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Suppression of the Josephson current through a narrow, mesoscopic, semiconductor
channel by a single impurity
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We study the Josephson current through a ballistic, normal, one-dimensional quantum channel in
contact with two superconducting electrodes. A single point impurity having reflection coefficient
R is placed in the normal conductor. The impurity couples the Andreev energy levels of forward
and reverse moving electrons inside the junction, opening energy gaps in the quasiparticle level
spectrum versus superconducting phase difFerence P. These "Andreev" energy gaps suppress the
Josephson current in much the same way as disorder suppresses the magnetic flux driven currents in
a normal mesoscopic ring. Finite temperature "energy averages" the contribution of Andreev levels
above the Fermi energy with those below p„ further suppressing the Josephson current. The portion
of the Josephson current carried by scattering states outside the superconducting gap is similarly
suppressed by disorder and finite temperature.

I. INTRODUCTION

The Josephson effect in a clean superconductor-
normal-superconductor (SNS) junction is very different
from the Josephson efFect in a tunnel junction. Coherent
Andreev reflection, ~ whereby an electron incident on a
superconductor from a normal conductor is reflected as a
hole, is the mechanism responsible for supercurrent flow
in clean SNS junctions. 2 Quasiparticles incident from the
normal region of an SNS junction are Andreev reflected
off the pair-potential discontinuity at each SN interface,
and their wave interference produces a set of resonant lev-
els which carry the Josephson current. Such a description
for the Josephson current assumes quasiparticles in the
normal region can move without losing phase informa-
tion, that is, it assumes the SNS junction is a mesoscopic
system.

When the normal region of the SNS junction forms
a quantum point contact, the natural Josephson cur-
rent scale is I, = eb./5 (Refs. 5 and 6) (2b, is the en-
ergy gap of the superconductor) and the current phase
relation is I(P) = I, sin(P/2). s'~ If a tunnel barrier is
then introduced into the normal region of the point con-
tact, electrons often reflect simply as electrons, rather
than as a hole. The current through such a dirty SNS
point contact then evolves gradually with decreasing
barrier transmissivity T into the usual Josephson form
I(P) = I, sin(P), where I, = eAT/25. In long and clean
SNS junctions, where the extent of the normal region
L is longer than the Bardeen-Cooper-SchriefFer (BCS)
healing length (o, the natural Josephson current scale is
I, = ev~/L (Refs. 2 and 15—18) (v~ is the Fermi veloc-
ity) and the current phase relation assumes a triangu-
lar shape. These developments, and other calculations
where different types of mesoscopic systems are embed-
ded in the normal region of an SNS junction, are
reviewed in Refs. 21 and 22.

In this paper we apply the Bogoliubov —de Gennes
equations2s 24 to describe the Josephson current in both
clean SNS junctions and in SNS junctions containing a
tunnel barrier. We obtain expressions for the Joseph-
son current versus superconducting phase difFerence P
for both short (L ( (o) and long (L ) (o) SNS junctions,
and which account for both the bound levels inside the
superconducting energy gap and scattering states out-
side the gap. We show that introducing a tunnel barrier
forces quasiparticles in the normal region to form stand-
ing waves at P = +n, so that the effect of disorder on the
Josephson current can be interpreted in a manner very
analogous to electrons confined to a normal mesoscopic

ringers
2s or to electrons in a spatially periodic potential.

Many magnetic flux sensitive effects predicted for nor-
mal mesoscopic rings 7 therefore have analogs for the
Josephson effect in SNS junctions.

II. SNS JUNCTION WITH AN IMPURITY

We model the SNS junctions by a step change in the
pair potential shown in Fig. 1, namely

b,eight, 2:(0
h(z) = 0, 0&z&L

Ae'~s, x )L.

This model for the pair potential requires that the su-
perconductor widen adiabatically to an in6nite width.
The large superconducting banks can then be viewed as
an "order parameter reservoir, " where the supercurrent
density is effectively zero. In that case, phase gradients of
the superconducting order parameter in the contacts, re-
quired to support supercurrent flow, are negligible com-
pared to phase gradients near the junction itself. The
disorder we describe by a single point impurity placed in
the junction
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FIG. 1. Scattering potential which describes a mesoscopic
Josephson junction. "Andreev" bound states form in the pair
potential well. Both the bound levels and scattering states
carry parts of the Josephson current.

V(x) = V,b(x —a), (2)

H(x) =
~

i,h ——eA(—z) i
+ V(x).
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2m I dz (4)

Equation (3) embodies the quasiparticle dispersion rela-
tion for a uniform superconductor,

2 2E'=
i

—p i
+a'n,

( 2m )
and does not depend on the specific form of the micro-
scopic Hamiltonian giving rise to the pairing potential.
We neglect the vector potential A, the electron spin, and
the self-consistency condition for b, (z). Neglecting the
self-consistency condition for A(x) is equivalent to ne-
glecting the proximity efFect.

The Andreev levels [the discrete eigenvalues E from
Eq. (3) occurring for lEl ( 6j are determined by match-
ing the solutions of Eq. (3) for a spatially uniform pair
potential at x = 0, x = a, and x = I. Details of this
procedure are given in Appendix A. For a clean SNS junc-
tion this was first done by Kulik, 2 who found the Andreev
levels are determined from

, (El (I & (Eb
2cos

/

—/+ /

—
/ /

—
/ +@=Rem.

&(.) E~)
Here (0 ——hvF/2A is the BCS healing length,
p2 —pi the superconducting phase difFerence, and n =
0, +1,+2, ... .

Equation (6) can be interpreted in terms of Bohr-
Sommerfeld quantization of the periodic electron-hole or-
bits in the normal region. s The term 2cos i(E/6) is
the phase shift acquired from the evanescent quasiparticle
waves penetrating into the supereonducting regions. The

where 0 (a & L.
The potentials 6(z) and V(x) enter the Bogoliubov —de

Gennes equation of motion for the quasi-partieles2s

(H()-~ &() & ( ()& ( ()I
&

&'( ) -~H'( ) -~j) & ( ))
where the one-electron Hamiltonian H(z) is

This effective phase n depends on the the normal electron
current transmission probability T, given in our point
defect model by

T =1 —B= 1

1+ (niV, /ri II;F)2

where hkF = /2, my and p is the Fermi energy. When
T ~ 1 we recover the Andreev levels for the clean junc-
tion, since o. ~ P. In the opposite limit of small trans-
mission, where T -+ 0, n also becomes small and is nearly
independent of the actual phase difFerence P. If the junc-
tion is long compared to the healing length (I ) (0), and
if an impurity is present (T g 1), o. also depends on the
particle's energy and the impurity position lI —2al.

