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Magnetorotons in quasi-one-dimensional electron systems in the absence of Kohn's theorem
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Using a time-dependent Hartree-Fock approximation we have investigated the inter-Landau-level col-
lective excitation spectrum of quasi-one-dimensional electron gases where Kohn s theorem is violated.
We find that the spectrum develops a roton minimum at finite wave vectors. In addition to the main

magnetoroton, extra collective modes are found. Also we find that it is important to include both the
Hartree and exchange local-field corrections in a calculation of the cyclotron resonance.

A magnetoroton minimum exists in intra-Landau-level
collective excitations of the fractional quantum Hall
effect (FQHE) state' and in inter-Landau-level collective
excitations of quasi-two-dimensional (Q2D) (Ref. 2) and
quasi-three-dimensional (Q3D) (Ref. 3) electron gases.
The magnetoplasrnon dispersion displays a roton
minimum around a wave vector q —1/ro when the pair-
correlation function is strongly peaked near the mean
particle distance ro. A roton minimum has been ob-
served in the dispersion relation of inter-Landau-level
collective excitations of a Q3D electron gas in a wide par-
abolic quantum well. In the FQHE state and in Q2D
electron gases Raman scattering experiments have been
interpreted as showing the existence of a roton minimum.

Recent advances in semiconductor fabricati. on tech-
niques have made possible the growth of quasi-one-
dimensional (Q1D) electron systems in the quantum lim-
it where only one subband is occupied. In particular,
cleaved edge overgrowth may be used to grow periodi-
cally modulated Q1D electron wires with a period of or-
der 100 A. The experimental investigation of magnetoro-
tons in QlD gases has thus become a relevant issue.

It has not been established theoretically whether
many-body correlations in Q1D electron gases can give
rise to magnetorotons. Furthermore, our understanding
of the inter-Landau-level collective excitations in quan-
tum wires has been quite limited in situations where
Kohn's theorem is violated. We have investigated this
problem in large magnetic fields using a time-dependent
Hartree-Fock approximation with a parabolic Hartree-
Fock self-consistent (HFSC) lateral confinement poten-
tial. In the presence of a parabolic HFSC potential
Kohn's theorem is violated, in contrast to the case of a
parabolic bare lateral confinement potential. In our work
we have used normal Fermi-liquid theory because finite
temperature and impurity scattering effects suppress in-
stabilities toward broken symmetry states and
Tornonaga-Luttinger liquid behavior. A Fermi-liquid
picture is also supported by recent experimental investi-
gations in Q1D wires. Our main results are as follows.
We find, using finite-temperature Fermi-liquid theory,
that the inter-Landau-level collective modes develop a
roton minimum at finite wave vectors. As a consequence
of the violation of Kohn's theorem, extra collective

modes are found in addition to the main magnetoroton
mode. In addition, we find in the presence of local ex-
change (excitonic) and Hartree (depolarization) fields that
the collective excitation energies lie below the single pair
excitation energies.

Our model Hartree-Fock (HF) Hamiltonian is

HH„=— '(}' i fico,—x +—m (co, +coo)x
a

where the HFSC lateral potential is taken to be parabolic
1/2mcoox . Here co, and m are the cyclotron frequency
and electron effective mass. The wire extends along the y
axis and the Landau gauge A =(O,Hx, O) is used (mag-
netic field along z axis). The advantage of this model
Hamiltonian is that the eigenstates and eigenenergies of
H» can be found exactly'

%„k(r)=4„(x—R k)e'"~5(z),
2

0 2e„(k)= (n +—,
' )A'Q+ k

2m Q

where Q=(co, +coo)'~, R =fico, /(m Q ), and 4„arethe
wave functions of a harmonic oscillator with characteris-
tic frequency Q[the magnetic length is l=(A/mQ)' ].
The quantity coo is to be chosen such that the true HF en-

ergy separation" between the first and second subbands
is given by AQ. The density for either spin can be ex-
pressed as

P(r) X 'P ', k'( )+r, k( )Pr, k; ', k

m, k, m', k'
(3)

X & n, k+QifiH„„~m,k), (4)

where y is a linewidth and f (k) is the Fermi function.
Here the common factor e ' ' has been canceled. In the
absence of spin splitting the change in HHF induced by
the external time-dependent potential is given by

In the presence of an external time-potential
V,„,(y, t)= V,„,e'~ "",the time evolution of the change
in p„k+&. k is given by

f„(k+Q) f (k)—
ink+ mk e„(k+Q) —e (k) —%co—i y
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(n, k+Q~5IIH„~m,k ) = V,„,(n, k+Q~e'~~m, k )

+ g [2(n, k+Q;m', k'~V~m, k;n', k'+Q)
m', n', k'

&n k+Q'm', k'lVln' k'+Q;m k&]5p„,k+g;

where the first (second) term in the summation is the Hartree (exchange) local-field correction. The Coulomb matrix
elements are given by

1 dg~ 2m'e ~

(n&, k, ;nz, kz~ V~n3, k3, n4, k4) = 2i—r5(k4+k3 ki ki) -- 2~ e[q„'+(k,—k, )']'"

)&exp[iq„(k&—k4)R ]F„
„

(q„,k&
—k3)F„

„

(
—q„,—ki +k3)

and

( —q +iq„}lF„(q„,q, )=F„(q)= q2$2 2I2
exp — I."m

for n & m [one can use F „(q)=F„' ( —q) for n (m]. A is the area of the xy plane on which the electrons reside, e is
the background dielectric constant, and L is a Laguerre polynomial. 5p„„+&. z satisfies the equation

...k (Q}5p.', /c'+Q; ', /c' [f.(k+Q}—f (k}l&n k+Qle'

where the kernel is

., k (Q) = [e.(k +Q) e(k} &~— i y ]5—..5—
—[f„(k+Q) f (k)][2(—n, k+Q;m', k'~ V~m, k;n', k' +Q)

—(n, k+Q;m', k'~V~n', k'+Q;m, k) .

