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The low-frequency current-fluctuation spectra of phase-coherent electron conductors are related to
the scattering matrix of the conductor. Each contact of the conductor is connected to a thermal equilib-
rium electron reservoir. The current-current correlations of the conductor are compared with the
intensity-intensity correlations of a photon wave guide with all its ports connected to blackbody radia-
tion sources. Only two sources of noise are considered: (a) Fluctuations in the occupation numbers of
the incident channels that reflect the thermal equilibrium fluctuations of the reservoir states and (b) a
shot noise (or partition noise) that originates if a carrier can be scattered into more than one final state
and is present even at zero temperature. The theory uses single-particle scattering states to build up
multiparticle states with the proper symmetry. Second quantization provides an elegant treatment of
this problem if annihilation and creation operators for both the input and output channels of the wave

guide are introduced. At equilibrium, in the absence of transport, the correlations of flux fluctuations
measured at two different contacts are negative for both fermions and bosons. Away from equilibrium, in

the presence of a net flux, the fluctuations are related to transport coefficients which invoke products of
four scattering matrices. The transport portion of the correlation of the flux fluctuations at two different
contacts is negative for fermions but is positive for bosons. The transport portion (shot noise) is very
sensitive to the transmission behavior of the wave guide. Both for fermions and for bosons completely
open transmission channels give no contribution. In addition to two-terminal conductors, we consider
four-probe conductors in high magnetic fields which have the property that carriers transmitted and
reflected at a barrier reach separate contacts. We discuss a four-terminal experiment which explicitly
shows that the correlation function in the presence of two particle sources is not an incoherent sum of
correlations generated by particles originating in one of the sources but contains exchange terms due to
the indistinguishability of identical particles. We discuss the conditions for such exchange terms to be
sensitive to a quantum-mechanical phase and the possibility to tune this phase with the help of an
Aharonov-Bohrn flux.

I. INTRODUCTION

The investigation of time-dependent fluctuations in
small conductors with contacts separated by a distance
which is short whed'compared to a phase-breaking length
is an interesting avenue of research: It is desirable to
characterize the properties of a sample not only by its
average time-independent transport characteristics but
also by its kinematic properties. Due to the wavelike
transport in small conductors and the preservation of
phase coherence over large distances it is possible to ask
about noise properties which are sensitive to the
quantum-mechanical phase. For conductors which are so
small that scattering inside the conductor can be taken to
be elastic, Refs. 1 and 2 found a general relationship be-
tween the low-frequency noise properties and the scatter-
ing matrix for two- and multiterminal many-channel con-
ductors. It is the purpose of this paper to present and
discuss the technical details omitted in these earlier pa-
pers. To elucidate the role of statistics, the conductor,
which can be viewed as a waveguide for electrons, is com-
pared with a waveguide for photons with the same
transmission properties. The contacts of the waveguide
(see Fig. 1) are treated as large equilibrium reservoirs of
electrons or as black-body radiation sources of photons.
The statistical assumptions are the same as those used to

calculate the equilibrium density-density correlation
functions in a gas of free carriers. A gas of identical
(noninteracting) Fermi particles exhibits a hole, and a gas
of identical bosons exhibits bunching in the density-
density correlation function. The current-current corre-
lations which are of interest here are similarly obtained as
sum over exchange amplitudes. The calculation becomes
especially transparent if, in addition to the creation and
annihilation operators for the incoming channels, a set of
creation and annihilation operators for the outgoing
channels is introduced. In terms of both input and out-

FIG. 1. Conductor (waveguide) with contacts connected to
electron reservoirs (blackbody radiation sources).
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put operators, the current at each probe can be expressed
in terms of occupation number operators. In contrast, in
terms of the operators which annihilate carriers in the in-
coming channels, the current operator cannot be ex-
pressed as a function of number operators. It is for this
reason that exchange plays a fundamental role in the
calculation of current and flux correlation spectra.

The relationship of the current-current fluctuation
spectra and the scattering matrix of the conductor' per-
mits a treatment of both the noise which originates when
carriers are incident from different contacts and are unit-
ed in a portion of the conductor and of the noise which
originates if a carrier stream is divided into two or more
streams. This unification noise and partition noise is of
fundamental interest: ' The investigation of current-
current fluctuations is the electronic analog of the study
of intensity-intensity correlations (second-order coher-
ence) in optics. ' In the pioneering experiment" of
Hanbury Brown and Twiss, a beam of light emanating
from a single source is split into a "transmitted" beam
and a "reflected" beam and the intensity correlation of
the two beams is determined with the help of two detec-
tors as shown in Fig. 2(a). Variations of this experiment
include the measurement of the statistical properties of
one of the beams only and include the use of more than
one source. Thus the current or flux correlation experi-
ments on waveguides provide an important alternative to
studies of photon and electron correlations of beams of
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carriers in free space. Since we deal with a two-
particle effect which depends on the fact that there are
more than two carriers present in a coherence volume,
using electronic or optical waveguides might actually be
of advantage: In a conductor the Fermi function is one
for all states below the Fermi energy, and changes
abruptly to zero in a narrow energy interval of width kT
at the Fermi energy. Furthermore, the confinement of
carriers to a "waveguide" prevents the spreading of
waves. Since electrons are charged it is possible to couple
a vector potential to the electron waves and to study the
Aharonov-Bohm effect in a current-current correlation '

or a density-density correlation. ' Since second-order
coherence is a two-particle effect it is especially interest-
ing to ask whether there is a two-particle Aharonov-
Bohm effect. '

The discussion reported here is closely related to recent
theoretical' and experimental work which ad-
dresses fluctuations in highly transmissive samples. For
such conductors the more conventional theory ' which
treats transmission as a perturbation is not suitable. Ini-
tial work' ' has focused on two-terminal single-channel
conductors, or has invoked assumptions which reduce the
multichannel problem to an equivalent single-channel
problem. The derivation presented below is general: We
do not require a scattering matrix which can be
represented as a composition of many single-channel
scattering problems' ' nor do we need to search for a
special basis of scattering states in which the scattering
matrix is diagonal. The discussion presented here treats
fluctuations between different energy levels in a single
quantum channel in the same manner as it treats fluctua-
tions in a many-channel multiprobe conductor. Below
we present a more detailed discussion of the questions
raised in this brief Introduction.

PHOTOTUBE I

A. Fluctuations in systems
of indistinguishable particles
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FIG. 2. (a) Intensity-intensity correlation measurement of a
photon beam partitioned at a mirror into a transmitted ( T) and
reflected (R) beam. (b) Electron beam partitioned at a barrier
into a transmitted (T) and reflected beam (R). (c) Second
quantization representation of beam partitioning. The 8' opera-
tors annihilate carriers in the incoming channels and the b
operators annihilate carriers in the outgoing channels. The 8
and b operators are connected by the scattering matrix S.

As is well known, the statistical properties of a
quantum-mechanical system are a consequence of the in-
distinguishability of identical particles in a many-particle
system. ' The basic premise of indistinguishable parti-
cles leads to wave functions which must be either sym-
metric or antisymmetric if two particles are exchanged.
(More exotic possibilities discussed sometimes for strictly
two-dimensional systems will not be considered here. ) A
theory of fluctuations which wants to take the symmetry
of many-particle states into account has to use Slater
determinants, which is cumbersome, or a second quanti-
zation language, which is much more elegant and will be
used here. A correlation function which is often dis-
cussed in solid-state textbooks serves to illustrate the na-
ture of fluctuations in a many-particle system. Consider
for a moment a gas of noninteracting fermions or bosons
in a three-dimensional space without any impurities. The
average density (n ) of the gas is spatially uniform. It is
simply the sum of the absolute squares of the wave func-
tions of occupied states. The correlation of the density
fluctuations bn(r)=n(r) —(n) of the equilibrium state
is
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v(r)= —(3l2m kyar )cos (kyar) . (1.2)

The negative sign of the density-density correlation of a
Fermi gas is a consequence of the fact that Fq. (1.1) has
been calculated with the help of wave functions which
change sign if any two particles are exchanged. The Pau-
li principle manifests itself like an interaction which
pushes fermions away from one another and leads to a
negative correlation function. In contrast for bosons the
"interaction" is attractive and leads to a positive
density-density correlation. v(r) is a sum over exchange
amplitudes of the form +1(k(r, )p~(r~)g~(r2)1(k(r2) in

which each wave function with momentum k or p occurs
twice but with different arguments. We emphasize that
through exchange every occupied state "couples" with
every other occupied state. The resulting oscillatory
structure in the exchange hole is often mistakenly labeled
a Friedel oscillation. In contrast to Friedel oscillations
which are a consequence of single-particle interference,
the oscillatory structure in the exchange hole is a conse-
quence of the indistinguishability of the carriers. It is a
two-particle effect. The oscillatory structure of the Fermi
hole can be sensitive to an Aharonov-Bohrn flux in a
geometry in which there is no single-particle Aharonov-
Bohrn effect. ' Below we extend the calculation of the ex-
change correlation to calculate the current or flux fluc-
tuations in a conductor or waveguide.

B. Two-particle contributions to shot noise

Typically, in a conductor there are many different
sources of noise. Here we consider only two sources of
noise. First, at elevated temperatures thermal agitation
causes fluctuations in the carrier stream incident from a
contact into the conductor. Second, even at zero temper-
ature and even in the zero-frequency limit (such that vac-
uum quantum fluctuations play no role) there is an addi-
tional source of noise due to the probabilistic scattering
of carriers at an obstacle. For a Fermi system at zero
temperature, the carrier stream incident on a scatterer
with transmission probability T is noiseless. But the
transmitted carrier stream and the reflected carrier
stream are not noiseless. Eventually a carrier has to be
either transmitted or reflected. No noise is generated by
this mechanism if the transmission probability is 1 and no
noise is generated if the transmission probability is zero.
For one-dimensional scattering at an obstacle with
transmission probability T a simple function which is
zero for T=0 and for T= 1 and is maximal in between is
T(1—T). Since this simple result ' ' ' is central to
this discussion it is worthwhile to discuss its origin.

Consider a state describing carriers incident from the

(«(r, )bn(r2)) =(n )5(r, —rz)+(n )v(r), (1.1)

where v(r) is a function of distance r=~r, —r2~. For a
Fermi gas v( r) is negative. For a Bose gas v( r ) is posi-
tive. As r ~0 the function v(r) tends to a constant limit
v(r)= + (n ) l(2s+1) which is determined by the aver-
age density and the spin. For a Fermi gas at zero temper-
ature, at distances which are large compared to the Fermi
wavelength, v(r) is

(1.3)

(1.4)

We emphasize that the fluctuations given by Eqs. (1.3)
and (1.4) occur for a well-defined initial state. The fluc-
tuations given by Eqs. (1.3) and (1.4) are a consequence of
probabilistic reflection and transmission (a wave
phenomenon) and are a consequence of the fact that
detectors register either a transmitted particle or a
reflected particle (a particle phenomenon).