To compute the Josephson current induced by the su-
perconducting phase difference, one must compute both
the electrical current I~+(P) carried by quasiparticles oc-
cupying each Andreev level E+(P) ("discrete" levels with
lE~+~ ( 6) and the imbalance I(E,P) in the electrical
current per unit energy carried by quasiparticles flowing
in the "continuum" levels (where lEl ) b,). Once both
I~+(P) and I(E, Q) are known, the total current can be
written down if one knows the occupation probabilty for
these energy levels. Since the Josephson current flows
near equilibrium, we assume that the single particle lev-
els are thermally populated according to the Fermi dis-
tribution function f(E). We therefore obtain the contri-
bution Ig(P) to the Josephson current from the discrete
spectrum as

Id, (4) = ) .(I.+(4)f(E. (&)) + I.(4)f(E. (&))j

and the contribution I,(P) to the Josephson current from
the continuous spectrum as

I,(P) = I(E 4)f(E)dE

term (EI /A(0) is the phase shift acquired from free elec-
tron and hole propagation in the normal region. Finally
the superconducting phase difference P enters Eq. (6) be-
cause, in Andreev reflection, the reflected electron and
holes acquire an additional phase shift equal to the phase
of the superconducting order parameter. Changing P
therefore affects the energy levels in a manner similar to
changing the size of a con6ning potential well in ordinary
quantum mechanics.

In the presence of a point impurity potential V(x),
Eq. (6) is modified tos

, (E (I l (El
2cos '/ — +/ —

i /

—/+o. =2~n,
&4) t, ~)

where the "effective phase" o, is determined from

(I,- 2a& (E'i
cos(o;) = T cos(P) + R cos

~ ~ ~

—
~

. (8)k ) 4&)
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The total supercurrent I(P) is then computed from

I(P) = Ig(P) + I,(P) (12)

L+ 2((E-'(4)) '

In this viewpoint only energies below the Fermi energy
(E & 0) contribute to the Josephson current flow at
T = 0. An additional contribution to the Josephson
current results if the pair potential itself changes with
superconducting phase difference. s

For a clean junction (R = 0), we obtain the electrical
current24 I+(P) carried by each occupied Andreev level
from the normalized quasiparticle wave functions u(x)
and v(x) as

pendix B) the continuum contribution I,(P) for a clean
SNS junction to be

2e t'

I.(4) = — +
h ( ~ )

E dE
y) D(E y)

I f(E)d

where the function D(E, P) is

D(E~4') = uo+ "o 2uovocos
~

—
I

~

—
I +P4 4, , (El ('Ll

.«) &4~

(18)
Here uo and vp are the standard BCS "coherence" factors

where ((E) is the energy dependent healing length24

(hvF& ( 6 ~ ( b,

& 2& r &V'&2 —E2& EV'&2 —E2&
'

(14)

arid

QE2 Q2
2uo ——1+

QE2 g2
2vo

(19)

(20)

and E+(P) is found from Eq. (6). One could, in prin-
ciple, perform the same calculation with the impurity
present. Unfortunately, the analytical calculation proves
intractable. However, if such a calculation could be done,
it must yield

evF T sin(P) 1

I, + 2((E+(P)) sin(n)

with E+(P) now found from Eqs. (7) and (8). Here p is
a "feedback" factor

( h l ( evF & ( Rp= 1+
&2e&& «+ 2((E'(4)) & &»n(n) r

(L —2al . ((I —2a)E+(P) &k)&&k
Equations (15) and (16) follow from free energy consid-
erations given below.

The continuous spectrum also contributes to the
Josephson current flow in a long SNS junction having
L ) (p. This "continuous spectrum" can be viewed
as being composed of "leaky" Andreev levels. ir When
~E~ ) b, , it is possible for either the electron or hole
composing the Andreev level to escape from the junction
by simply transmitting over the pair potential. Although
this leakage away from the junction leads to a finite life-
time for the Andreev levels, reducing the total contri-
bution to I(E,P) from the continuum Andreev level and
spreading it out over a finite-energy range, these broad-
ened Andreev levels nonetheless exist and contribute sig-
nificantly to the supercurrent flow in long SNS junctions.

We find it most convenient to calculate the continuum
current I,(P) using the quasiparticle transmission formal-
ism of van Wees, Lenssen, and Harmans. The method
of van Wees, Lenssen, and Harmans is closely analo-
gous to the Landauer-Buttiker transmission formalism
for normal currents, and is mathematically equivalent
to the transmission formalism of Furusaki, Takayanagi,
and Tsukada. 2p Applying this formalism, we find (in Ap-

The contribution I,(g) to the Josephson current in a
clean SNS junction has been calculated
previously. ' s s 2p We feel Eq. (17) is probably identical
to the analytical results of Ishii, is Svidzinski, Antsygina,
and Bratus, is and Furusaki, Takayanagi, and Tsukada.
In the presence of the point impurity, Eq. (17) is modified
to

2e (-I (&) = —T + luo —vpl
~ )

( 1
x

i(D(E, —n)

1 ) sin(P)
(E ) ~~;„(

2e dI'(P)
dP

(22)

Equation (22) provides additional insight into the super-
current formulas presented in this section. Since Eqs. (7)

(21)
with the effective phase n defined in Eq. (8). A compu-
tation given in Appendix B yields Eq. (21).

