is the maximum available GLE index. If, for ex-
ample, we use values for co, and co, given in the Appendix
for T=50 K, we find t=0.0289k ps. For a value of
k =8 as the maximum available for the all-orders calcula-
tion, t =0.23 ps. We thus expect the MTGLE calcula-
tion to reproduce faithfully the exact calculations out to
0.25 ps, as it does. To reproduce the oscillations in co(t)
would require values of k out to about k =30, which is
not computationally possible at present. Nevertheless,
the MTGLE result for the redshift of the natural frequen-

0.996

0,994

0.992 Exact

I 'I(

0 990 I ~ (I amrgPSIESIEqgq

0.988

MTGLE
All

Orders

1.000

0.998

0.996

0.994

0.992
MTQLE

ll Orders

T= 100 K

t (ps)

FIG. 21. Time-dependent radian frequency of j'(t) as a func-
tion of time calculated according to the exact and MTGLE all-
orders theories at T=10 K. The Hamiltonian parameters are
given in the text. The value of the Einstein frequency co, is

0
shown by a straight line, which is labeled.
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FIG. 23. Same as Fig. 21 with T = 100 K.
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FIG. 24. Same as Fig. 21 with T =200 K.

cy duo of the vibron oscillator is accurate in most cases to
about 10% out to very long times. We emphasize again
that this is a very stringent test of MTGLE theory in this
parameter regime.

D. Relaxation time and resonant frequency
as a function of temperature

The results of Secs. IV A and IV 8 can be seen from
another perspective by plotting ~ and co,„against tem-
perature. In Fig. 26 we show ~ as a function of tempera-
ture calculated from MTGLE theory using fourth-order
and all-orders moments and also calculated from the ex-
act theory. It can be seen that the agreement between the
exact and all-orders MTGLE theories is extremely good
with a small difference at the lowest temperature. The
MTGLE results using fourth-order moments is also in
reasonably good agreement with the two other calcula-

FIG. 26. Lifetime v in ps as a function of temperature. The
Hamiltonian parameters are given in the text. The MTGLE
calculations are carried to fourth order and to all orders in the
coupling constant.

tions except for signi6cant disagreement at 10 K. This
reemphasizes that in the a-helix parameter regime the
use of fourth-order moments is only marginally accept-
able.

Figure 27 shows co,„plotted against temperature for
the MTGLE theory using fourth-order and all-orders
moments and also calculated from the exact theory. The
story here is nearly the same for the exact and all-orders
MTGLE theories which show good agreement except for
the lowest temperature. The results using fourth-order
moments in MTGLE theory by way of contrast are in

poor agreement at most temperatures and emphasizes
once again that the use of fourth-order moments for cal-
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FIG. 25. Same as Fig. 21 with T =300 K.
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FIG. 27. co,„as a function of temperature. The Hamiltoni-

an parameters are given in the text. The MTGLE calculations
are carried to fourth order and to all orders in the coupling con-
stant.
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culating the resonant frequency of the spectral density
curves is unacceptable.

V. SUMMARY AND CONCLUSIONS

In a previous paper (I), we have developed an approach
to quantum molecular-time-scale generalized-Langevin-
equation (MTGLE) theory and applied it successfully to
calculating the spectral linewidth and redshift of a single
vibron oscillator coupled to a linear chain of molecules
comprising a phonon heat bath. We used the Davydov
Hamiltonian because an exact solution was available for
comparison with MTGLE theory. The Hamiltonian pa-
rameters used in I were in the range appropriate for cou-
pled vibrational systems in molecular crystals such as L-

alanine.
In this paper we extend the MTGLE and exact calcula-

tions of the same system to the parameter range ap-
propriate to the coupling of intramolecular carbon-
oxygen amide I stretching modes with low-frequency
acoustic phonons in the a-helix. This represents a 30-
fold increase in frequency of the vibron oscillator and a
1000-fold increase in the square of the nonlinear coupling
constant. We have computed curves of the time evolu-
tion of the modulus of the correlation function y(t) by
MTGLE theory which closely match results of the exact
theory at temperatures ranging from 10 to 300 K. We
have also calculated the time-dependent frequency t0(t) of
j'(t) and found satisfactory agreement with the exact
theory.

In this parameter regime we find two significant
differences from the previous calculations carried out in
the I.-alanine parameter regime, both related to computa-
tional problems. MTGLE theory depends on computing
a large number of moments of the spectral density p(t0)
associated with j'(t). In I we were able to calculate mo-
ments to fourth order in the coupling constant and to all
orders and found that the theory was insensitive to small
differences between the fourth-order and all-order mo-
ments. This was an advantage because of the greater ease
of calculating fourth-order moments and because more
than nine moments could be calculated. In the present
case we find there are substantial differences between the
fourth-order and all-orders MTGLE calculations, and the
fourth-order calculations do not give very satisfactory re-
sults.