Let us briefly indicate how a quantum-mechanical
derivation of Eqs. (1.3) and (1.4) proceeds. Obviously, we
cannot appeal to a wave equation only but must use an
approach which permits the discussion of both wavelike
phenomena and particlelike phenomena. We use second
quantization and introduce the operators &; and 8;,
i=1,2, which create and annihilate carriers in the in-
cident states. Next we follow Loudon and introduce
operators b; and b;, i =1,2 which create and annihilate
carriers in the outgoing states. Figure 2(a) indicates only
one incident channel: a second incident channel is real-
ized by a beam which transmits into phototube 2 and
reflects into phototube l. In Fig. 2(b) the two incident
channels describe carriers arriving from the left and car-
riers arriving from the right. The two sets of operators
[see Fig. 2(c)] satisfy the same commutation rulers and are
related by the scattering matrix of the conductor,

bi r&i ti2

b2
(I 5)

21 f22

The scattering matrix provides a unitary transformation
of the a operators into the b operators. The single-
particle state with the fluctuations given by Eqs. (1.3) and
(1.4) is ~1)=&, ~0). The occupation probability of the
transmitted state is now simply (nr) =(l~bzb2~1). The

left on the scatterer shown in Fig. 2(b). We assume that
this state is characterized by well-defined quantum num-
bers (energy, momentum, and spin). We denote the occu-
pation number of the incident state by nI. We consider a
series of repeated experiments in each of which this state
is occupied with probability 1. Therefore, on the average
(nI ) =1 and the fluctuations «I=nI —(nI ) vanish. In
particular, the mean square fluctuation of the occupation
number of the incident state is ((«I) ) =0. Consider
now the occupation number of the transmitted state nz
and of the reflected state n~. In contrast to a wave which
is partially transmitted and partially reflected at an obsta-
cle with transmission probability T, a particle must be ei-
ther transmitted or reflected. Therefore each experiment
can have only two outcomes: either n&=1 and n~ =0 or
nz. =0 and nz =1. Therefore the correlation of the occu-
pation numbers (nznr) vanishes since for each event
one of these numbers is zero. The average occupation
numbers are ( n r ) = T and ( n„)=R. The average of the
squares of the occupation numbers are ((nr)2) =T and
((n~ ) ) =R. But these results immediately imply that
the fluctuations «r=~r (~r~ and 4&a =&~ (&z )
have average mean square fluctuations and correlations
given by
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(AnsAnr) =+2T(E)R(E)f (E) . (1.6)

In Eq. (1.6) the upper sign applies for Fermi statistics and
the lower sign applies to Bose statistics (a convention
which will be maintained throughout this paper). Note
that this correlation is proportional to T(1—T) indepen-
dent of statistics. But equally important is that the corre-
lation depends not on f but on f, indicating that we deal
with a two-particle erat'ect. For a system with low degen-
eracy f «1 there is no correlation in the occupation
number fluctuations of transmitted and reflected beams.

In a similar way, by calculating the quantum statistical
expectation value of bz(E)b2(E')bz(E')bz(E) and

b, (E)b, (E')bI(E')b, (E), we obtain the fluctuations in

the transmitted beam and in the reflected beam,

expectation value of the correlation of the occupation
numbers (nz nz ) is ( 1 ~b IbI bzb2 ~

1 ) =0. As an addition-
al example let us consider a photon state incident which
contains precisely n quanta. The incident state is now de-
scribed by ~n ) =(n!) ' (0, )"~0). Now the correlation
of the occupation numbers (nznz ) is nonvanishing
and given by (n ~b&b, bzbz~n ) =RTn(n —1). With
( n„)=nR and ( n r ) = n T it is easily shown that
((bnr) ) =((bn„) ) =nRT and (hnzAnr) = —nRT.
Clearly, as long as we deal with a sequence of single in-
cident states (containing one or many quanta) the expec-
tation value of the correlation Eq. (1.4) is negative. An
experiment which measures such a negative correlation
for photons is reported in Ref. 38.

Emission of light by a blackbody or electrons emitted
by an electron reservoir cannot be characterized as de-
scribed above. %e deal with a stream of carriers in a cer-
tain energy range and must consider the simultaneous in-
cidence of particles with different energies. For simplici-
ty let us consider two particles incident from the left with
energies E and E' with occupation numbers n(E) and
m(E'). Instead of by b, (E)b, (E)bz(E)b (2E) the corre-
lation of the fluctuations in the reflected and transmitted
stream is determined by b, (E)b, (E')b (2E')b~(E). In
the space of all single-particle states this operator has a
vanishing expectation value. For the two-particle states
the expectation value of this operator

(m(E'), n(E)~b&( E)b&( E')bz( E')b (2E)~n(E), m(E'))

is given by + r» (E)tz, (E')r „(E')tz, (E')n(E )m(E').
Note that the factor which multiplies the occupation
numbers is an exchange amplitude expressed in terms of
transmission and refiection amplitudes. If the occupation
numbers n(E) and m(E') are taken to be statistically in-
dependent and are determined by the equilibrium distri-
bution of the reservoir from which they are emitted, then
after a repetition of many experiments the statistical
average of n(E)m(E') is f(E)f(E'). Here f is the Fermi
distribution function or the Bose distribution function.
Taking into account the contribution from the exchange
amplitude which has E and E' interchanged and consid-
ering the limit E'~E we find for the correlation of the
fluctuations of the occupation probabilities of the
transmitted and the refiected beam

((bnz-) ) =2Tf +2T f =2Tf(1+ Tf ),
((bn~ ) ) =2Rf +2R f =2Rf(1+Rf ) .

{1.7}

(1.8}

Note that the sum of Eqs. (1.7) and (1.8) plus twice the
correlation, Eq. (1.6), is equal to the occupation number
fluctuations in the incident carrier stream,
((AnI) ) =2f(1+f ). Not only are the average occupa-
tion numbers conserved at the scatterer, but the fluctua-
tions are also conserved, AnI = dna'. +En'. For fermions
the fluctuations given by Eqs. (1.6) —(1.8) are bounded
since f &1. The fluctuations in the transmitted stream
can be smaller or can exceed the fluctuations in the in-
cident stream depending on whether f is smaller or
exceeds 1/(1+ T). Similarly, the fluctuations in the
reflected stream can be smaller or can exceed the fluctua-
tions in the incident stream depending on whether f is
smaller or larger than 1/(1+R ). For bosons the fluctua-
tions given by Eqs. (1.6)—(1.8) can exceed every bound
since for bosons f is not bounded. For bosons both the
fluctuations in the transmitted and in the refiected stream
are always sma/ler than the fluctuations in the incident
stream. In summary, for single incident carriers the fluc-
tuations of the occupation numbers in the transmitted
and reflected beam are negative. For carriers incident
from a thermal reservoir, this correlation, like the
density-density correlation Eq. (1.1), changes sign as we
change the symmetry of the wave functions. Below we
are interested in the fiuctuations of currents. In a two-
terminal geometry fiuctuations in the incident beam, fluc-
tuations in the reflected beam, and a correlation between
the two, contribute to the current. Only in special mul-
tiprobe geometries' ' is it possible to measure separate-
ly the fluctuations in the incident, transmitted, and
reflected beam. In Sec. V of this paper we analyze an ex-
ample given in Ref. 1 in more detail.

C. The problem and the solution

(I ) =—f dE (M —R )f —g T pfs . (1.9)

Here R =Tr(s s ) is the total probability for
reflection back into probe a and s is a scatterin~ matrix
of dimension M XM . In Eq. (1.9) T &=Tr(s p &) is
the total probability for transmission from probe P into
probe a and s &

is a scattering matrix of dimension
M XM&. We refer only to a few recent publications to

Next we state the problem to be solved more clearly
and give the answer discussed in this paper. We consider
a conductor connected to electron baths via a number of
contacts labeled a=1,2, 3, . . . . Each contact is charac-
terized by an equilibrium Fermi function
f =1/[exp[(E p, )/kTJ+1I, —with a chemical poten-
tial p . These electron baths act as emitters and ab-
sorbers of electrons. ' ' For bosons we assume that the
wave guide at each port is connected to black-body reser-
voirs which act as emitters and absorbers of radiation and
are characterized by a thermal equilibrium distribution
f =1/[exp[(E p, )/kT] —1I. I—n the steady state the
(time-averaged) current (I ) at contact a is
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illustrate the application of Eq. (1.9).
Each spin degree of freedom (polarization) is treated

separately. For photons, the energy flux per quantum
channel in an energy interval dE is d &=(1/h )hv(E)dE.
Thus Eq. (1.9} gives the photon energy flux at a port if
(e/h )fdE is replaced by (1/h )fdEE A.lternatively, we

can compare the Fermi carrier flux and the boson carrier
flux by taking e =1 in Eq. (1.9). To be brief, for the case
of bosons, we will give the results in electrical units only.

In this paper we give a derivation of the low-frequency
spectral density of the current fluctuations belonging to
Eq. (1.9}. The spectral density of current-current fluctua-
tions S (((co) is determined by the quantum statistical ex-

pectation value of the Fourier transformed current opera-
tor I (co) through the relation

—,
'

& EI (co)EI(3(co')+b,I&(co')AI (co) &

2nS—(((co. )5(co+ri)'), (1.10)

where EI (co)=I (co) &I (co—)&. We will deinonstrate
that for small frequencies the current operator is given by

I (co) =—fdE[a (E)a (E+fico) b(E—)b (E+fico)] .

Here cz, is a vector of the operators &

m =1,2, . . . , M, which create a carrier in the incoming
channel m in probe a. Similarly, b is a vector of the
operators b, m =1,2, . . . , M, which annihilate a car-
rier in the outgoing channel m in probe a. In the zero-
frequency limit the current operator Eq. (1.11) is just the
difference of the occupation number operators of the in-

going quantum channels and of the outcoming quantum
channels. As in the two-channel example discussed
above, the annihilation operators in the outgoing chan-
nels are linearly related to the annihilation operators in
the incoming channels via the scattering matrix,

(1.12}
p

Inserting Eq. (1.12) and its self-adjoint into Eq. (1.11)
gives

I (co) =(e/A) fdE g ap(E) A(ir(a, E,E+fico)a (E+i(1(L(),
Py

(1.13)

where we have introduced the matrix' '

A(3 (a,E,E+Aco)=1 5 P ~ s(3(E—)s r(E+Rco) .

(1.14)

Here 1 is a unit matrix with the dimensions equal to the
number channels in lead a. This term stems from the in-
cident channels, whereas the product of the scattering
matrices arises from outgoing channels. Note that Eq.
(1.13) is the full current operator and not the operator for
the fluctuation away from the average. Through Eq.
(1.13) the evaluation of the current fluctuations is re-
duced to the evaluation of the quantum statistical expec-
tation values of products of four creation and annihila-
tion input operators. Instead of subtracting the average
current from the total current we can evaluate the devia-
tion of this product from its average value. The quantum
statistical expectation value of a product of four a opera-
tors away from its average is given by

&1.' (E)d((„(E')d',„(E")ds((E'")& &d.' (E)u—((„(E')& &8',„(E")fl,((E"')&

=5(E E'")5(E' —E")5 s (5(( „—kf (E)[1+f (E')) . (1.15)

In the zero-frequency limit, using Eqs. (1.10)—(1.15) we

find for the spectral densities of the current fluctuations
&b,I EI(i& =hvS (((co), measured in a frequency inter-
val hv,

& bI b I(i & =2 b v g fdE Tr[ A~s(a) As~(P) ]

Xf (E)[1+fs(E)] . (1.16)

Equation (1.16) is the basic result of this paper: It gives
the low-frequency limit of the spectral densities belonging
to Eq. (1.9) in terms of the scattering matrix of the con-
ductor. It is understood that the scattering matrices and
thus the matrix A are evaluated at energy E. For a=@
we find from Eq. (1.16) the mean squared current fluctua-
tions at probe a. For aAP we find from Eq. (1.16) the
correlation of the fluctuations at two contacts.

Equation (1.16) shows that the low-frequency noise is
determined by two types of noise conductances. We show
that at equilibrium only the terms (82/h)Tr(sty. p)
which are bilinear in the scattering matrix survive. These
bilinear terms are identical to the transport coefficients in
Eq. (1.9) which govern the average current. We find a
generalized Xyquist-Johnson relation which relates the
mean squared current fluctuations to the diagonal con-
ductances of Eq. (1.6) and relates the current-current
correlations to the off-diagonal conductances' of Eq.
(1.9). Away from equilibrium, in the presence of
transport, Eq. (1.16) gives noise conductances which are
products of four scattering matrices, '
(e /h )Tr(s rs ss((ss((r ). These noise conductances are in-

teresting since they establish correlations between
currents measured at two contacts a and P due to car-
riers emitted by contacts y and 5. Clearly, we expect
such correlations if a single source (y =5) simultaneously
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radiates into two contacts (a&P). But for y&5 such a
transport coefficient correlates carriers emanating from
differing contacts. This is surprising since the two con-
tacts are reservoirs which are mutually incoherent. If all
indices are different such a transport coefficient is, in gen-
eral, not real but depends on the phases of the scattering
matrix. Conductors which permit the measurement of
such noise conductances have been discussed in Refs. 2
and 12 and an additional example is discussed in Sec. V.