Equations (17) and (21) show that the continuous spec-
trum makes no contribution to the Josephson current if
L (( (p, since Eq. (18) gives D(E, n) = D(E, —n) when
L (( (p. Further, only energies within a few 6 of the
Fermi level make any sizable contribution to I,(P), since
the phase sensitive term in Eq. (18) for D(E, P) is sig-
nificant only within a few b of the Fermi energy. Thus,
the Josephson current at T = 0 is not limited to flow-

ing only at the Fermi energy (the case for normal cur-
rents at T = 0 and small bias voltages), or even limited
to flow within an energy range 6 below the Fermi level
(false only if L (( (p), but flows over an energy range ex-
tending several 6 below the Fermi energy when L ) (p.
Equations (17) and (21) also show that the continuum
contribution I,(P) is negligible near P = +x, and that
I,(g = her) = 0.

An alternate method to compute Josephson currents
requires the change in Helmholtz free energy F with su-
perconducting phase difference~3 ~~ 3~ 33
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and (8) hold for the SNS junction with an impurity, our
results for the dirty SNS junction follow from those of the
clean SNS junction plus the chain rule of difFerentiation

dF
dP

dF da
da dP' (23)

III. JUNCTION SHORTER THAN THE
HEALING LENGTH

In the limit of a "point contact" or "short" junction,
for which I « (s, we immediately find from Eq. (8) that
the Andreev level spectrum is determined as

E+ = +6 cos(a/2) = +b, 1 —T sin (P/2),

where

cos(a) = Tcos(P) + R.

(25)

(26)

Equation (25) is a special case of the more general ex-
pression derived by Beenakker~s when multiple quantum
channels are open.

We graph Eq. (25) in Fig. 2.s4 The dotted lines show

where we have from Eq. (8)

Ba T sin(P)
BP ~ sin(a)

'

The factor (24) appears both in our expression (15) for
the current I+(P) carried by each Andreev level and in
the expression (21) for the continuum supercurrent I,(P).
As we argue more precisely in Appendix C, Eq. (23) for
the derivative of the free energy, together with Eqs. (7)
and (8), implies that Eq. (15) for I„(P)in the dirty junc-
tion follows from Eq. (13) for the clean junction. By sim-
ilar arguments, Eq. (21) for I,(P) in the dirty junction
follows from Eq. (17) for the clean junction.

the position of the Andreev levels versus phase difFerence
when no impurities are present. s s The level E+(P) cor-
responds to an electron traveling in the negative-x direc-
tion, while the level E (P) describes an electron moving
along the positive-2: direction. These two sets of An-
dreev levels are independent when no impurity is present
in the junction. However, since the impurity will reflect
electrons, it will couple these unperturbed Andreev lev-
els. This effect is most pronounced when the levels are
degenerate in energy, i.e. , at P = km, so that the impu-
rity opens an energy gap in the Andreev level spectrum
versus superconducting phase difference having size

Ez,p
——2hv R. (27)

Writing this in terms of the phase difFerence P, we find

Figure 2 is reminiscent of the effects of impurities on
the energy level spectrum of a small normal metal ring
subject to an Aharonov-Bohm flux, s 2s and has also
been previously suggested for a composite ring made of
part normal and part superconducting material when the
normal segment is disordered. M However, the motion of
Andreev reflected electrons in the SNS junction is already
periodic, so that a ring geometry (or other type of spa-
tially periodic potential) is not required for V(z) to open
gaps in the quasiparticle energy spectrum. It is these
"standing waves" forming in the energy level spectrum
E+(P), due to the impurity, which suppress the Joseph-
son current.

Using the properties E+ = Eand f—(E+) = 1—
f(E ), we readily obtain from Eqs. (25), (15), and (10)

I(P) = T sin(a/2)
~ .

~

tanh
~

„cos(a/2) ~

.
eA . (sin(P) ) ( 6

rI sin a ) (2kT

(28)

1.0

I(P) = T sin(P)

1 —T sin (P/2))

0.0-IP
LU

./
X/
./X

x tanh
~

1 —Tsin (P/2) ~,l r
(29)

again a limiting case of the multichannel formula from
Ref. 13. The single-channel formula, Eq. (29), has also
been obtained previously. s

We consider the zero-temperature limit of Eqs. (28)
and (29) in Fig. 3, where we can set tanh(E+/2kT) = l.
In the kT = 0 case, Eq. (28) becomes

-1.0
0.00 0.25 0.50 0.75 1.00

Phase (2n)

FIG. 2. Andreev levels E+(P) ss s function of supercon-
dueting phase difFerence P for s junction shorter than the
healing length (L « (o). The unperturbed levels in the clean
junction (dotted), corresponding to s left-moving (E+) snd
right-moving (E ) electrons, become coupled by the impu-
rity. As s result, the energy degeneracy at P = +m is lifted
and an energy gsp of size Ez,~

——2b, ~R appears in the qussi-
particle energy spectrum for the dirty SNS junction (solid).

(30)

Equation (30) interpolates nicely between the point con-
tact and tunnel junction, as discussed in Refs. 13 and 21.
When the transmission is nearly one, so that the effective
phase difference a P, we obtain the result for a point
contact, I(P) = (7rGE/e) sin(P/2), where G = 2e2/h.
In the other limit, where the transmission T is small,
the effective phase a is also small and is nearly inde-
pendent of P. We can then approximate sin(a) = a
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FIG. 3. The "discretized" Josephson current in a clean
point contact (dotted) is suppressed by the presence of a tun-
nel barrier (solid). Regions analogous to "negative difFerential
resistance" in a normal conductor, vrhere the Josephson cur-
rent decreases as the phase difFerence increases, are produced
by the energy gap in Fig. 2.

so that we obtain the result for a tunnel junction~4

I(P) = (~Gb/2e) sin(P), where the normal conductance
is given by a Landauer-type formula G = 2ezT/h. 4

The effect of finite temperature on the Josephson cur-
rent is qualitatively similar to that of impurity scattering,
since both introduce a mixture of Andreev levels associ-
ated with left- and right-moving electrons into the super-
current. The temperature dependence of Eq. (28) arises
from the combination of Fermi factors

f(E ) —f(E+) = 1 —2f(E+) = tanh
~

(E+ &

q2kT) ' (31)

e6z
I(g) = Tsin(P),

C

(32)

which has the same sin(p) dependence as a tunnel junc-
tion, again illustrating the similar effects of disorder
and finite temperature on the Josephson current. Equs
tion (32) resembles the well-known result of Aslsmazov
and Larkinss for the Josephson current through a point
contact calculated from Ginzburg-Landau theory. But
since the Ginzburg-Landau theory is valid only near T„
it will never produce the correct low-temperature form
sin(P/2) for the clean point contact.

