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Theory of electromagnetic-wave instabilities in a spatially dispersive semiconductor superlattice
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A theoretical investigation has been made of electromagnetic waves propagating in a semiconductor
superlattice (SL) consisting of alternating spatially dispersive and nonspatially dispersive layers. The
dispersion relations for both an infinite SL and a truncated SL are obtained by assuming the specular
reflection boundary conditions of Kliewer and Fuchs and using a transfer-matrix approach. A specific

type of spatial dispersion is chosen for exploration in detail, namely that caused by a dc drift current
moving in alternate layers parallel to the SL layer interfaces. Amplifying instabilities are found for cer-
tain ranges of frequency and wave vector.

I. INTRODUCTION

We report on a theoretical investigation of surface elec-
tromagnetic waves propagating in a semi-infinite semi-
conductor superlattice (SL) consisting of alternating spa-
tially dispersive and nonspatially dispersive layers. The
dispersion relation is obtained by using the specular-
reQection boundary conditions' and a transfer-matrix for-
malism.

As an example of an application of this theory, we con-
sider the spatial dispersion caused by a dc drift current
moving parallel to the SL interfaces. We explore SL
space-charge-wave (SCW) instabilities associated with dc
drift currents. Extensive theoretical work has been done
on SCW instabilities in structures simpler than the SL
(for a listing of some of the pertinent papers, see Ref. 3).
For example, there are so-called resistive-wall instabilities
in gas plasmas that have been used for amplifying mi-
crowaves. Such instabilities also occur in solid-state
plasmas.

Instabilities in a superlat tice consisting of two-
dimensional electron sheets periodically arranged in a
dielectric medium have been treated by Hawrylak and
Quinn. In the present paper, we analyze a different su-
perlattice system in which the current carriers occupy
finite thickness slabs.

In what follows, we first obtain the transfer matrix for
the SL period using the specular-reAection boundary con-
dition. Dispersion relations are then presented for the
cases of infinite and truncated superlattices. Simplified
cases of two- and three-layer media are considered as a
check on the theory. A specific application is made to
the case where alternate SL layers carry a dc current
moving parallel to the interfaces.

where we assume p polarization for the incident radiation
and where

cos(qa ) iZ, sin(qa )

i Y, sin(qa) cos(qa) (2.2)

Z, is the surface impedance of the semiconductor given

by

Z
coet(N )

(2.3)

YI = 1/Z& c is the velocity of light, and ~ is the frequen-

cy. The dielectric function of layer 1, e,(to), is given by

~ ~ ~

e&(k, ru) e
~
{~)

dispersive layers with dielectric functions 7(k, co) and
7(co), respectively. We first consider the electromagnetic
fields in region 1. The fields near the left- and right-hand
interfaces, but still inside region 1, are related by the
transfer matrix M,

E
(2.1)

II. TRANSFER MATRIX FOR THE SL PERIOD

Consider the SL geometry shown in Fig. 1. Here we
have alternating spatially dispersive and nonspatially

b I

FIG. 1. Geometry of an infinite superlattice.
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e,(a))=e'„" 1—
2~ei

(2.4)

where e'„" is the high-frequency background dielectric
constant and co,

&
is the plasma frequency. The quantity q

is the wave vector in the direction normal to the inter-
faces

We also have

9 d'E(z) —k2E(k )
2

db, E(nb) ik—, it E(nb)

1/2

e, ( t0)
—

ky (2.5)

E„(nb+ ) =E~(nb ),
dEy dE„"(nb+)= — (nb ),
dz dz

(2.6)

dE + —dE
E,(nb+)= E,(nb ), — ' (nb+)= '

(nb ),
dz dz

(2 7)

where b+ means slightly to the right of the interface at b
and b means slightly to the left of the interface. From
Maxwell's equation,

where ky is the wave vector parallel to the interfaces.
Consider next the spatially dispersive layer whose ma-

terial has a bulk dielectric function, e2(k, co), and in
which a drift current is present parallel to the interface.
In this layer we assume that the carriers are specularly
reflected at the interfaces. To determine the field in this
region, we use the specular-reflection additional bound-
ary condition (ABC) of Kliewer and Fuchs. ' We begin
with the approach of Wallis, Castiel, and Quinn. We
periodically repeat layer 2 of Fig. 1 until all of the space
is filled. The fields at z =2nb are all identical for
n =0,+1, . . . , and the fields at z =(2n +1)b are all iden-
tical for n =0,+1, . . . . We next impose the "mirror im-
age" ABCs as

ik nb
Xe (2.14)

Now we can proceed to the electromagnetic wave
equation which we want to Fourier transform. If we
combine the Maxwell equations

1 BVXE= ——
c t

(2.15)

and

with

4mJ+1 BD
c c Bt

(2.16)

D =e'E, (2.17)

we can obtain the wave equation

CO
V(V E)—V E=e E .

c2

In component form,

8 co
5pV —ep z

—Ep =0,
p 8& ~xp cz

(2.18)

(2.19)

e k Ey(k )+ 2' +kykz E (k )

where P is summed over components x, y, and z; 5 p is
the Kronecker delta.