D. Related work

Much work in solid-state physics has treated fluctua-
tions in systems in which tunneling can be treated as a
perturbation. ' In these works the transmission proba-
bility is taken to be small compared to 1. Khlus' recog-
nized that an extension of this work was needed in situa-
tions in which the transmission probability is equal or
comparable to 1. Since we require the contacts to be at
equilibrium, the theory presented here is also a weak cou-
pling theory. But it is a weak coupling theory only in the
sense that the overall transmission probability Tr(t &t &)
is small when compared to the number of modes M in
reservoir a. This leaves open the possibility that some of
the transmission probabilities T p„are comparable or
equal to 1. Khlus treats a metallic point contact with a
barrier (an oxide layer) and finds noise conductances pro-
portional to T(1—T) and proportional to T . In his
work Khlus uses a Keldysh approach. The discussion
given below is simpler.

The need to present a fluctuation theory which accom-
panies Eq. (1.9) was recognized by the author following
work which established and discussed the magnetic field
symmetry of the transport coefficients of Eq. (1.9). On-
sager and Casimir derive the symmetry of the transport
coefficients from the microreversibility properties of
correlation functions, i.e., from the fluctuation properties
of the system. In contrast, in Ref. 42 this symmetry was
obtained directly from the microreversibility property of
the scattering matrix. The importance of such symmetry
considerations is illustrated by recent work on spin
glasses and recent work on high-T, conductors. It is in-
teresting to ask if within the framework of a scattering
approach we can develop a fluctuation theory.

Landauer' presented a discussion of equilibrium Quc-
tuations in a one-channel conductor based on trains of
clocked current pulses incident on the conductor. The
discussion was extended to explicitly include shot noise in
a paper by Landauer and Martin. Shot noise in many-
channel conductors was discussed by Martin and Lan-
dauer. The strategy adopted in this work is to transform
the many-channel many-lead problem in such a way that
it can be mapped on the single-channel problem. '

Many-channel conductors are treated by searching a spe-
cial basis in which transmission through the sample is
nonmixing and can be considered to be a set of indepen-
dent one-channel conductors. A similar strategy is ap-
plied to discuss many terminal conductors. At its core
this discussion considers fluctuations of occupation num-
bers of (real valued) current pulses. The discussion
presented here treats the noise starting from multiparticle

wave functions: the derivation proceeds by summing ex-
change amplitudes.

The discussion presented in this paper is closely related
to the work of Lesovik' and Yurke and Kochanski. '

Lesovik, in a brief but interesting paper, has discussed
noise in a quantum point contact. He assumes that
differing channels are not mixed by the point contact.
Yurke and Kochanski' have investigated the momentum
noise of single and multiple barriers in the single-channel
approximation. Using a second quantization they present
a step by step derivation of their results. Our discussion
of the single-channel case differs from this work only in
that we make use of Eq. (1.5). We also find it convenient
to use b operators and a operators which create particles
in a small energy range rather than a small momentum
range. In first quantization the scattering matrix, Eq.
(1.5), relates current amplitudes and not amplitudes of
wave functions. A quasiclassical discussion of Auctua-
tions, especially, with a view to ballistic transport has
been presented by Beenakker and van Houten. ' They
also address the purely classical limit.

The frequency dependence of the noise spectra has
been addressed by several authors. ' ' ' ' . In a brief
paper we have pointed out that the current-fluctuation
spectra can in general not be expressed in terms of
transmission and reflection probabilities even for a one-
channel conductor at equilibrium. The spectra are sensi-
tive to the reflection and transmission amplitudes. Al-
though the low-frequency limit of the noise spectra is the
main topic of this paper, our derivation gives all the
necessary technical steps which lead to the frequency-
dependent noise spectra of Ref. 22. At equilibrium the
frequency-dependent noise spectrum is via a fluctuation
dissipation theorem, which includes zero point quantum
fluctuations, connected to a frequency-dependent conduc-
tance. A derivation and discussion of this conductance is

given by Buttiker and Thomas. '
Two recent experiments by Li et a/. ' in a resonant

double barrier and in a quantum point contact found shot
noise much below the naively expected value. Both ex-
periments deal with transmission through conductors in
which some channels are completely open (T= 1) or are
completely closed (T=O). However, their experiment on
the double barrier might not be related to coherent trans-
port but might instead reflect the incoherent addition of
shot noise in series resistors. Their interesting data on
the quantum point contact are obtained after subtracting
from the raw data a 1/f-like component of the noise
spectrum. Reference 1 and subsequent discussions' in-
vestigated shot noise in the quantized Hall regime. Car-
rier transmission along edge states provides another ex-
ample of a transmission channel with probability of 1.
Indeed there are experiments which exhibit reduced shot
noise. Reference 1 and subsequent papers proposed ex-
periments where the transmission properties of the con-
ductor can be changed with the help of a gate voltage.
An experiment in such a conductor was carried out by
%'ashburn et al. ' They measured the mean square Auc-

tuations of the voltage difference between two voltage
contacts on either side of a barrier produced with the
help of a gate. Measurements were carried out both in
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the integer quantized Hall regime as well as in the frac-
tional quantized Hall regime. None of these experiments
measures a correlation of currents or voltages. The only
work on electrical conductors which measures a correla-
tion between fluctuations at different contacts is by Kil,
who in his thesis has studied the correlation between lon-
gitudinal and Hall voltages in a quantized Hall conduc-
tor.

Highly transmissive channels are not found only in the
resonant tunneling, ballistic, or in the high magnetic field
transport regime. Beenakker and Buttiker evaluated
the shot noise for metallic diffusive conductors which are
much longer than a mean free path. A fraction of the
quantum channels remains open even in such a disor-
dered system and gives rise to shot noise which is smaller
than full shot noise by a factor —,'. The effect of inelastic
scattering on the shot noise is discussed with the help of
side branches (voltage probes). The efFect of inelastic
scattering in conjunction with voltage fluctuations which
prevent local charge pileup leads to the absence of shot
noise in a macroscopic conductor.

The discussion presented here assumes that the poten-
tial of the conductor does not fluctuate as a consequence
of external time-dependent variations of the distribution
of dopants and other background charges which deter-
mine the electrostatic potential affecting the conduction
schemes. Fluctuations which change the potential can be
very important especially at low frequencies. Recently a
number of studies have appeared which investigate the
telegraphic noise in quantum point contacts. Simple
models have been discussed by Dekker et al. , Liefrink
et al. , and independently by the author. Effects of
gate voltage fluctuations on the conduction electrons
have been investigated by Hekking et a/. In metallic
diffusive systems the fluctuations in positions of impuri-
ties lead to 1/f noise. Theory and experiment are re-
viewed by Feng and Lee. To observe the noise sources
discussed in this work it is, therefore, desirable to per-
form measurements at frequencies above the range where
1/f Quctuations are observed. That of course requires an
analysis of the thermal and shot noise beyond the low-
frequency limit emphasized in this work.

Despite the more diScult aspects of fluctuations in
electrical conductors which stem from the interaction of
the electrons among themselves and with background
charges, the high degeneracy which can be achieved in
conductors should make them better candidates to ob-
serve multiparticle effects than the proposed experiments

&a )i

Xa

FIG. 3. Widening of contact into a reservoir with a large
density of states. x and y represent a local coordinate frame
in reservoir a.

with electron beams in a vacuum. ' Even with the best
available electron sources at best only one in a hundred
possible states in a beam is occupied. On the other hand,
in a conductor the current per quantum channel in an en-

ergy interval eV is 1=(e/h )eV. At temperatures so low
that the scattering processes can be neglected, the phase
coherence length is only determined by the width of the
energy interval and is given by v&=h /eV. Therefore the
number of carriers per available state is (I/e)r&= l.

II. THE SPECTRAL DENSITY
OF CURRENT-CURRENT CORRELATIONS

A. Scattering states

E ~(k)=E~ (0)+R k /2m' . (2. 1)

Each transverse state provides a channel for electron
propagation from the reservoir to the conductor (positive
velocity) and away from the conductor (negative veloci-
ty). The total number of such quantum channels with
threshold energy E (0) smaller than the Fermi energy
EF in reservoir a is M .

Reflection and transmission of carriers at the conduc-
tor are described by the scattering states P . The
scattering state t/i consists of a wave
exp(ik x )P (y ) which is incident in reservoir a in
channel m. Here k is the wave vector at energy E that
is a solution of E=E (k). This incident wave typically
generates reflected waves in all channels m of reservoir a,
and generates transmitted waves in all the channels of all
the other reservoirs. The complete wave in reservoir a
SS3

In this section we formulate the scattering problem.
Figure 1 taken from Ref. 2 shows conductors with a
number of leads which in turn are connected to electron
reservoirs. The electron reservoirs are taken to be con-
ductors without elastic scattering. To be specific, we in-
voke the fo11owing model of a reservoir: We assume that
at each port the conductor widens' ' ' into a wide but
perfect conductor (see Fig. 3). We assume that the Ham-
iltonian in the wide portion is separable: electron motion
can be decomposed into motion along the conductor and
motion transverse to the conductor. Our results will
eventually be independent of the detailed properties of
the states in the reservoirs. For simplicity we assume
that the states in reservoir a are given by
exp(ik x )P (y ), m=1, 2, . . . , M . Here x andy
are local Cartesian coordinates in reservoir a. The com-
ponent of the wave vector parallel to the conductor is
k . For simplicity we assume that the transverse eigen-
function y with energy E (0) is independent of k
The kinetic energy associated with longitudinal motion is
A' k /2m* with a longitudinal eff'ective mass m'. The
total energy, including transverse and longitudinal
motion, is
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(a)=+[5 „e P (y )

+(v /v„„)' s

Xe "
P „(y )], (2.2)

tion and creation operators which are suitably normal-
ized for such a representation. We introduce the
annihilation and creation operators a (E)=& (k)/
[iitv (k)]' and a (E) =a (k)/[iriu (k)]' which
obey the commutation relations

and in all the reservoirs @&a is of the form [a (E),ati„(E')]+=5 ti5 „5(E E'—), (2.5)

(P)= g (v /vti„)' 'sti „e "
Pti„(yti) . (2.3)

where the index + denotes the anticommutator (for fer-
mions) and the commutator for bosons. With these an-
nihilation operators the Fermi field (or Bose field) is

The amplitudes s& „are elements of the scattering ma-
trix S (see also Appendix A). Below we will frequently in-
voke the scattering matrices s& which relate the current
amplitudes of the waves incident in reservoir a to the
outgoing waves in reservoir P.

The scattering states given by Eqs. (2.2) and (2.3), to-
gether with possible bound states in the interior of the
conductor, form a complete set of mutually orthogonal
states. This is known as the completeness theorem in
scattering theory. Constructive proofs of the ortho-
gonality and completeness of these states have also been
given. The completeness of the states is important be-
cause later on we want to exhaust all possible fluctuations
of the system. With this in mind, we note that the most
general wave incident on the conductor is given by an ar-
bitrary superposition of these scattering states,

0'(r, t)= —g f dk g (k, r)a (k )c'
&2m

(2.4)

Here a, (k) are the amplitudes which characterize the
incident wave and cu (k)=E /A'. Before proceeding,
we note that Eq. (2.4) describes waves which are incident
not only from a particular reservoir but from all the
reservoirs simultaneously. The phases of the amplitudes
a (k) determine not only the phase relationship of
differing waves in the same reservoir, but also the phase
relationship of waves incident from differing reservoirs.