The sharp discontinuity at P = +sr for the clean junc-
tion at zero temperature arises from the sharp disconti-
nuity in the Fermi function at T = 0. 7 When P = m the
Andreev level E (carrying a current I = e6/5) moves
above the Fermi level, while the level E+ (carrying a cur-
rent I+ = —eb, /5) passes below the Fermi level. Thus,
the level E empties while E+ becomes populated. This
change in Andreev level occupation produces a disconti-
nuity in the supercurrent of 2eA/h. On the other hand,
when the transmission T is small, the levels E+ and E

so that the temperature dependence of the Josephson
current can be viewed as thermally "energy averaging" s~

the contribution of some left-moving electrons above the
Fermi energy with right-moving ones below p, . The high-
temperature limit of Eq. (28) as kT ~ kT, is's

have combined to form a standing wave with dE+/dP = 0
when P = +7r, so that the Josephson current falls to zero
near P = kz.

One would naively predict a critical "depairing
current" zs ss 4P of order eb /5 for a one-dimensional (1D)
superconductor. In the presence of a uniform superfluid
flow having velocity v„ the quasiparticle energies are
shifted by an amount 6E = pz. v„where pz is the Fermi
momentum. Thus, the quasiparticle energy gap goes to
zero when 6 = p~v„where v, is the critical "depairing
velocity, " an argument originally advanced by Landau. 4P

All the electrons below the Fermi energy then move at
velocity v„giving a critical current I, of

2~ 't e 2

which is correct to within a numerical factor of order
unity. A better treatment4~ would probably shghtiy in-
crease the numerical value of this current. Thus, the
"discretization of the Josephson current" in a supercon-
ducting quantum point contact, s which follows as a lim-
iting case of Eq. (6), can be understood as simply the
Landau depairing current of a 1D superconductor.

IV. JUNCTION LONGER THAN THE HEALING
LENGTH

When the junction length L becomes comparable to
the BCS healing length (p, more Andreev levels become
bound in the pair potential well and the continuum levels
begin to carry a supercurrent. Despite these differences
in detail, the basic picture given in the preceding section
is still qualitatively correct. Quasiparticles trapped in the
normal region of the SNS junction set up standing waves
near P = ks when an impurity is present, suppressing
the Josephson current.

Figure 4 shows the Andreev levels [from Eqs. (7) and

(8)] in a clean SNS junction (dashed line) and when an
impurity is placed in the normal region (solid line). 4z

The discrete energy level spectrum is quite similar to the
normal mesoscopic ringM and to electrons in a periodic
lattice. The energy gap near E = 0 for P = rr, a L/2,
and small R can be found (Appendix D) as

Es~p 2v R (hvF/L, g), (34)

where L,& ——(L+ 2(p) +R(L —2a) z. For both long and
short SNS junctions, the Andreev gap therefore obeys

vrEs, p
- ~BI,C p, (35)

where I, is the critical current of the clean junction and
C p = h/e is the normal metal flux quantum. The state-
ment (35) is exact for a short junction.

We plot the Josephson current corresponding to Fig. 4
in Fig. 5. In Fig. 5(a) we recover the known result for
the Josephson current (solid) in a long and clean SNS
junction. The current phase relation is triangular
with a critical current I~ = evt;/(L+ 2(p). The critical
current I, is a consequence solely of the current Ig(P) car-
ried by the Andreev levels (short dashes), since Eq. (21)
shows the continuum current is zero at P = vr. The crit-
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1.0

m 0.0
4Pc

LU

culation) that the critical current in the dirty junction
is less than T/2 times the critical current of the clean
junction. For a more transparent impurity, these ratios
would be limited by the transmission coefficient T.

The continuum contribution I,(P) to the Josephson
current is suppressed by finite temperature in the same
way as the discrete contribution I~(g). Equation (21)
can be written as an integral solely over the excitation
spectrum as

Q
I~ I I I~I

0.00 0.25 0.50 0.75 1.00
Phase (2n}

I,($) = T-2e

ti ."."'"(2f(E)—I)«
sin a (36)

FIG. 4. Andreev levels in a long (L ) (0) junction with
(solid) and without (dashed) an impurity present. As for the
short junction, Andreev gaps open in the quasiparticle level
spectrum. The analogy with "free electron" and "periodic
potential" energy bands is evident in the 6gure.

ical current I, = evF/(L + 2(0) follows from Eq. (].3)
and holds for all values of L, even for L (( (s when the
current phase relation is not triangular. The discretized
Josephson current from Sec. III also follows by taking
L ~ 0 in this formula, namely I, = evF/2(o = eA/h.

To obtain the correct dependence of the supercurrent
on the phase (triangular as L ~ oo), it is necessary to
account for the current I,(P) carried in the continuum
levels (long dashes). The continuum currents can be un-
derstood naively and qualitatively by extrapolating the
energy levels from Fig. 4 into the continuum and, ignor-
ing their broadening, treating these continuum Andreev
levels "as if" they carried the current from Eqs. (10) and
(C4). Thus, the continuum currents I,(g) augment the
discrete level currents I~(P) before the first Andreev level
moves into the continuum near P x/4. I,(P) opposes
I~(P) after the Andreev level closest to E = —b, be-
comes unbound. (The precise value of P where the low-
est Andreev level unbinds depends on the junction length
L.) We note the continuum supercurrent I,(P) is not
sinusoidal. is We also note that I(P) is a "small" differ-
ence between many larger currents~ 7 carried in each
discrete level, along with the larger continuum currents.