(8)

(9)

The sum in Eq. (8) is over indices such that f„(k+Q) —f (k)%0. Due to the exchange contribution the kernel of this
integral equation is found to be singular when k =k'. This singularity can be treated using the modified quadrature
method. ' The response function for either spin can be found from

5p(Q)=
& g 5pg', k'+Q;yg', k &n', k'le '+1m', k'+Q)

=X(Q,~)V... ,

which yields

(10)

~(Q'~} g 2 g [+]m, n, k;m', n', k'(Q)[f. (k'+Q) f (k')]& n' k'+Q Ie'~1m', k') (n, k~e '~m, k +Q ) . (11)
m, n, k m', n', k'

In large magnetic fields, where the Landau-level sepa-
ration AQ is large compared to the characteristic
Coulomb energy, inter-Landau-level excitations may be
investigated by restricting Landau-level indices to
(m, n) = (0,1). This implies that the excitations in the
lowest Landau level may be ignored (note that in the 2D
case with partially filled Landau levels this approxima-
tion fails due to the singular density of states). In the
strong-field limit the numerically calculated Imp obeys
the f-sum rule. Figure 1(a) shows log&0[

—Imp] as a
function of energy fico for different values of Q with
Scop = 1 meV and at a temperature k~ T «E~. We see
that as Q varies the main peak for each Q traces out a

magnetoroton dispersion relation co(Q). The presence of
several weaker collective modes beside the main peak can
be attributed to the violation of Kohn's theorem; excita-
tions other than the center-of-mass modes become visible.
Figure 2(a) shows, for each value of Q, the two largest
peak values from Fig. 1(a). The magnetoroton dispersion
relation is clearly visible with a minimum at Ql -2.3. As
an indication of teinperature effects we show in Fig. 2(b) a
dispersion curve for k~ T=Ez with all other parameters
unchanged (strictly speaking, in the Hartree-Fock-
approximation coo should depend on temperature}. We
observe that the roton dip has decreased somewhat at the
higher temperature but qualitatively the dispersion rela-
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FIG. 1. Plot of log~o[ —Imp/yo] as a function of Ql and ener-

gy Ace for (a) %coo = 1 me V, and (b) %coo =2 me V (yo = 1

eV 'A ). The other parameters are y =0. 1 meV, B = 10 T,
k, T «EF, and N =1.3 X10 cm ' (the Fermi energy EF is in

the lowest Landau level). We have subtracted AQ from the en-

ergies for the sake of clarity. In this plot the smallest value
shown for Ql is greater than zero.

tion remains the same.
The single pair excitations of a 1D wire form a

quasicontinuum band in the absence of Coulomb (Hartree
and exchange) interactions. For a given Q the bandwidth
is given by W=4EF(con/0) (Q/kF), where the Fermi
wave vector kF=N~. In the presence of Coulomb in-
teractions the single pair continuum becomes ill defined.
However, for the case shown here, the states that are the
most "single-particle-like" occupy a fairly narrow band
with very sma11 —Imp near the top of the broad band of
states in Fig. 1(a) (= —0. le /el ) and are thus not easily
distinguished in this representation compared to the
modes that are more collective in nature. When this
single-particle-like band is broadened, e.g., by increasing
coo, the single particle and collective modes are even more

FIG. 2. (a) Plot of the two largest peak values from Fig. 1(a)
at each value of Q. The largest and second largest peaks in
—Imp are shown respectively as 611ed and open squares. The
size of each square is proportional to log, o[

—Imp/yo]. All oth-
er modes in Fig. 1(a) have much smaller g compared to those
shown. (b) Same as in (a) but with k& T=EF.

strongly mixed and it becomes increasingly more difficult
to define a clear-cut magnetoroton dispersion. This
broadening eifect, which is illustrated in Fig. 1(b) for
%coo=2 meV, can be countered by increasing the magnet-
ic field as can be seen from the expression for 8'above.
It should be noted that we find the collective modes to lie
above the single pair excitations in the presence of Har-
tree local fields; it is only when exchange local fields are
included that the collective modes lie below the single
pair excitations. The magnitude of the cyclotron energy
can thus be computed correctly only when the exchange
local-field corrections are included. Note that in Q2D
magnetoplasmas there is no depolarization shift since the
Hartree local-field correction at Q =0 is zero, in contrast
to our QID system. In the present work we have ignored
finite thickness effects along the z axis, but they may be
included by inserting a form factor in the Coulomb ma-
trix elements.

We thank A. H. MacDonald for valuable conversations
on various aspects of this problem.
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