B. The Seld operator

To proceed we shall now consider Eq. (2.4) not as a
wave packet with complex amplitudes a (k) but as a
second quantization operator acting on a Fock space.
The Fock space is a direct sum of X-particle Hilbert
spaces. The operator which we need is denoted by 4 and
is obtained from Eq. (2.4) by replacing the amplitude
a (k) by an operator a (k) which annihilates a carrier
incident in the scattering state g (k ). (Since we have
assumed that the phase of the scattering state is fixed by

ik x
the convention that the incident state is e ™a, we could

i Jaminvoke an arbitrary energy-dependent phase factor e
multiplying each & . However, all expectation values
invoke pairs of complex conjugate scattering states, and
hence such phase factors are unimportant for what fol-
lows}. The operator ~P is called the Fermi field or the
Bose field operator. For our problem we find it more
convenient to change from the integral in k space in Eq.
(2.4) to an energy integration, and to introduce annihila-

dE
4(r, t)= gf, g (E,r)

[hu (E ))'

Xa (E„)e (2.6)

C. Quantum expectation values
and statistical averages

Since every observable of our system can be expressed
in terms of the field operator, and since the field operator
is expressed with the help of annihilation operators, all
expectation values of the system are known if the expec-
tation values of products of the creation and annihilation
operators are known. The quantum-mechanical expecta-
tion value of & (E)gati„(E') is given by

(o~8t (E)ap„(E')~o)=5(E E')5 ft5 „o—(E) . '

(2.7)

To evaluate fiuctuations, we need to calculate expectation
values of products of four a operators,

(o ~a (E}&g„(E')a~i,(E")&st(E"'}~a) . (2.8)

The expectation value of this product is nonzero only if it
contains two pairs of operators 8 (E) and & (E) with
the same indices and arguments. We get a contribution
from normal pairing, i.e., if a=@, y=5, m =n, k =l,
E =E', and E"=E"'. In addition we get a contribution
from exchange pairing, a=5, P=y, m =l, n =k,
E =E'", and E'=E". For the case of exchange pairing
we notice that

a (E)gati„(E')ati„(E"}a (E'")

(E)& (E'")[5(E'—E")+8&„(E")ati„(E')].

(2.9)

Thus the expectation value of the products of four opera-
tors is

Note that l/hu (E) is just the one-dimensional density
of states of the quantum channel I in probe a at energy
E. It is possible to use an energy representation of the
field operator for the following reason: Since Eqs. (2.4)
and (2.6) include only scattering states which describe a
wave incident on the waveguide in a single quantum
channel, the energy uniquely specifies the scattering state.

The field operator acts on many-particle states denoted
by

~
o ) which are specified by occupation numbers

o,„(E)for each incident channel m in every probe a of
the conductor.
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=5(E —E'")5(E' —E")5 s t5p „r,o' (E)[1+tr k(E")]

+5(E E—')5(E" E—"')5 p„5 sk, tr „(E)o (E") .

(2.10}

We have not considered the possibility that the indices

and arguments of all four operators are identical. We
deal with a continuum of states and the measure of these
terms is insignificant compared to those considered
above. We note that the last term in Eq. (2.10) is just
(o ~8 (E)op„(E')~o )(o ~ttrk(E")dst(E'")~o ) and
hence, instead of Eq. (2.10) we can also state that

&al&'. (E)&p.(E')&',k(E")&st(E'")lo &
—&of&.' (E)&p.(E')fo &&ol&',p(E")&st(E'")lo &

=5(E E"')5—(E' E")5—s t5pr„l, o~ (E)[1+tr k(E")] . (2.11)

Equations (2.7) and (2.11)are quantum-mechanical expectation values evaluated for states specified by a specific set of
occupation numbers. To study fluctuations we need to consider an ensemble of states ~tr ) and weigh each state proper
ly. We then need to find the statistical average, denoted by ( )„ofthe quantum-mechanical expectation values. We
have assumed that the contacts are thermal equilibrium reservoirs. Since the annihilation and creation operators are re-
lated to the incident channels their statistics must reflect the equilibrium statistical properties of the reservoirs. As in
the calculation of the density-density correlation (discussed in Sec. I A), we assume that the occupation numbers at
different probes, for different quantum channels, and for the same quantum channel at different energies are statistically
independent. Thus the statistical average of the occupation probability o (E ) is determined by the distribution func-
tion of reservoir a, (o (E)),=f (E), independent of the channel index. The statistical average of the quantum ex-
pectation value, Eq. (2.7), is

« tr~at (E)8p„(E')~o &&, =5(E E')5
p

—„f (E) . (2.12)

Similarly, since the occupation probabilities at differing energies in the same channel and at the same energy in different
channels are uncorrelated ( o ~ (E )o p„(E') ), =f (E )fp(E'), using Eq. (2 8), we find on the statistical average

(E)ap„(E'}Br„(E")os,(E"')Itr & ),
5(E E )5(E E )5 s (5pr t,f (E)[1+f (E )]+5(E E )5(E E )5 p 5rsktf (E)fr(E )

The statistical average of Eq. (2.9) is

« al&t (E@p.(E'@trk(E"@st(E"')la» , —(&ol&'. (E)&p.(E')lo » ,« al dtrt, (E"@st(E'")la» ,
5(E E)5(E E")5 s I5pr kf (E)[1+fr(E )]

(2.13)

(2.14)

Remarkably Eq. (2.14) establishes correlations between
differing channels num within the same probe and estab-
lishes correlations between differing channels in differing
probes any. These correlations are of infinite range. In
reality Eq. (2.14) applies only within a coherence volume.
But within such a volume, on a fundamental level, all
quantum channels are correlated. Whether or not this
correlation has a physical manifestation depends on the
properties of the observable (particle density, current
density, total current) for which the fluctuations are cal-
culated. We emphasize that Eq. (2.14) is not merely a
statement about the fluctuations of the occupation proba-
bilities of differing channels: For the correlation of the
occupation operator 8' =a a, we find from Eq.
(2.14) with a=@, m =n, and y=5, k =I,

The occupation probabilities of differing channels are sta-
tistically uncorrelated. Equation (2.14), however, pre-
dicts correlations and is obviously a deeper statement.
These additional correlations are quantum mechanical in
origin and are a consequence of particle exchange. A

D. Current operators

With the help of Eq. (2.6) the current density operator
can now be expressed as

j(r, t)= [qr Vqr —(Vqr )qr] .
2ml

(2.15)

Our principal aim is not to calculate current densities
somewhere in the interior of the conductor, but the total
current entering the conductor at a contact. The total
current in probe a is

I (t)= f dy j„(r,t), (2.16)

gedanken experiment which investigates the Aharonov-
Bohm effect in a density-density correlation of two quan-
turn channels emanating from incoherent reservoirs is the
subject of Ref. 12.

In the remaining part we will not distinguish
quantum-mechanical expectation values and statistical
averages, but use the symbol ( ) to denote both of these
procedures.
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where dy denotes the integral over the cross section of
reservoir cc (see Fig. 3). In the total current operator I
we have only kept the time as an argument, anticipating
that deep in the reservoir I is independent of the location
x of the cross section. To evaluate the total current
we insert the field operator into Eq. (2.16). This leads to
the evaluation of current matrix elements' ' ' evalu-
ated in probe a, invoking a scattering state emanating
from a channel in probe P and a scattering state emanat-
ing from a channel in probe y. Instead of proceeding this
way, we now transform the field operator into a more
convenient form. To do this we introduce operators b
which annihilate a carrier in an outgoing channel m in
probe a. The b and a operators satisfy the same commu-
tation relations and are related to one another by a uni-
tary transformation,

E=E (0)+fi k /2m. The wave vector in channel n at
energy E+Aco is denoted by q and is determined by
E+fico=E„(0)+fi q /2m. A simple calculation gives

I „' '(E,E+fico)=5 „(o.,k+o.2q)
2m

X exp[ i—(o,k —c72q )x ] . (2.21)

Note that the matrix elements are nonvanishing only for
wave functions belonging to the same quantum channel.
The 5 function is a consequence of the orthogonality of
the transverse wave functions belonging to differing
quantum channels, f dy P (y)P„(y)=5 „. In the limit

e~O we have k=q. The right-hand side becomes in-

dependent of x and is nonvanishing only if the matrix ele-
ment invokes states with velocities which are identical
not only in magnitude but also have the same sign o. ,

am g aPmn ~gn
Pn

(2.17)
I „' '(E,E)=5 5 „eu„(k) . (2.22)

X& (E )e

dE

[hu (E )]'

Xb (E )e (2.18)

where

(E,x,y ) =exp(io kx )P (y) (2.19)

is an abbreviation for the asymptotic incoming (o =+)
or outgoing (o.= —) wave in probe a in channel m. In
Eq. (2.17) the first summation is over all the incident
channels in probe n and the second summation is over a11

the outgoing channels in probe a. Now if we express the
current operator in terms of the field operator, we must
evaluate matrix elements of the form

8'6 dy„'(E+fico)I „' '(E,E+fico) = . f dy g ' (E—)
2m' dx

dy ' (E)
dx

where s
& „ is an element of the scattering matrix. Equa-

tion (1.12) given in the Introduction states the same con-
nection between the a and b operators in a matrix nota-
tion. Now in each probe the field operator takes the sim-
ple form

dE
qI(r, t)= gf,, y+ (x,y )

[hu (E m)]'~

It is useful to note that for small frequencies the depar-
ture of Eq. (2.21) away from Eq. (2.22) is very small.
For small frequencies the difference k —

q can be expand-
ed in powers of co. Taking q =k +Aq, we find

hq =co/u(E). For u of the order of a metallic Fermi ve-

locity (10 cm/sec) a frequency of 10' Hz is needed to
bring the wavelength ulco down to 1 pm. Similarly, if
the prefactor is evaluated for 0.&= —0.2, the prefactor is
of the order (fico/EF)uF. Thus for a considerable range
of frequencies we can find a good approximation to the
current by evaluating the current-matrix elements in the
zero-frequency limit. In the expression for the current

operator the matrix elements I „' '(E,E+ftco) always
occur together with the velocity factors [hv (E )]
and [hu (E +fico)] ' . In the low-frequency limit of
interest here, we can also evaluate both of these velocities
at the same energy. Thus we evaluate the current opera-
tor with the help of the following expression:

I „' '(E,E+fico)

h[v (E )u (E +%co)]'~
(2.23)

I (t)= —g fdEdE'[ct (E)a, (E')

b(E )b (E')—]
X exp[i(E E')t /A'] . —

We reemphasize, that although Eq. (2.23) is an approxi-
mation for A'co@0, it is an exact expression in the zero-
frequency linut. Using Eq. (2.23) we find the following
expression for the current operator at reservoir e:

Xy„'(E+fico)

(2.20)

If we write all the a and b operators as vectors with as
many components as there are channels in the probe we
can also express Eq. (2.24) in the form

with o, =+,—and cr2=+, —.In Eq. (2.20) we have

omitted the index a since both wave functions are states
of probe n and the matrix element is evaluated in probe
a. The wave vector in the mth quantum channel at ener-

gy E is denoted by k and determined by

I (t)= —f dE dE'[a (E)a (E')—b (E)b (E')]

X exp[i(E E')t/R] . —(2.25)

Now we again make use of Eq. (2.17) to find an expres-
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sion of the current operator which invokes only the a
operators. In matrix notation,

E. Average currents

Before proceeding to evaluate current fluctuations we
use Eq. (2.26) to evaluate the average currents. Using Eq.
(2.10) we find for the average current

(I ) =—g f dE App (a)fp(E)
Pm

=—g fdE Tr[ App(a))fp(E) .
h

p

But for a =p we find from Eq. (2.27) that

Tr[ A (a}]=Tr(1 —s s )=M —R

(2.27)

(2.28)

where M—:Tr(1 } is the number of quantum channels in
reservoir a and R —=Tr(r r ) is the total probability
for reflection for carriers incident in probe a. For pea
we find from Eq. (2.27)

Tr[ App(a)]= —Tr(s ps p)= —T p, (2.29)

where the total probability for transmission is
T p=Tr(t pt p). Thus Eq. (3.1) gives the average in-
cident current at a probe in terms of total reflection and
transmission probabilities, i.e., Eq. (1.9). Our discussion
has provided a simple derivation of this basic transport
law using second quantization and the statistical assump-

I (t)=—f dE dE'g ap(E) Ap~(a, E,E')ar(E')
nr

Xexp[i(E E—')t/iii] (2.26)

with a matrix' ' Apr(a, E,E') given by Eq. (1.14). We
note that the current operator is not a function of occu-
pation operators only if expressed in terms of the a opera-
tors. The elements A p „(a) can be understood as
current-matrix elements evaluated in reservoir a of a
scattering state Pp that is incident in channel m in lead

P with energy E and a scattering state incident in channel
n in lead y with energy E'. We emphasize the universal
character of these results: Eqs. (2.24) —(2.26) are indepen-
dent of the particular properties of the states in the reser-
voir but depend only on the number of available chan-
nels.

tions discussed in Sec. IIC. A number of discussions
which have used formal linear-response theory ' to
derive Eq. (1.9) must at some point evaluate current-
matrix elements. Nevertheless, the relationship between
the current-matrix elements and the scattering matrix,
expressed with the help of Eq. (1.14), seems not to have
been noticed in any of these works.