The Josephson current through a long and dirty junc-
tion is shown in Fig. 5(b). The triangular current phase
relation for the clean junction has evolved into an ap-
proximately sinusoidal dependence (solid). Neither I,(P)
(long dashes) or Id(P) (short dashes) appears to be si-
nusoidal, although their sum I(P) is approximately sinu-
soidal. For a long and dirty SNS junction, the continuum
contribution I,(P) is not only essential to obtain a sinu-
soidal I(P), but is also required to obtain the correct
magnitude of the critical current. The continuum levels
now contribute to the critical current magnitude, since I,
no longer occurs at P = her. The parameters chosen4~ for
this calculation give a transmission probability T = &, so
that comparing Figs. 5(a) and 5(b) reveals (for this cal-

The temperature-dependent factor in Eq. (36) is 1—
2f(E) = tanh(E/2lj. .T), implying the same physics of
thermal "energy averaging" s" for currents carried in the
continuum levels as that discussed for the discrete levels
in Sec. III. Thus, in this viewpoint, all the Josephson cur-
rent flowing in the continuum at T = 0 is carried below
the superconducting gap at E & —b, .

One could plausibly argue that moving the single im-
purity inside the normal region would produce meso-
scopic fluctuationsis 4s in the critical current I,. Equa-

0.2

Q.1

CII
0.0

CI
o 0

-0.2-
0.0 0.2 0.4 0.6 0.8 1.0

Phase (2 7r}

0.10

0.05-
CI

0.00
CI
ha

-0.05-

-0.10
0.0 0.2 0.4 0.6 0.8 1.0

Phase (2 vr}

FIG. 5. Josephson current (solid) in a long junction that
(a) is clean (b) has an impurity. The impurity rounds the tri-
angular current versus phase relation into a sinusoidal shape,
similar to its effect on the short SNS junction. Currents Bow-
ing in the scattering continuum (long dashes) and discrete
levels (short dashes) combine to give the total Josephson cur-
rent.
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tions (7) and (8) show that moving the single impurity
will change the Andreev energy levels E+ in a long junc-
tion (L » (0). However, it is not obvious that these fluc-
tuating energy levels will cause the Josephson current to
fluctuate. For example, it was originally believed from
an analogous argument that the critical current would
oscillate by varying L even in a clean SNS junction.
Later it was realized that the critical current does
not oscillate, but instead decreases monotonically with L
as I, = ev~/(L+ 2(0). This is because, as the various
Andreev levels are forced into the continuum by reducing
L, they do not immediately stop carrying a supercurrent.
Instead, their contribution to I, gradually decreases as
they move farther outside the superconducting gap. A
similar situation holds when moving the single impurity
inside the SNS junction.

Moving the impurity away from the center of the junc-
tion (a = L/2) monotonically reduces the critical current
I, in Fig. 6, showing that I, does not fluctuate or os-
cillate with a. As the Andreev levels are forced farther
away from the Fermi level by moving the impurity away
from the center of the SNS junction, their contribution to
I, gradually decreases. The approximate analysis given
in Appendix D agrees with this numerical result. If the
impurity is moved a few healing lengths inside one of the
superconducting contacts, the critical current should re-
cover its full ballistic value (I;"'" = 0.2eb, /5 for the
parameters used in Fig. 6), though we have not per-
formed this calculation. In contrast, when the contacts
are in their normal state, moving the impurity has no ef-
fect on the conductance. The normal state conductance4
G = 2ezT/h does not fluctuate as a function of impu-
rity position a, since the transmission coefficient T from
Eq. (9) is independent of the impurity position. There-
fore, the changing I, as a function of impurity position a
in Fig. 6 is a mesoscopic efFect due to the interference of
electron waves with the pair potential discontinuities at
each SN interface. Mesoscopic fluctuations of the critical
current studied in Refs. 13 and 43 have a difFerent ori-
gin, arising from the wave interference between multiple
impurity scattering events inside the normal region.

V. CONCLUSIONS

Bulk supercurrents flow in response to gradients
in the phase P(2:) of the order parameter h(x)
~A(x) ~

exp[i/(x) j, and are maximum when the phase gra-
dient VP(x) is large. From this perspective, the Joseph-
son relation for a tunnel junction, I = I, sin(P), is
quite counterintuitive. The Josephson tunneling current
I = I, sin(P) decreases as the driving phase difFerence in-
creases, and is smallest when the superconducting phase
difference is a maximum. The current phase relation
I = I, sin(P) is thus analogous to negative difFerential
resistance in a normal conductor, where the normal cur-
rent decreases as the driving voltage difference increases.

A more intuitive current phase relation exists for clean
SNS junctions. For either long or short junctions, the
Josephson current always increases as the superconduct-
ing phase difference increases, and is maximum when the
superconducting phase difference is a maximum. Only
when an impurity, tunnel barrier, or geometrical irreg-
ularity is present in the junction is the supercurrent
zero when the superconducting phase difference is max-
imum at P = her. The quasiparticle energy gap open-
ing at P = +x in the Andreev level spectrum versus su-
perconducting phase difFerence when these imperfections
are present, and the associated formation of "standing
waves" with dE+/dP = 0, explain the resulting suppres-
sion of the Josephson current. Finite temperature also
mixes in a contribution to the Josephson current from the
Andreev levels associated with reverse-moving electrons
to those of the forward-moving ones, via thermal "energy
averaging" instead of directly modifying the energy level
spectrum, and therefore has a qualitatively similar effect
as disorder on suppressing the Josephson current.

ACKNOWLEDGMENTS
We thank Terry Orlando, Supriyo Datta, and George

Rittenhouse for discussions. We gratefully acknowledge
support from the David and Lucile Packard Foundation
and from the Indiana Center for Innovative Supercon-
ductor Technology.

CV
g0.80-
O

I-

e Q75

CO
V

~~

0 070
Q.Q

I I

1.Q 2.Q 3.0
Impurity Position a (p.m) 0-

-kF
=k

kF

V(x)
ae'&& ae'&2

0 a L -kF
=k

kF

APPENDIX A: SCATTERING FROM THE SNS
POTENTIAL

In this appendix we obtain the electrical currentz4
transmission amplitude for the scattering of an electron-
like excitation incident from the left contact on the poten-
tials b, (z) and V(z), shown schematically in Fig. 7. To

FIG. 6. Moving the lone impurity away from the center of
the normal region suppresses the Josephson current in a long
SNS junction, even though the normal state conductance of
the junction remains unchanged. This mesoscopic effect is
due to wave interference of the quasiparticles with the dis-
continuity in the pairing potential.