The second difference is that it has not as yet been pos-
sible to calculate as many all-orders moments for the a-
helix parameter regime as was possible for the I-alanine
parameter regime. This implies that the first heat bath
function 8,(t) is only known accurately to shorter times
and shows up in less accurate values for the redshift of
the spectral density function and time-dependent frequen-
cy of co(t). The overall conclusion, however, is that
MTGLE theory is capable of calculating accurate
linewidths (or relaxation times) and satisfactory redshifts
for a wide range of temperatures in the a-helix parameter
regime if the spectral moments are calculated to sufficient
accuracy.

APPENDIX

for p;(to;) &0. Our goal in the Monte Carlo walk is to
reduce the number of peaks P and the area A. Note that
both of these quantities are positive definite.

Our Monte Carlo procedure uses the jump algorithms

and

new old+ fie e 2

new old+5 (cq
C C 7

(A2)

(A3)

where 5, and 5, are jump distances and % is a uniformly
distributed random number between 0 and 1. We accept
or reject a given jump according to the following pro-
cedure: We compute the optimization function P as

(A4)

We calculate the ratio R, as

R, =exp
TA

(A5)

where T~ is a specified "annealing temperature.
" If R,

is greater than 1 or greater than a random number %,
then we accept the move. At the present time we carry
out this simulated annealing by interactively changing 5„
5, , and T„after a specified number of attempted jumps
until we are satisfied with the value of P. The values of
~, and co, determined and used in this paper are given in
Table I.

In I we defined not only the approximation pf(co) to
p, (co) but also p', (co). The function p', (co) is a point or
"stick spectrum" approximation to p&(co). We refer to
Eq. (80) of I for specific details of the approximation. As

In this appendix we describe a procedure to determine
the constants co, and co, in Eq. (25). The need for this
arose because the method described in I was unstable in
the a-helix parameter regime and typically yielded oscil-
latory behavior for p*, (co) in Eq. (27). We note that p*, (co)
is determined by fixing co, and co, and computing the
coefficients ak such that a&=1 and the other 2% —1

coefficients satisfy the time derivative relationship in Eq.
(20) for m = 1. Further details of this calculation are pro-
vided in I. Our strategy herein is to carry out a Metropo-
lis Monte Carlo walk for the parameters co, and co, such
that certain features of pf(to) are optimized. These
features are obtained as follows: We first note that p", (co)
has band edges at (t0, —2', )' and (co, +2', )'~. We
tessellate this frequency range into equal-sized partitions
with on the order of 100 partitions. At each partition
point, which we label to;, we compute p*, (to;). Using
these discretized values, we determine first the number of
peaks P in the function. Second, we accumulate the area
under the curve of pf(to) in regions where p& (to;) &0 by
multiplying the magnitude of p;(co;) times the partition
width Leo. Thus, letting A be the accumulated area, we
have

(A 1)
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TABLE I. Values of co, and co, as a function of temperature.

2

COp

- 4

10

T =50K

10
50

100
200
300

MTGLE fourth order
1.015 439
1.001 230
0.927 619
1.075 238
1.072 099

0.010957
0.063 489
0.114576
0.106430
0.097 728

6

10
50

100
200
300

MTGLE all orders
1.350 774
1.069 742
1.057 660
1.049 280
1.060 772

0.035 389
0.012 896
0.019 361
0.033 653
0.041 796 0.9 1.0 1.2

we pointed out in I, agreement between p f(co) and p&(co)
typically led to well-behaved results. To show the level of
this agreement for the a-helix parameter regime, we plot
p& (co) and p', (co) in Fig. 28 for T =50 K using MTGLE
all-orders theory. The agreement is manifest. Similar
agreement is found at T=10, 100, 200, and 300 K.

Two points should be made in conclusion. First, the
final approximate p', (co), which we obtain correctly, fits
the first 2N —1 moments of p&(co) and is normalized.
This is ensured by our computation of the ak coefficients.
Second, as we pointed out in I, it does not matter how
one determines co, and co, . On the other hand, co, and co,
should be chosen in such a way as to optimize conver-
gence relative to the GLE index k. The method

FIG. 28. Comparison of p&*(co) and p& (u) for T =50 K.

represented here focuses on choosing co, and co, such that
p', (co) has the smallest number of peaks or oscillations as
possible and such that regions where pf(co)(0 are re-
duced. This procedure clearly optimally smooths p', (co)
so that the weights in each frequency interval hem are as
uniform as possible while still satisfying the constraints of
fitting the first 2N —1 moments of p, (co) and normaliza-
tion. The spectral density therefore approximates a dis-
tribution of maximum entropy as shown by Levine. ' We
continue to look for better ways to determine co, and co, .
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