If the chemical potentials p at the differing contacts
differ only by a small amount, we can expand the distri-
bution functions away from the equilibrium chemical po-
tential p, f = (dfl—dE)(p —p) and instead of Eq.
(1.9) we find

(I ) =(e lb )f dE( —df IdE)

X (M —R )IM
—g T ppp . (2.30)

P

Here we have taken into account that current conserva-
tion requires M =R +gpT p and that, consequently,
Eq. (2.30) does not in an explicit way depend on p. Equa-
tion (2.30) can be used to calculate the resistances
% pr&=

—(Vr —V&)/I. Here the first pair of indices
denote the current source and sink and the second pair of
indices denotes the probes which are used to measure
voltages. R is a four-probe resistance if all indices differ
from one another. It is a two-probe resistance if the first
and second pairs of indices are identical. These resis-
tances obey the reciprocity symmetry
% p rs(B ) =%rs p(

—B ).

F. Current-current Suctuation spectra

To evaluate the current-fluctuation spectra we calcu-
late the Fourier amplitude

I (co)=fdt exp(icot)I (t) (2.31)

of the current operator. Using Eq. (2.26) and performing
the integral over time gives a 5 function
2ir5(E E'+fico)—Carryin. g out the integration with
respect to E' we find Eq. (1.13). The factor 2n has been
absorbed into the prefactor by replacing h with R. We
can now use Eq. (1.13} and evaluate the spectral density
of the current fluctuations with the help of Eq. (1.10).
First consider the expectation value (AI~(co)bIp(co')).
Using Eq. (1.13) twice, we find

2

(AI (co)EIp(co'))= fdEdE' g (a (E)A s(a, E,E+fico)as(E+Rco)a, (E')A,&(P,E', E'+%co')a&(E'+fico')) .
g2

r&~0

(2.32}

Note that we have again used the operator of the total current. We compensate for that by invoking only the fluctua-
tions of the product of the a operators away from the average. Invoking Eq. (2.14} now gives two 5 functions
5(E E' fico'—)5(E—+fico E') Int—egrati. ng with respect to E' gives

2

(bI (co)EIp(co')) = fdE g Tr[ A &(a,E,E+fico) As&(P, E+Aco, E)]f (E)[1+fs(E+Aco)]5(co+co') . (2.33)

Comparing with Eq. (1.10), we find a contribution to the spectral density given by
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e(bs EI&)„=bv f dE QTr[ A s(a, E,E+A'co}As (P, E+Aco, E)]f~(E)[1 f—s(E+&co)] .
yb

(2.34)

Next we consider the expectation value of the two current operators with their order interchanged. Instead of Eq.
(2.33) we now have

2

(bI&(co'}BI (co)) =
2 fdE dE' g (ar(E) Ars(P, E,E+A'co')as(E+A'co')a, (E') A,&(a, E', E'+%co)a&(E'+Ace) ) .

ybcg

(2.35)

Taking the statistical average gives rise to two 5 functions 5(E E' —fico)5—(E+fico' E')—Inte. grating with respect to
E' gives

2

(SIC(co')bl (co)) = f dE QTr[ A s(P, E,E fico) A—s (P,E fico, E—)]f (E)[1+fs(E Ac—o)]5(co+co') . (2.36)
y5

Let us now rename the energy variable in Eq. (2.36), E~E', and after that let us introduce the new variable
E=E' fico. If—we also rename the summation indices y ~5 and 5~y and take into account that we can interchange
the order of the matrices under the trace, we find that the second term gives a contribution to the spectral density

2

(bs EI&) =hv f dE QTr[ A~s(a, E,E+fico) As&(P, E+Aco, E)]fs(E+fico)[1+f~(E)] . (2.37)
y5

Combining both contributions we find a spectral density

(bs EI&)„=hv fdE QTr[ Ars(a, E,E+Rco) Asr(P, E+fm, E)]
y5

X [fr(E)[1+fs(E+Aco)]+fs(E+fico)[1+fr(E)]I . (2.38)

Equation (2.38}is the most general result of this paper. It
can be used to investigate the frequency dependence of
the spectral densities. It is worthwhile to stress that the
order of the currents of Eq. (2.38) matters: With a little
algebra it is easily shown that

(as.as~).=(as~as. ) .. (2.39)

Only in the zero-frequency limit, which will be our next
subject, is ( bs EI& ) —= ( bs&bs ).

G. Low-frequency fluctuations

X [f (E)[1+fs(E)]
+f «}I1+f,«)]I (2.40)

For a =P the terms in Eq (2.40) p. roportional to
f~(E )[1+fs(E)] and t-he terms proportional to
fs(E)[1+fr(E)] each give the same contribution to the
fluctuation spectrum. For a=P we can simply relabel
the summation indices y and 5 to show this. The case
a&@ is less trivial. Clearly, the terms bilinear in the
functions, f fs and fsf, each give the same contribu-

In the zero-frequency liinit we obtain from Eq. (2.38) a
spectral density

& as.ss, )
2

=bv g f dE Tr[ A s(a, E,E) As~(P, E,E)]
h

tion. But according to Eq. (B8) of Appendix B, the terms
linear in f are also identical. Therefore, in the zero-
frequency limit, the current-fluctuation spectra are given
by Eq. (1.16).

The mean square currents and the cross correlations
are not completely independent from one another. In the
low-frequency limit of interest here, flux is conserved. It
is conserved not only on the average but also for the fluc-
tuations, g b,s =0. Consequently, the fluctuations
given by Eq. (1.16) must obey the "sum rule, "

gas. ' = y '&(as. )')+ g (as.as, ) =0.
a a aP(aWP)

(2.41)

Equation (2.41) is a consequence of Eq. (B2) of Appendix
B. Whether we deal with Fermi statistics or whether we
deal with Bose-Einstein statistics the sum of all the cross
correlations a&P must be negative to compensate for the
positive mean square fluxes. Since the mean square
currents are necessarily positive, the correlations of fIuxes
at differing terminals, ( b I Esca ), must as a rule be nega-
tive. Clearly flux conservation tends to make correlations
between currents at differing ports negative: an increase
in flux at one terminal must be compensated by a de-
crease in current at another terminal. Below we show
that for Fermi statistics the correlation of currents at
differing ports is indeed always negative (or at best zero).
In contrast, for Bose-Einstein statistics the "rule" can be
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broken: under special circumstances it is possible to have
correlations between currents at differing terminals which
are positive. Our discussion below sheds some light on
the conditions which are needed to break the rule for a
Bose system. First we proceed to show that in thermal
equilibrium all cross correlations both for Fermi systems
and Bose systems are indeed negative.

III. EQUILIBRIUM FLUCTUATIONS

A. Equilibrium current fluctuations

At equilibrium all the distribution functions f are at
the same chemical potential and hence identical. Taking
this into account the spectral density of the current fluc-
tuations is, according to Eq. (1.16),

2

(I I&) =2 bv fdE f(E)[l+f(E)]

X g Tr[ A &(a,E,E) As (P,E,E)] .

(3.1)

XTr(1 —s s ), (3.2)

where we have used that f(1+f ) = kT(df IdE —). Tak-
ing into account that Tr(1 —st s ):—M —R we find'

((I ) ) =4bvkT(e Ih) fdE( dfldE)[M ——R ~] .

(3.3)

Using Eqs. (A3) and (A4) it can be shown that

g Tr(s rs ss&ss&„}=5~Tr(1 ) .
y5

Therefore in Eq. (3.1) only terms which are bilinear in the
scattering matrix remain. For a=p Eq. (3.1) yields a
mean squared current in the frequency interval hv at
probe a,

((I~) ) =4hvkT(e lh )f dE( df ldE)—

(I Ip) = 2—b,vkT(e Ih) f dE( d—fldE)(T tt+TtJ ) .

(3.6)

The correlations between the fluctuating currents at
differing probes are determined by the transmission prob-
abilities which link the two probes. If we compare Eqs.
(3.3) and (3.6) with Eq. (1.9) and take into account that

g&~~ ~T &=M —Rw, e see that the current fiuctua-
tions are related to the symmetrized transport
coefficients. Equations (3.3) and (3.6) are, therefore, a
manifestation of the fluctuation dissipation theorem.

8. Equilibrium voltage fluctuations

To discuss voltage fluctuations it is useful to consider
the fluctuating currents as Langevin forces in the general
equation relating the chemical currents and the chemical
potentials,

I =(elh) f dE( dfldE—)

X (M —R )p —g T ttptt +5I
P

(3.7)

Here 5I is a fluctuating current with spectral densities
given by Eq. (1.16) in the presence of transport or by Eqs.
(3.4) and (3.6) at equilibrium. En the discussion given
above we have assumed that the chemical potentials are
held fixed (independent of time). If the terminals of the
conductor are not connected by a zero-impedance exter-
nal circuit, we can use Eq. (3.7) to ask about chemical po-
tential fiuctuations. We want to invert Eq. (3.7) to find
the voltages as functions of the currents. A complication
arises since the matrix of transport coeScients in Eq.
(3.7) has one zero eigenvalue due to current conservation.
We can, therefore, not invert, Eq. (3.7). Instead we must
consider voltage differences. We chose one of the poten-
tials as a reference potential (ground). The voltage
difference between an arbitrary contact and the reference
voltage Vp is

Alternatively, using current conservation [see Appendix
A, Eq. (A5)], we can also express the equilibrium mean
squared fluctuations at a terminal as

( V —
Vti ) = g A rts p(Iy 5Ir ) . —

y

(3.8)

((I )2) =4hvkT(e lh )fdE( df IdE) g —
T~~

P(&a)

(3.4)

(I ) =4hvkTG, (3.5)

where G =(e Ih )fdE( df IdE )T, where T=—Tr(t tt) is
the Landauer conductance. The currents at differing ter-
minals are in general correlated. From Eq. (3.1) we find
with the help of Eq. (87)

The low-frequency fluctuations at a terminal are deter-
mined by the sum of all transmission probabilities permit-
ting transmission into probe a. Equation (3.4) for the
case of a two-terminal conductor reduces to the
Johnson-Nyquist noise formula' "

In Eq. (3.8) Ar& &
is the three-terminal resistance which

gives the voltage difference between a and p for a current
I~ incident in contact y and taken out at the reference
probe P.

To be specific, we consider the case where all connec-
tions between probes exhibit infinite impedance. In par-
ticular, any voltmeter connecting two probes exhibits an
infinite impedance. Thus the current at all terminals is
zero, i.e., we consider I (t}=0for all a. Now let the in-
dex a label all the probes except the reference probe.
This set of equations expresses the voltage differences as a
function of the currents in terms of a resistance matrix
whose diagonal elements %'

& & are the two-terminal
resistances of the multiprobe conductor and whose off-
diagonal elements are three-terminal resistances of the
conductor. %'e can now ask: What are the fluctuation
densities belonging to these equations? Instead of
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presenting a calculation, we use the following argument.
The current and voltages are thermodynamically conju-
gate variables. Therefore the mean square voltage fluc-
tuations must be related to the diagonal elements of the
resistance matrix and the correlations of the voltage
differences are related to the symmetrized off-diagonal
transport coefficients. Thus we find for the spectral den-
sity of the mean square voltage fluctuations, '

((V —Vp) ) =4hvkTW p p. (3.9)

Note that both voltage differences in Eq. (3.9) are mea-
sured with respect to the same reference potential. The
fluctuations are determined by a symmetrical combina-
tion of three-terminal resistances.