FIG. 7. An electronlike excitation incident kom the left
contact generates both reflected and transmitted quasiparti-
cles. The transmission amplitudes C and D as a function of
the superconducting phase difference P2 —Pq determine the
Josephson current.
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5 k2
h

2m
(A2)

with (ke
~

) kF and ikh, i
( ki-. The "excitation spectrum"

of this dispersion law, which includes only the states hav-
ing E ) 0, is plotted in Fig. 7.

For a homogeneous superconductor having a pair po-
tential b, (z) = b,e'~i, Eq. (3) has both electronlike so-
lutions for E & 0,

(u(xj&~ uoe'e|), +is,z
&v(*))

and holelike solutions for E & 0,

u(x)& vpe'&i & +ik,x~

~

v(x) ) up )
h

(AS)

(A4)

The "coherence" factors up and vp are given by Eqs. (19)
and (20). For Es & A2, u(x) and v(z) decay inside
the superconductor24 with an energy dependent healing
length ((E) given in Eq. (14). The current carried by
normal electrons in the N region (for E~ ( A~) is then
converted to a supercurrent within a length ((E) inside
the superconductor.

We consider now an electronlike excitation incident
from the left contact above the superconducting gap,
as shown in Fig. 7. The waves generated by this in-
cident electron can be grouped into four sets (denoted
by coefficients A, B, C, and D) which properly include
the Andreev reflections. For the electronlike excitations
transmitted into right contact we have

e
~

roe' ') ~k. (z —I j ( ) I j
Vp

supported by electrons in the normal region

(A5)

p ieike(z+)(a(z(L) (A6)

and holes in the normal region

c~
(0

Vo
(A7)

Similarly, for holelike excitations transmitted into the
right contact, the waves

do this, we match the solutions of Eq. (3) in the regions
of uniform pair potential shown in Fig. 1. The poles of
this transmission amplitude4s yield Eqs. (7) and (8) for
the discrete Andreev levels, and therefore the electrical
current I+((tj) carried by the discrete levels. Appendix B
shows how the transmission coefficient found in this ap-
pendix can be used to obtain Eq. (21) for the continuum
current Ie(P).

The energy dispersion curve from Eq. (5) can be de-
scribed by the wave vectors k, and kg, where

h k2
p QE2 +2 (Al)

2m
and

I' ."&2&,—k. ( -~) (A9)

and

(A13)

Ai "' ~e '"ex (x&0)
vp )'

supporting electrons in the normal region

(A15)

~e 'e* (0&x&a), (A16)

and holes

A
~ ~

e '""* (0 ( x ( a).
('» if *-
Evp)

The scattered waves written above assume p )) 6, , so
that we can neglect the difference (k, —kl, ) except when it
appears in an exponent. This "Andreev approximation"
is usually made in most works on the Josephson effect in
SNS junctions.

The scattering matrix4s (for both electrons and holes)
connects the current amplitudes of incoming and outgo-
ing waves at the impurity (z = a). The scattering matrix
for electrons at x = a gives

(A17)

(~„,iy, ,ik, (a —L,) )QOC 8

Aupei(t'i e ik, a )

(~(~ j.(k ji &(e-~+I)".'~~.'""~
k~(ke) t(ke) ) I Dv eig2e —ik, (a —&)

(A18)

~

e '-"h(z —) (a ( z ( I.)
('» if -z-L,

(Alo)
&«)

are required. I use the notation k, and kh to denote the
wave vectors in Eqs. (Al) and (A2) when 6 = 0.

A similar procedure applied to the left SN interface is

only slightly complicated by the presence of an incident
electronlike wave (source term). This source term, which
carries an electrical current of ehke/m, is

o)
fu e'4'il

A)
The Andreev reflected holelike excitation is

"o) ( "p )
The resulting electrons in the normal region are

~

B ——+ —
~ i

~e' ' (0(z(a),vp up& (v cilia
up vp) q 0 )

and holes

B
i ~

e'""* (0 & z & a).iO~, k x (A14)

The electronlike excitations reflected into the left contact
are

D
~

vpe
~

—ikh(x —I)
( ) I)) (AS) Equation (A18) contains the source term. A similar scat-

tering matrix connects the the hole current amplitudes
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(D«e —ikh, (a —I ) )
B«elk, a )

and

-i(mV. /h'k)r 1+i(rnV, /h k)
(A21)

t't" (kh) r'(kh)l ~ A»e
(r'(kh) &'(4) & (C„„i4(&—L) )

(A19)

t(k) = 1

1+ i(mV, /5 k)
(A20)

where, for our point scatterer model, the current trans-
mission and reflection amplitudes are

The electrical currentz4 flowing into the right contact,
due to the electrical current imposed from the left con-
tact, is

Jc = —k (ICI'- ID]'). (A22)

Hence, we must compute the coefficients C and D to
obtain the electrical current. The matrix equation for C
1S

(»l' «(k.) r(k. )&

q«& gr(k, ) t(k, ) & ~

0

ice—i(k, —ki, )(a —L) )

) „e(k ) ) (e—i(kz —kh, )(a —L)e—iP

0r ("I ) t (kl ) & ( 0

0 1 t'c) (~(i.).(i,)i i-(~)' e'""&
i(k, —kh)a) (~'& (r(k, ) t(k, ) & (

-
0

Here C' and A' are the same as C and A up to a phase factor, so that C' = Cexp(ip) exp[ik, (a —L)] and A' =
A exp( —ik, a). The analogous matrix equation for D is

(») (t (k.) r (k.)i &e-'(" -"~)('-L)e-'&
(«& Er'(ki, ) t'(kh) & 0

0

ei(k, —kp, )a)

f' t(k, ) r(k, ) & (e'(k —kh)'
xi

gr(k, ) t(k, )& ~

0 l (B'l
igb —i(k, —k„)(a —L) ) (D &

f ve l f t"(ka) r'(ki, ) ) ~ e i(k, —kg) (a —L)e ig
+

I

—'
l l (k.) t'(k. ) & 0

o 1 (~(~.).(~,)& & i —(~)' .'i"&
,i(k, —k&)a) gr(k, ) t(k, ) &

Here B' and D' are the same as B and D up to a phase factor, where B' = Bexp(iki, a) and D' = D exp[—ikg(a —L)].
Equations (A23) and (A24) are in a form which can be easily generalized to arbitrary elastic scattering potentials

and multiple-moded electron waveguides. Further, Eqs. (A23) and (A24) can be interpreted directly in terms of the
phase shifts acquired by the electron and hole Feynman paths multiply reflected from the scatterer and multiply
Andreev reflected from the SN boundaries. The remaining considerations here and in Appendix B now specialize to
the case where the transmission amplitude is independent of energy.