Next we would like to know the correlation function of
two voltage differences V —

V& and V~
—

V& measured
across two completely different pairs of terminals. (All
indices differ from one another. ) This correlation func-
tion can be obtained from Eq. (3.10) by noting that volt-
ages (and hence resistances) are additive. We replace

V~
—

V& by V~
—V&+ V&

—V&. Thus the four-terminal
correlation is a sum of two three-terminal correlations

((v.—v, )(v, —v, )) =((v.—v, )(v, —v, ))
—((v.—v, )(v, —v, )) .

(3.11)

We emphasize that in general, % p p is a two-terminal
resistance of a multiprobe conductor. This resistance de-
pends on the presence of all the other contacts. Similar-

ly, the correlation of the voltage fluctuations is related to
the symmetrized off-diagonal elements of the resistance
matrix

(( V —Vp)( V, —Vp) ) =2bvkT(% p zp+%,p p) .

(3.10)

There are many additional questions which would
deserve a discussion, especially the correlation of voltage
and current fluctuations if the conductor is part of a
more general external impedance circuit.

IV. TRANSPORT FLUCTUATIONS

A. Zero-temperature limit

We now consider current fluctuations in the presence
of a steady current. Two or more reservoirs connected to
the conductor are at different chemical potentials. It is
useful to consider first the zero-temperature limit fluctua-
tions of a Fermi system in the presence of transport. (For
a Bose system this simple limit cannot be discussed
without addressing the Bose condensation transition. )

Consider Eq. (1.16). Since f (1 f )=—kTdf —IdE all
terms in Eq. (1.16) in which the Fermi functions occur in
this manner vanish. We can thus restrict the sum over
the probe indices in Eq. (1.16) to y&5. But for y%5 the
A matrices are A~&(a) = —s rsrs. In the zero-
temperature limit, we thus obtain from Eq. (1.16)

e(EI bIp)=2 hv g fdETr(st s ss&sp )

Xfy (E ) [1 fs(E ) ]—. (4.1)

Here the Fermi functions are step functions

f (E)=1—8(E—p ), which are equal to 1 for energies
E below the chemical potential of the contact and are
equal to zero for energies above this chemical potential.
From Eq. (4. 1) it is seen that the mean squared spectral
densities

2

(EI bI )=2 bv g fdETr(s s ss ss )

Xfr(E)[1 fs(E)] (4 2)

Using Eq. (3.10) we find

((V.—v, )(v, —v, ))

are determined by noise conductances

G~s(a, a)—:(e lh )Tr(s,~s ss ss,, ) (4.3}

=26vkT(W p p+A p p % p sp Asp p) (3.12)

The correlation is determined by a symmetrized four-
terminal resistance. If two indices coincide, the correla-
tion is determined by a symmetrized three-terminal resis-
tance. For a=y and P=5, Eq. (3.13), reduces to Eq.
(3.9).

Equation (3.9) was tested in an experiment by Wash-
burn et al. ,

' in a gated conductor in the quantized Hall
regime. Equation (3.13) can be compared with an experi-
ment by Kil in which he measures the correlation of
longitudinal and Hall voltages in a Hall bar geometry.

But % psp= —A pps and A~p p+A~p ps=A p s, and
similarly %sp p= —%ps p and A p p+Wps
Therefore the correlation between voltage differences
measured across two pairs of leads is given by'

(( V —Vp)( V —Vq)) =26 vkT(W p ~s+Wrs p) .

Note that the noise conductances

Xf~ (E )fs (E ) . (4.4)

which are real. Each scattering matrix occurs together
with its adjoint. The cross correlations asap are nega-
tive. To show this we consider the terms linear in f and
quadratic in f in Eq. (4. 1) separately. Consider first the
terms linear in f. We notice that ass ssp&=0. Therefore

ps~, ,s ssps = —s sp . Thus the linear terms in

Eq. (4.2) give a contribution proportional to
—g&Tr(s zs esp&spz)fz(E) to the cross correlation.
Since the Fermi functions at kT=0 are either zero or one
this is equal to —g Tr(s s sp sp )f~(E)f~(E), i.e.,
the diagonal terms quadratic in f omitted in Eq. (4. 1}
through restriction of the sum. Therefore Eq. (4.1) for
a&P is equal to

e(bI b,Ip) = —2 bv g fdE Tr(s s sspssp )
h



46 SCAI i'ERING THEORY OF CURRENT AND INTENSITY NOISE. . . 12 499

G s(aP) =(e /h )Tr(s s ss&sss») (4.5)

are not real. However, since Gs»(aP)=G»s(aP) also
occurs in the expression with the same weight as
G»s(aP), the expression for the spectral density, Eq.
(4.4}, is real. Equation (4.1) is a key result of Ref. l. Ex-
amples in which the noise conductances are not vanishing
have been discussed in Refs. 2 and 12 and an additional
simple example is given in Sec. V of this work. An alter-
native derivation of Eq. (4. 1) is a major subject of Ref. 9.

((I )2) =4bv(e /h) JdE f (1+f )[M R— ] . (4.7)

In the equilibrium cross correlations we take into account
that the Fermi functions at contact a and P are in general

not the same, and write

(I Is) = 2—bvkT(e /h )fdE[T ~f~(1+fp)

+Tp f (I+f }] .

(4.8)

B. Kquilibriumlike and transport fluctuations The equilibriumlike fluctuations, Eqs. (4.2) and (4.3},obey

current conservation,
Next we consider fluctuations in the presence of a

steady flux of Fermi or Bose carriers at an elevated tem-
perature. We split the noise spectra into an equilibrium-
like portion labeled by the index "eq" and a transport
contribution labeled by the index "tr,"

ap(a&p) „
( EI EIp ),q =0 . (4.9)

&ar.ar, ) =(sr.as, &„+(sr.ars&„. (4.6)

It is convenient to extend the notion of "equilibrium fluc-
tuations" in the following way. We calculate the mean
square fluctuations at contact a as if all contacts were
connected to a reservoir at chemical potential p,

The transport fluctuations are now calculated by sub-

tracting Eq. (4.7), respectively, Eq. (4.8) from the full re-

sult, Eq. (1.16). Using the results of Appendix B, espe-

cially Eqs. (B7) and (B9), we fiind

((EI ) ),„=2hv(e /h) f dE 'g T (f f )+M f—+ g f fsTr(s s sstss )

(S).I EI&),„=+2hv(e /h ) JdE g f»fsTr(s»swiss&ss& ) .

(4.10)

(4.11)

The transport fluctuations also obey current conserva-
tion,

AI = EI
t1

(Dr~br&)„= +2bv(e /h)

X IdE Tr g f»sS»st

+ y (as.ss~ &„=0

ap(asap),

„

(4.12) X g fss ssps (4.13)

but ((AI ) )„is not always positive. We emphasize that

our partioning of the fluctuations into an "equilibrium"

portion and a "transport" portion is not unique and

mainly a matter of convenience.

C. The sign of flux-flux correlations

Equation (4.11) indicates that the transport correla-
tions change sign if we switch fram fermians to bosons.
To show that a unique sign is associated with the statis-
tics only, we need to show that the sum of all terms an
the right-hand side of Eq. (4.11) is indeed positive. To
show this, we use the cyclic property of the trace and
rewrite the noise conductances in Eq. (4.11) as
Tr(s& s»s ss&s). Next we use the linearity property of
the trace and obtain for Eq. (4.11)

Now Eq. (4.13) is the trace of the product of two matrices
which are adjoint. But the trace of a product of a matrix
with its adjoint is positive. %'e have therefore demon-
strated the following: For a Fermi system both the equi-
librium cross correlations and the transport cross correla-
tions are negative. Therefore quite generally a Fermi sys-
tem will exhibit negative crass correlations. On the other
hand, for a Bose system the equilibrium cross correla-
tions are negative, whereas the transport correlations are
positive. This leaves open the possibility that there are
nonequilibrium situations in which one or more cross
correlations are positive.

Equation (4.13) also provides a convenient way of
evaluating Eq. (4.11). We notice that each sum in Eq.
(4.13) is zero if the Fermi or Bose functions f are the
same in all reservoirs, since S is unitary. Therefore in Eq.
(4.13) we can replace f by f» f, and fs by fs fb- —
where f, and f„are arbitrary energy-dependent func-

tions. Hence instead of Eq. (4.11) or Eq. (4.13) we obtain
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( b.I AI p )„=+ 2b.v( e Ih ) Then 8„=1—T„are the eigenvalues of r»r». In terms
of these eigenvalues the mean square current fluctuations
in a two-port conductor at k T=0 are 1

XTr(s rs ss&ss& ) . (4. 14) ((&I)') =2(e'Ih )bvleVl+T„(1 —T„) . (5.4)

We now go on to illustrate these results by discussing a
few examples.

V. EXAMPLES

A. Two-terminal conductors

Now if we use the more transparent notation of transmis-
sion matrices t21 s21 and t12 s12 and reflection matrices

» 11 d 22 22, we obtain '1,2

((bI) ) =2hv(e /h)~eV~Tr(r"„r„t2, t2, ) . (5.2)

To arrive at Eq. (5.2) we have also assumed that the
scattering matrices vary slowly with energy and that in
the energy range of interest the scattering matrices can be
taken at the Fermi energy. The integral over the energy
is then determined by the energy dependence of the Fer-
mi functions alone. But at zero temperature
JdE(f, f2) is just eq—ual to the absolute value of the

voltage drop e V.
In terms of the matrix elements t2, „and r» „where

n and m label different modes in the probes we find

Tr(r»r&&t2&tz&) = g rk„r~
k, j, m, n

(5.3)

In Eq. (5.3) we have omitted the probe indices for simpli-
city and have kept only the channel or mode indices.
Each term in Eq. (5.3) with a set of unequal indices klmn
can be understood as a coupling term for carriers injected
in channel n and transmitted into channel I and carriers
injected into channel m and reflected into channel k. The
coupling between these two scattering channels, which on
the statistical average are decoupled, occurs via time-
reversed reflection from channel l to channel n and
transmission from channel I to channel m.

The matrices tz&t2, and r,', r» are Hermitian and com-
mute. Therefore they can be diagonalized simultaneous-
ly. Let T„, n =1, . . . , M, be the eigenvalues of t2, t2, .

Consider a conductor connecting two large reservoirs.
First, we consider again the zero-temperature Fermi case.
In the presence of a voltage drop eV=p, —

p2 a current
(I)=(elh)T~eV~ with T=Tr(t t) is impressed on the
conductor. In a two-probe conductor, current conserva-
tion requires that AI& = —AI2. Consequently the mean
square flux fluctuations are the same at either probe.
Moreover, the mean square current fluctuations are equal
to —(b,I, b,Iz). Therefore we can use Eq. (4.13) to cal-
culate the mean square current. Choosing f, =fb =f,
only the term with indices a = 1, P= 2, y = 1, 5= 1 is non-
vanishing. Therefore we obtain for the mean square
current

((bI) ) =2bv(e Ih) fdE(f, f2) Tr(s»s»s—2, s2, ) .

(5.1)

A result of this form was found by Khlus' and Lesovik'
for conductors which do not mix channels and where T„
is the transmission probability of channel n. Our deriva-
tion of Eq. (5.4) shows that this result is also valid for a
scatterer which mixes channels if the T„are taken to be
the eigenvalues of t t.

In the important case of a quantized conductance such
as is found in point contacts, Eqs. (5.2)—(5.4) predict
that there is no shot noise at a plateau, i.e., when there
are only completely open or completely closed modes. '

Shot noise with an oscillatory amplitude has indeed been
observed. Full shot noise, corresponding to uncorrect-
ed electron transfer, is obtained only if all the eigenvalues
T„are small compared to I. In this case, 1 —T„=1and
Eq. (5.4) gives ((EI ) ) =2eb, vI.

Conductors in a high magnetic field, under conditions
where transport is dominated by edge states, ' provide
another example of transmission channels with unit
transmission probabilities. "' In the plateau region our
theory predicts no shot noise. ' ' More surprisingly, Eq.
(5.4) predicts reduced noise even for conductors which
are completely disordered. For a metallic diffusive con-
ductor which is much longer than an elastic scattering
length, but much shorter than a phase-breaking length,
Ref. 26 found that the disorder-averaged noise is only —,

'

of the full shot noise. The square of the transmission
probability of an ensemble of conductors ( ( )„) is

( T„),=—', ( T„),. Hence ( ( (b,I ) ) ),, = ,'2e b,v(I ),, with—

(I),=(e'/h)(El/L)~ V~, where X is the number of
quantum channels, l the elastic length, and L the length
of the conductor.

To compare results for differing statistics, we now con-
sider a two-port waveguide at elevated temperatures. For
the fluctuations at port I we obtain from Eq. (4.7) and Eq.
(4.10)

((bI) ) =26 v(e Ih )f dE g [T„f,(1+f &
)

For Fermi systems Eq. (5.5) is the zero-frequency limit of
a result obtained by Lesovik. ' The discussion presented
here emphasizes that it is a general result if the T„are
taken to be the eigenvalues ' ' of t t. For Bose systems
Eq. (5.5) was given in Ref. 2 and seems to be novel. Note
that the shot noise appears with a negative sign for a
Bose system. As discussed in Ref. 27 as we move away
from equilibrium, there are situations when the noise is
actually smaller than at equilibrium. Apparently, a
scatterer in a Bose system breaks up large fluctuations:
transmission and reflection at a barrier diminishes the
photon bunching.

Let us now apply Eq. (5.5) to the following situation:
We assume that f, is zero at energies for which f, is
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nonzero. In a conductor such a situation occurs if the
applied voltage is so large that transmission occurs only
from left to right. In optical experiments we can assume
that we have a hot source only at probe 1, and that at
probe 2 there is a cold detector whose radiation can be
neglected. From Eq. (5.5) we obtain

((bI) ) =2bv(e /h) g 1 dE[T„f&(1+f~)

In a two-terminal conductor the reflected beam always
reaches the same contact as the incident carrier beam.
To investigate situations in which the reflected beam is
separated from the incident beam we now consider a mul-
titerminal conductor.

B. Separation of transmitted
and re@ected currents in a four-terminal conductor

+T„(1—T„)f,]

=2hv(e2/h) g JdE[T„f,(1+T„f,)] . (5.6)

((EI) ) =2bv(e /h )QT„eV c toh(eV/2k~ T)

=2e b,vI coth(e V/2k~ T ) . (5.7)

According to perturbation theory the crossover from
thermal noise (proportional to k~T) to shot noise (pro-
portional to eV) is universal. The crossover is indepen-
dent of the properties of the tunneling barrier and occurs
at a voltage eV =2k~T. On the other hand, the full re-
sult, Eq. (5.5), for thermal energies and voltages which
are small compared to the Fermi energy is

((bI) )=2bv(e /h)

X g [2k~ TT„+R„T„eVcoth(eV/2k+ T)]

Equation (5.6) is the current noise caused by the occupa-
tion number fluctuations given by Eq. (1.7). The Bose
version of Eq. (5.6) resembles a result obtained long ago
by Hanbury Brown and Twiss. " This early work does
not address waveguide structures: In place of the
transmission probabilities this result contains the area of
the aperture of the photo detector multiplied by the
quantum efficiency of the detector.

A theory which treats tunneling perturbatively, to first
order in the transmission probabilities T„, misses the
terms T„(f, f2) in Eq.—(5.5). If we further assume that
the transmission probabilities are energy independent, as
is often assumed in such calculations, the perturbation
theory predicts

0 0 s23 0

0 s32 0 s34

s4) 0 0 0

(5.10)

where s,4
=r, $34 t $32 r $]2 t form elements of a

Figure 4 shows a confined two-dimensional electron
gas in a high magnetic field. At magnetic fields which
lead to the quantized Hall effect the only extended states
at the Fermi surface are "edge states, " the quantum-
mechanical analogs of classical skipping orbits. Back-
scattering from one edge of the sample to another edge of
the sample is suppressed. ' Motion along edge states on
one side of the sample is immune to disorder and uni-
directional. Even forward scattering from one edge state
to another (on the same sample side) is small due to the
smoothness of the potential compared to the magnetic
length, the wide separation between edge states, and the
much reduced phase space. Figure 4 is adapted from
Ref. 1 and shows, for simplicity only, a single edge state.
Under these conditions scattering from one edge of the
conductor to the other must be introduced by external
means. Backscattering can be introduced with the help
of a gate across the conductor which permits depletion of
the electron density ' or with the help of a split gate
which permits the formation of a narrow constriction
between the two-dimensional regions to the left and right.
Here we assume that carriers at the constriction have a
probability T for transmission and a probability R for
reflection. The scattering matrix for the conductor of
Fig. 4 is of the form

0 $12 0 $14

(5.8)

as given by Khlus' and discussed in more detail by Mar-
tin and Landauer. According to Eq. (5.8) the crossover
from thermal noise to shot noise depends in a sensitive
way on the transmission behavior of the conductor. At a
conductance plateau of a quantum point contact, or at a
conductance plateau of a high field Hall conductor the
noise remains thermal (unless the applied voltage is
strong enough to cause a breakdown of quantization).
The metallic diffusive conductors discussed above have
an ensemble-averaged temperature and voltage depen-
dence given by

( ( ( hI ) ) ),=
—,
' b v( G ), [4k~ T+ e V coth(e V/2k& T ) ]

(5.9)

which shows a crossover from thermal to shot noise at a
voltage eV =4k& T.

FIG. 4. Four-probe quantum Hall conductor. An edge state
follows the boundaries and in the center of the conductor is par-
tially transmitted and reflected with the help of a split gate. In
this experiment the noise of incident, transmitted, and reflected
carriers and the correlation between these can be separately
measured.
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2X2 scattering matrix and have the absolute squares
T= ~t ~, R = ~r

~

= [r'~ . The remaining scattering ele-
ments in Eq. (5.10) describe motion along edge states
without backscattering and are given by s4, =exp(iP, ),

sp3 exp( i Pz ) with phases determined by the effective

path length between these contacts.
First, we discuss the zero-temperature limit, recalling

the results of Ref. 1 (see also Ref. 17). Let us assume that

p ] p4 0 pp p3 Carriers from contact 4 impinging on
the constriction are there either transmitted into contact
3 or reflected into contact 1. At kT=O there is no noise
in the incident carrier stream, bI4=0. (For the same
reason, EIz =0.) Thus the only currents which fluctuate
are the currents at probe 1 and at probe 3. From current
conservation EI&+AI3 =0. The cross correlation is most
simply found from Eq. (4.12). Reference 1 found

=2hv(e /h)TR(p —po) . (5.11)

+Tf(1+f )

+RT(f —fo)'] (5.14)

The fluctuations at contacts 2 and 4 are equilibrium fluc-
tuations with a contribution fo(1+f0) arising from-the
incident channel and an identical contribution arising
from the outgoing channel.

At contact 1 we have four contributions: an equilibri-
um contribution arising from the channel with transmis-
sion T= 1 connecting contacts 1 and 4, equilibrium con-
tributions determined by R and T from transmission into
contact 1 of carriers emanating in contacts 4 and 2, and
transport fluctuations associated with current partition-
ing at the split gate. A similar interpretation holds for
the fluctuations at contact 4. The correlations of the fluc-
tuations at differing contacts are

(5.15)

Equations (5.11) correspond to the zero-temperature limit
of Eqs. (1.6)—(1.8).

Next, let us investigate the fluctuations at elevated
temperatures. We assume, as above, that the distribution
functions in contacts 1 and 4 are the same f=f, =f&,

—
and the distribution functions in reservoirs 2 and 3 are
also identical fo:fr=f3. —With a little algebra we find

from Eqs. (4.7) and (4.10) the mean squared fluctuations

&(BI, ) & =2bv(e /h )fdE[f(1+f )+Rf(1+f )

+ Tfo(1+-fo)

+RT(f fo) ], (5.—12)

&(bI~) &=&(bI4) &=4bv(e /h) fdEfo(1+ fo),
(5.13)

& (AI3) & =2hv(e Ih ) fdE[fo(1+fo)+Rfo(1+fo)

& bI)bI3 &
= +2bv(e /h ) f dE RT(f fo—) (5.20)

As can be seen the sum of the mean squared currents and
twice the sum of all correlations is zero due to flux con-
servation. There is neither an equilibrium nor a transport
correlation between the currents at probes 2 and 4. The
correlations given by Eqs. (5. 16)—(5.19) are equilibrium-
like. They are negative irrespective of statistics. The
correlation between 1 and 3 is transportlike and changes
sign if we change statistics.

It is quite remarkable that in the conductor examined
here, the cross correlation Eq. (5.20), even at elevated
temperatures, contains only a transport effect. The cross
correlation is not "contaminated" by thermal fluctua-
tions. Thermal fluctuations in a correlation of fluxes be-
tween two contacts require direct transmission between
these two contacts. But in the conductor of Fig. 4 there
is no direct transmission from contact 1 to 3 or from con-
tact 3 to 1.

The results presented here for the waveguide differ
from the fluctuations one would measure in beams
reflected and transmitted at a mirror. For a beam
reflected at a mirror one would find fluctuations in the
occupation number given by Eq. (1.8) instead of the more
complex result given by Eq. (5.12). The difference stems
from the fact that at a port of a waveguide we have as
many channels leaving as are entering. At elevated tem-
peratures the channels entering a port also contribute to
the fluctuations. If we consider a strongly biased situa-
tion p —pp&)kT with p=p, =p4, pp=pz=p3 we can
neglect the term Tfo(1 W fo) in Eq. (5.12) but the equilib-

rium term f(1+f ) arising from the channel connecting
contacts 1 and 4 cannot be neglected. But apart from
this equilibrium contribution & (AI, ) & is a measurement
of the fluctuations in the reflected "beam. "

If the conductor contains, in addition to the edge chan-
nel which is partially reflected and partially transmitted,
a number of channels which are completely transmitted
and/or a number of channels which are completely
reflected and if these channels away from the barrier are
not mixed, they only contribute equilibriumlike fluctua-
tions which are easily added to the fluctuations given
above.

In the example discussed above it was possible to ex-

press all the fluctuations in terms of the absolute values of
the scattering matrix elements. Below we discuss an ex-

ample in which this is not possible and which displays ex-

change effects in a more explicit manner.

C. Correlations between fluxes
from mutually incoherent reservoirs

& &IzbI3 &
= —2hv(e /h )fdE[fo(1+fo)

+Rfo(1+fo)], (5.18)

&EI&bI4 &
= —2bv(e /h ) fdE[f(1+f )+Rf(1+f )),

(5.19)

& EI&bI& &
= 26v(e Ih )f dE Tfz(1+—fo),

&EI3b,I4& = —2h (evIh) f dE Tf(1+f ),
(5.16)

{5.17)

In this work we have emphasized a calculation of fluc-
tuations from exchange amplitudes. Here we discuss a
possible experiment to demonstrate exchange effects in
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correlations in a very explicit manner. We are interested
in the correlation between the currents at two terminals
using the two remaining terminals as current sources.
We consider the four-terminal conductor shown in Fig. 5.
(Different examples have been discussed in Refs. 2 and
12). It represents a quantum dot coupled to four leads.
The quantum dot contains one circulating edge state
which at each port is via transmission and reflection
probabilities t; =t, and r,-, r,

' coupled to the edge state of
the contacts. (The quantities without a prime describe
transmission and reflection of carriers which approach
the lead from inside the conductor. ) Any four-terminal
conductor can be used for this experiment and our partic-
ular example is chosen only for illustrative purposes. The
experiment consists in measuring the correlation function
between the fluctuating currents at probes 2 and 4, for ex-
ample. In experiment A a steady-state current is incident
only from Probe 3. We take f=f, and fp= fz =f3 =f4
and measure (AIzbI~). In experiment B a steady-state
current is incident only from probe 3. We take f=f3
and fp =fi =fz—=f4 and measure (bI26I4). In experi-
ment C a steady-state current is incident from both probe
1 and probe 3. We take f=f1 =f3 and—fp=fz=f4.
The theory predicts that the correlation function mea-
sured in experiment C is not just the incoherent sum of

FIG. 5. Quantum dot with circulating edge state coupled to
four contacts.

the correlation functions measured in experiments A and
B but in addition contains contributions from exchange
terms.