We directly invert Eqs. (A23) and (A24) to find

i@ i(k, —kp, )L
E«&

ia i(k, —kg)L
&«&

2
ik, a

&«&

(» ~~
—ia i(k, —kh, )L

(A25)
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and

—ip t(k, —kh, )(L —a)+„t t'(k, —kh, )a
I

1 I
"o

I

ik, a
(vo't

&«i
E«) («)

(A26)

The angle a in Eqs. (A25) and (A26) is determined from

cos(cr) = T cos(P) + 8cos[(kg —k, )(L —2a)]. (A27)

If we remove the tunnel barrier (o. ~ P and t ~ 1)
and set the phase difFerence P to zero, Eq. (A25) gives
the result of Demers and Griffin4r for the transmission
amplitude of an electronlike excitation between two su-
perconductors.

The discrete levels in the SNS potential with a tunnel
barrier are found4s by computing the poles of the trans-
mission amplitudes t

' or D'. Therefore, the Andreev
levels are determined from

2

&«)
Since (vo/«)2 = exp[2i cos i(E/6)] for IEI
Eq. (A28) reduces to

2 cos '(E/b, ) + (k, —kp, )Lja = 2trn.

(A28)

(A29)

ER

Using k, —kg kJ;E/p = E/h(o, Eqs. (A27) and (A29)
reduce to Eqs. (7) and (8).

Equations (7) and (8) also determine the location of
the "leaky" Andreev levels in the continuum. In the con-
tinuum, the solution of Eqs. (7) and (8) will occur at a
complex energy E = ER + t'El. The imaginary part of
this pole can then be interpreted as the lifetime (5/IEI I)
of the leaky Andreev level. The locations of both the dis-
crete poles and the continuum poles of the transmission
amplitude are shown in Fig. 8.

APPENDIX B:CONTINUUM
SUPERCURRENTS

Continuum supercurrents can only flow if there is an
imbalance in the electrical currents carried by the quasi-
particles incident from the left and right superconduct-
ing contacts. The imbalance I(E, Q) will be propor-
tional to the difFerence in the transmission coefflcients
Tr', R(E, p) TI' R(—E,p) (transmission from left to right
minus transmission from right to left) for electrical cur-
rents across the SNS junction. This conclusion follows
because, near equilibrium, quantum states in the left and
right contacts are equally thermally populated according
to the Fermi function f(E) at each energy, and because
there are no inelastic scattering processes in the junction.

To obtain the continuum currents we invoke the in-
sights of van Wees, Lenssen, and Harmans. is Refer-
ence 18 notes that that the electrical current I(E) car-
ried by a single filled quantum state per unit energy is
I(E) = ev„(E)N+(E), where v„ is the phase velocity and
N+(E) the superconducting density of states for quasi-
particles moving in one direction. We can write this cur-
rent as I(E) = e(v„(E)/vs(E))vs(E)N~+(E), where vs is
the group velocity. (Reference 24 defines these phase
and group velocities. ) Just as in the normal metal, 4

the group velocity times the density of states cancels to
us(E) N+ (E) = 1/h. The other factor,

(E)/ (E) =1/I o' — o'I = N.'(E)/N.'(E),

is simply the ratio of the density of states in the supercon-
ductor to the density of states in the normal metal. [This
factor N+(E)/N+(E) appears prominently in the study
of superconducting tunnel junctions. ] The electrical cur-
rent carried by electronhke excitations in the continuum
is therefore

"Leaky"
Andreev
Levels

Andreev
x Bound

&, ~ States

E)

2e (
I:(P)=-

a ) Iuo "ol

x [Tl', R(E) P) —Tl', R(E, P)] f(E)dE. (Bl)

FIG. 8. Poles of the quasiparticle transmission amplitude
determine the natural eigenergies of the SNS potential. Vfell-

defined quantum levels exist inside the superconducting en-

ergy gap, vrhile scattering resonances outside the gap have a
finit~ lif~tim~ h/IEI I

TL,-R(E 4') = I&'I' —ID'I' (B2)

The additional factor of 2 in Eq. (Bl) comes from the
electron spin.

We now evaluate the transmission coefficients appear-
ing in Eq. (Bl) for our model problem. The transmission
coefficient for the electrical currents carried by electron-
like excitations incident from the left contact is
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with C' and D' determined from Eqs. (A25) and (A26)
in Appendix A. Computing these quantities, we find

Left Contact Right Contact

and

D(E &)
I o

— ol D(E )D(E )

DI 2 2 2 2 2T++O'UO2 2

o "ol D(E

0

V{x)
b,e'&~ b,e'»

{8-MATRIX}

x (1+cos[(k, —k~)(I, —2a) —p] j, (B4)

where D(E, n) is given by Eq. (18). Tg R(E, p) is easily
found from T& &(E,P) by the transformations P -+ —P
and a -+ (I —a). Therefore,

Ti R(E &) &i-~—(E &)

FIG. 10. Both electronlike and holelike states are incident
on the SNS potential from all possible branches of the disper-
sion curve. These quantum levels are populated according to
the Fermi function f(E), even in the presence of supercurrent
Bow.

2 2D(E 0) —D(E 0)—='l"' "'l'
D(E )D(E -'-)

Equation (B5) can be recast as

Tg,~It (E, p) —Tf,~g(E, p)

& & sin(P) D(E, o,) —D(E, —o;)

sin(cr) D(E, n) D(E, —cr)

Combining Eqs. (B6) and (Bl), we find

I:(4')lz) ~

h ~ (D(E, —n) D(E, o.))

the hole branches. To compute the Josephson current,
one must therefore work also with the negative energy

(E ( 0) solutions of the Bogoliubov —de Gennes equa-
tions. We consider quasiparticles incident in all possible
branches of the dispersion curve, as shown pictorially in

Fig. 10.
Calculating the currents implied from Fig. 10, the to-

tal electronlike currents are given by integrating Eq. (B7)
over the entire continuum, which is the same as Eq. (21).
The hole currents are found to be equal to the electron
currents, thereby giving a continuum current too large
by a factor of 2. This factor of 2 is easily understood
when we note that the dispersion law shown in Fig. 9
contains twice the number of states as the normal metal.
We therefore correct for this excess number of quasipar-
ticle states by dividing a factor of 2 into the final result,
namely,

x . f(E)dE
sin a (B7) » (&) = I:(&)+I."(&) (B8)

Dispersion Law Electrons Holes

0.