For experiment C we obtain from Eq. (4.13) for the
correlations of the currents at terminals 2 and 4

(AI25I4),„=+2bv(e /h ) dE(f fp) [Tr(szis—zis41s4, )+Tr($23$23$43$43)+Tr($21$23$43$4, )+Tr($23$2, $4,$43)] .2 2

(5.21)

The first two terms in Eq. (5.21) represent the contribution to the cross correlation due to carriers emanating from
source 1 (experiment A) and due to carriers emanating from source 3 (experiment B). The last two terms in Eq. (5.21)
are the interesting terms: They arise due to both the carriers emanating from sources 1 and 3 and are a consequence of
the fact that at a given terminal we cannot distinguish from which of the contacts the carriers have been emitted. We
can thus, in an obvious notation, write Eq. (5.21) in the form

( b IzbI4 )c= ( bI25I4 )~+ ( bIzbI4 )B+2hv(e /h )f dE(f fp ) [Tr(szisz—3s43s4, )+Tr(sz3szis4, s43 ) ] . (5.22)

sz, = tzt, exP(i/i )/Z,

$31 = t3rzti exp[i(p, + $2) ]/Z

s4, =t4r3rzti p[x'(4' 16++43))/Z

(5.23)

(5.25)

The presence of the last two terms in Eq. (5.22) prevents
the representation of experiment C in terms of an in-
coherent sum of the correlations measured in experi-
ments A and B.

Let us evaluate these terms for the specific example
considered here. The scattering matrix is found easily:
In particular we find (see Refs. 64—66)

where

i=4
(5.27)

is the total accumulated phase in one cycle. The total
phase is the sum of all phases accumulated during traver-
sal from one contact to another and is the sum of all
phases b,P; accumulated due to reflection at the contacts.

Consider the term Tr(sz, $23$~3$4, ). Inserting the
transmission probabilities, calculated as described above,
gives

Here the denominator Z is a function which takes into
account that a carrier can complete many cycles on the
circular edge state before exiting the sample,

Tr(szis23$43$41 ) ?1T2T3T4(R1R2R3R4) 1/2

X exp(iy)/~Z ~
(5.28)

Z= [1 (R,R2R3R4)' exp(—iy)], (5.26) The last term in Eq. (5.22) is just the complex conjugate
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of Eq. (5.28). Note that the last two terms are not simply
a product of absolute squares of scattering matrix ele-
ments. Combining these two terms we obtain

&aI,aI, &,=&aI,aI, & +&aI,aI, &,

+4hv(e Ih )fdE(f fo—) T, T2T3

X T4(R )R2R3R4)'

Xcos(Y)/iZ I
. (5.29)

In the presence of two incident currents we find a contri-

bution to the correlation function which depends on a
quantum-mechanical phase y in an oscillatory manner.

Next we consider the situation in which reservoirs 1

and 2 take the role of current contacts. In experiment C
we have incident currents from both of these contacts.
Reservoirs 1 and 2 have the distribution function f and
reservoirs 3 and 4 are characterized by the distribution
function fo We .then study the correlation function be-
tween terminals 3 and 4. In experiment A we have an in-
cident current only in probe 1 and in experiment 8 we
have an incident current only in probe 2. The correlation
function is given by Eq. (4.13) [or Eq. (5.21) with the sub-
stitutions 3~2 and 2~3],

& EI36I4 &c= & bI26I4 &~+ & bI~bI~ &s+2hv(e Ih )fdE(f fo) [T—r(s»s32s42s4, )+Tr(s32s»s4, s4z)] . (5.30)

We find the following result:

& SI,SI, &,= & aI, aI, &,+ & aI,SI, &,

+4hv(e Ih )fdE(f fo) T, T—zT,

In contrast to Eq. (5.29) a quantum-mechanical phase
does not appear explicitly. While Eq. (5.29) vanishes if
only one of the reflection probabilities vanishes (i.e., the
probe becomes strongly coupled to the dot), the correla-
tion given by Eq. (5.31) remains nonzero even if
R, =R~ =0. To elucidate the difference between the two
results it is useful to represent the exchange terms swiss s
graphically. In Fig. 6 s

& is represented as a full line
describing propagation from contact P to a along the cir-

(b)

cular edge state. In Fig. 6 s & is represented as a broken
line describing holelike propagation from contact f3 to a
in the opposite direction along the circular edge state.
The four paths always form a closed loop. Quantum
mechanically such a closed loop must have a phase asso-
ciated with it. In Fig. 6(a) the loop traces the entire cir-
cular edge state and is associated with a phase g. In Fig.
6(b) the loop covers only a portion of the circular edge
state and the phase associated with this loop is zero (or a
multiple of 2~). In our simple example the phase y
which appears also occurs in the single-particle transmis-
sion coefficient as soon as the transmission probabilities
to the contacts are all smaller than one. The interesting
question is, whether it is possible to obtain fluctuation
loops, as shown in Fig. 6(a), which are associated with
phases which do not occur in single-particle transport
coefficients and are therefore characteristic of a two-
particle effect. A11 examples which we have examined
only revealed phases which also occur in single-particle
transport coefficients. Since the phase y is proportional
to the magnetic field enclosed by the circular edge state,
Eq. (5.29) presents an example of an Aharonov-Bohm
effect in a correlation function. '

~3 I VI. DISCUSSION

S2.i S2ss~ss~i S~ismsoasei

FIG. 6. (a) For carriers incident in both contacts 1 and 3 the
current-current correlation between contacts 2 and 4 exhibits an
exchange term which corresponds to excitation of the entire cir-
culating loop. The phase of the exchange term is y. (b) For car-
riers incident in contacts 1 and 2 the current-current correlation
at contacts 3 and 4 exhibits exchange terms which correspond
to the excitation of only part of the circulating edge state. The
phase of the exchange term is zero.

In this work we have presented a calculation of the
noise spectral density for multichannel, multiterminal
conductors and have compared these results with the
intensity-intensity correlations of a photon wave guide.
This juxtaposition of Fermi correlations and Bose corre-
lations, clearly, has its limits: Electrons are not only fer-
mions but carry charge. Through their charge electrons
interact not only among themselves but also with positive
background charges. Such interactions can give rise to
collective behavior leading to results which might differ
considerably from those presented in this work. Even for
theories which include interactions ' the discussion
presented in this paper will hopefully provide a useful
point of reference.
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What are the experimental conditions under which a
current-current correlation given by Eq. (1.16) can be
measured'? The correlations determined by Eq. (1.16) are
for a conductor which is small compared to a phase-
breaking length. Typically in an experiment macroscopic
wires which are long compared to an inelastic length con-
nect the small sample to a measuring apparatus. Will
such a wire faithfully transmit a current fluctuation from
the output contact of the small sample to the input of the
detector? It could be that the answer is yes for the mean
squared currents: The mean squared currents at two
cross sections along the wire at r, and r2 could be identi-
cal ([KI(r, )] ) =([EI(rz)] ) but might the correlation
(,EI(r, )AI(r2) ) vanish if the distance between the two
cross sections is larger than an inelastic length? To inves-
tigate the effect of inelastic scattering on shot noise, a
simple model was analyzed by Beenakker and Biittiker.
In this model inelastic scattering is introduced with the
help of a side branch ' leading away to an electron
reservoir. The correlation is indeed lost if the current at
this side probe is allowed to fluctuate freely. ' On the
other hand, if the side probe is treated like a voltage
probe (infinite impedance) the intrinsic current fiuctua-
tions are balanced by voltage fluctuations such that the
net fluctuating current at the side probe vanishes. The
conductor remains charge neutral and the current correla-
tion is preserved even over distances which are large com-
pared to an inelastic length. Current conservation is the
key to avoid a loss of the correlation. A wire which
remains locally charge neutral will preserve the correla-
tion over macroscopic distances. Inelastic scattering in
conjunction with voltage fluctuations which prevent
charge buildup provide another mechanism for the
reduction of shot noise.

In any experiment, it will therefore not be easy to dis-
tinguish differing mechanisms for the reduction of shot
noise. Similarly, a negative current-current correlation
cannot immediately be attributed to the two-particle
effects discussed here.

ACKNOWLEDGMENTS

Many stimulating discussions with R. Landauer and
Th. Martin have helped to sharpen my views. I have also
profited from H. Thomas and C. W. J. Beenakker with
whom I have collaborated on certain extensions of the
theory presented here.

APPENDIX A: PROPERTIES
OF THE SINGLE-PARTICLE

SCATTERING MATRIX

In this appendix we co11ect a number of properties of
the single-particle scattering matrix S and the subma-
trices s & which are frequently used in this paper. Since
current is conserved S must be a unitary matrix,

S'( —8)=S '(8) .

According to Eq. (Al), S '(8)=S (8) and hence

S (B)=S(—8),

(A2)

(A3a)

where the upper index T denotes the transposed matrix.
For the submatrices s & the unitary property of S S= 1

implies

+ s~p ~y lp py i (A3b)

where 1 is a unit matrix of dimension M =Tr(1 ).
Similarly, SS f= 1 implies

g sp sy =
1p5py . (A4)

In terms of the total reflection and transmission probabil-
ities, R =Tr(s s ) and T p=Tr(s ps p), Eqs. (A3b)
and (A4) state the conservation of current

M~=R +gT p,
P

M =R ~+QTp~.
P

(AS)

(A6)

APPENDIX B:
PROPERTIES OF THE MATRIX A

A number of properties of the matrix A are given
below. The matrix A is related to the current-matrix ele-
ments' and in this work was shown to relate the occupa-
tion number operators in a given probe to the creation
and annihilation operators of the incoming channels.
First, we emphasize that A is not by itself an observable,
but the adjoint of Apy(a) is the matrix Ayp(a) with a
and y interchanged,

Ap (a)=1 5 p5 —s ys p= A p(a) . (Bl)

Nevertheless, A has a number of interesting properties
which stem from the properties of the single-particle
scattering matrix S. Using Eq. (A3b) we find

g Apy(a)= g [1 5 p5 y
—s ps y]

= lp5p —lp5py=0 . (82)

The A matrices enter the expressions for the fluctuations
in the combination

Ays(a) Asy(P)=[1 5 y5 s5py5ps 5py5pss y—s s

5ay5as ps py+say as ps py] (83)

Let us consider summation over one of the lower indices
of the trace of Ays(a) Asy(P),

g Tr[ Ays(a) A& (P)]=Tr[1 5 &5p 5ps 5p&s ps s—

S S=SS =1 (A 1)

and since the Harniltonian is invariant, if momenta and
magnetic field are reversed simultaneously,

—5 sspssp +1 5 ps ssps] .

(84)
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To obtain the last term we have made use of the cyclic
property of the trace and have used Eq. (A4). If we carry
out the summation over 5 we find

g Tr[ A s(a) As&(P)] =Tr[21 5p —s ps p

Similarly, we can show that for a&P

g f~ QTr[A s(tz)As (13)]

Tr(—s ps p)fp Tr(—sp sp )f, (B7)

spaspal (B5) and hence

where we have used Eq. (A3b). For a=P the right-hand
side of Eq. (B5) is equal to 2M —2Tr(r"pr p) which is
2(M —R ). For tz&P the right-hand side of Eq. (B5) is
equal to —Tr(s ps p)

—Tr(sp sp ) which is equal to
—

( T p+ Tp ). Next consider the sum of the trace of the
two A matrices over 5 but weighted by functions f&.
For aWP we find

g f& QTr[Ars(u)As (P)]

g fs QTr[ A s(tz) As (P)]

= g fr QTr[A s(a)As (P)]

For a =P we find, instead of Eq. (B6),

g fs g Tr[ Ars(a) As (I3)]
6 y

(B8)

Tr(s ps
—
p)fp Tr(sp sp

—)f (B6) =Tr(1 —2s s )f + QTr(s ss„s)fs .
5
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