One can now choose several alternate paths to Eq. (21).
We have chosen what seems (to us) the most straight-
forward. Consider the full dispersion relation shown in
Fig. 9. It can be separated into an electron branch
(standard parabola) and hole branch (inverted parabola).
These branches should all be populated according to a
Fermi function f(E) at finite temperatures, including

obtaining Eq. (21).
We feel that the physics of Josephson current flow may

be less transparent when working solely with the excita-
tion spectrum. Since the excitation spectrum will not
be populated at T = O,

is it is unclear how it can carry
the required zero-temperature Josephson current. It was
even noted in Ref 18 that . "this seems to prevent the cal-
culation" of the Josephson current at T = 0. However, a
disadvantage of working with the full dispersion curve is
that one must also use the negative energy solutions of
Eq. (3). Further, one must compute twice the number of
transmission coefficients. Alternatively, one could com-
pute the currents carried by only the electron branch (or
only by the hole branch) of the dispersion curve, and still
use both positive and negative energies.

APPENDIX C: SUPERCURRENT
FROM FREE ENERG Y

The free energy of a set of independent fermions in the
grand canonical ensemble is

FIG. 9. The total dispersion law for a uniform super-
conductor can be decomposed into electronlike and holelike
states.

F = N1e —kT) ln(1+e 1 ) . (C1)
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=). „"f(E)+
& dp(E 4)

dP( —oo

xln 1+e @" dE. (C2)

The discrete spectrum therefore carries the Josephson
current suggested in Sec. II, namely Eq. (10), where

(C3)

letting us identify the current I+(P) carried by an An-
dreev level as

2e dE„+(P)
dP

(C4)

The derivative of F with respect to the phase difFerence
becomes a sum over the discrete energies E„(P) and in-

tegral over the continuum density of states p(E, P)

dp(E, P) dp(E, o,)
dP ~ dn

Oct

EB~E (Cl1)

Equation (Cll) implies that we can take the result (17)
for I,(P) in the clean junction, replace P by n, , then mul-

tiply the integrand by (24) to obtain Eq. (21) for I,(g)
in the dirty junction. Even though we exploit the con-
tinuum contribution of Eq. (C2) to better understand
the formulas presented in Sec. II, we do not immedi-
ately see the full correspondence between the contin-
uum contributionis in Eq. (C2) and the transmission
formalismis for computing supercurrents carried in the
continuum. However, we feel the two methods can prob-
ably be shown to be identical.

Bn f R (L —2al . (L —2a E)
BE ~ (csin(a) ( (p ) ( (p b, p

'sin

(C10)

so that combining (C10) with (24), (C6), (C8), (C9), and
(C4) yields Eq. (15).

The continuum contribution to the supercurrent in
Eq. (C2) requires the derivative of the continuum den-
sity of states with respect to the phase difference

APPENDIX D: APPROXIMATE ANDREEV
LEVELS IN A LONG JUNCTION

In this appendix we obtain approximate expressions
for the Andreev levels in a long SNS junction with an
impurity. Equation (8) can be recast as

cos (n/2) = 1 —Tsin (P/2) —Rsin [(L —2a)E/2b, (pj.

(D1)dE+ dE+ dn

dr)t) da dP
(C5)

For E « 6, Eq. (7) becomes

Equation (C3) is computationally much simpler than ob-
taining the current from the quasiparticle wave functions
u(x) and v(z), and shows how to easily compute Id(g)
when the transmission amplitudes depend on the energy.
Further, Eq. (C3) is identical to the current carried by
the discrete spectrum from Ref. 13.

We now show how Eq. (15) for the current I+(P) car-
ried by an Andreev level follows from Eq. (C4) combined
with Eqs. (7) and (8). We wish to compute

Equation (7) shows how the energy depends on the effec-
tive phase o.. We find

E ~, ~
(2nn —~pn),(hvF )

q2I: ) (D2)

dE+ BE+ t'i evF
da Brr 2e L+ 2((E+) (C6)

with L' = L + 2(p. Taking the impurity exactly in the
center of the junction, a = L/2, we immediately obtain
from Eqs. (Dl) and (D2)

On the other hand, Eq. (8) shows that o((E, Q) is a func-
tion of both the energy and the phase difFerence. There-
fore

dn = dE+ d(t).
00! BCl

Z

Combining (C5), (C6), and (C7), we find

(C7)
2

p —ccs ( 1 —T sin (g/2)) I. (DB)

We therefore find the Andreev energy gap near E = 0
and P = ras7

dE+ OE+ Ba 1

dP Bn BP zp' (C8) Es.p —- 2~
(

(hvF) t' 2
(D4)

where p is the feedback factor in Eq. (15), namely

BE„+ Bc
8- 0 .

Equation (8) gives

(C9)

E+ = +2
~ ~

1 —T sin (P/2). (D5)

which becomes Es~& —(2~R)(hvF/L') for small R. For
T ~ 1, E 0, and near P 7r, we can expand Eq. (D3)
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dI evF f T
dp &

( L* ) (2~s) (D6)

For an impurity which is not centered in the junction,
and taking E « b, and L 2a—« (o, we can approximate
Eq. (Dl) as

The slope of the Jospehson current versus phase at P = z.

is then approximately
cos (n/2) = 1 —Tsin (p/2) —R((L —2a)E/24(o) .

(D7)

Solving Eq. (D7) together with Eq. (D2) for E+ merely
replaces L' ~ L,tr in Eqs. (D5) and (D6), where Lzft ——

(L+2(o) +R(L —2a) . This very approximate analysis
confirms Eqs. (34) and (35) in Sec. IV.
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