Fourier transforming Eq. (2.19) gives

1 ~VXE= ——B,
c

(2.8) ik nb dhE (nb)=pe ' ik, hE„(nb—)
where the dot above the vector means time
differentiation, we have, taking the field dependence as
exp[i(k r) —cot], the result +ik bE, (nb) (2.20)

dEy—tco8 = " —tk Ex d y z (2.9) and

and the conditions given by Eqs. (2.6) and (2.7) lead to the
result

N CO

e, +k k, E (k, )+ e„kE,(k, )—
B„(nb+)= B„(nb ) . — (2.10) = pe * [ik bE (nb)] . (2.21)

Now we need to find solutions to the wave equation.
To this end, we use Fourier transform V as follows: Equations (2.20) and (2.21) can be simplified by use of the

relations
V[E(z)]=E(k, )=J dz e ' E(z), (2.11)

b,E (nb}=0 . (2.22}

V = —ik, E(k, )+ g EE(nb)e ', (2.12)
z

n = —oo

where

In addition, we can, from Eq. (2.9) write

d EEy(nb)
ik bE, (nb)+ — = — bB„(nb) .

y z dz c
(2.23)

BE(nb)=E(nb ) —E(nb+} . (2.13) Using these results in Eqs. (2.20) and (2.21), we have
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2

e —k, E (k, )+ e, +k k, E,(k, )
E (k, )= A (k, ).

Tyy Tzz Tyz

(2.36)

and

= g e ' b,B„(nb)
C

(2.24)
dk,

E»(z)= J e A (k, ).
Tyy Tzz Tyz

Inverting the Fourier transform gives

(2.37}

2 2

e, +k k, E (k, )+ e„—k E,(k, )=0 .

(2.25)

Equations (2.24) and (2.25) can be written in the form

Because of the series of 6 functions, the Fourier integral
reduces to

oo —ilnzlb[8 (0+ ) ( 1)&8 (b
—

) ]
cb l = —oo

T»» T E»(k ) A

T, T„E,(k, ) 0

where

(2.26}
Tyy Tzz Tyz z

= lm~d
(2.38)

Just inside the boundaries of region 2, we obtain from Eq.
(2.38) the following, where for the last square-bracketed
form of Eq. (2.38) we use [ ]:

2COT = e„—k, ,
C

(2.27)
)][]k =i »»

and

CO

Tyz
=

Tzy
=

2 ~yz + ky kz
C

2CO

Tzz 2 ~zz ky
C

(2.28)

(2.29)

(2.39)

E»(b ) = g [( —1)'B„(0+) B„(b—)][]k =i~»i, .

(2.40)

A» = g e ' b,B„(nb)
C

(2.30)

We next consider Eq. (2.30). We begin with the expres-
sion

These expressions can be written in the form

E»(0+ ) =y~B„(0+) y,B—„(b ),
E (b )=y,B„(0+) y~B„(b )—,

where

(2.41)

(2.42)

EB„(nb)=B„(nb ) B„(nb+ ) . —

For all n, we have

(2.31) y, = g ( —1)'
Cb l ~ Tyy Tzz

—
Tyz kz='~~d

(2.43)

B„(0—) =B„(2nb +—),
8„( b +—

) =8„—[(2n + 1 )b
+—

] .

Thus, Eq. (2.30) can be written as

(2.32) k, = l~/d
(2.44)

We can now obtain the transfer matrix for region 2 (see

Fig. 1). To be consistent with Fig. 1 labeling we replace
0+ by b and b by a+ in Eqs. (2.41) and (2.42),

A»= [8 (0+)—e '8 (b }]ge
n

(2.33)

g exp[ik, 2bn] =—g 5 k, —
n l

(2.34}

This, in effect, eliminates the k, dependence, and Eq.
(2.33) becomes

A = —g [8„(0+)—(
—1}'B„(b )]5 k

I

(2.35}

The summation over n in Eq. (2.33) is zero unless 2k, b is
a multiple of 2m. , in which case the sum diverges. Conse-
quently we have

E (b )=y,B„(b ) y,B„(a+),—

E (a+)=y,B„(b ) —y~B„(a+) .

(2.45)

(2.46)

(2.47)

2 2
V2 r2 r 1

1 rl
(2.48)

r2

Solving Eq. (2.46) for B„(b ) and substituting the result

into Eq. (2.45) enables us to write the following matrix
equation:

E E
=M2

where M2 is the transfer matrix given by

Equation (2.26) can be solved for E ( k, ) as
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M=M2M

where

M21 M22
(2.49)

r2 V2 31.2 2

M» = cos(qa}+ i Y,sin(qa),
7] 3 1

(2.50)

It is easily verified that the determinant of M2 is unity.
We can obtain the transfer matrix for layers 1 and 2 by

matrix multiplication of M, and M2 to give

M» M2

' 1/2
N

ao k„— (3.5)

2

q =i k»
—

2
e&(co) (3.6)=ia],

As a simple check on the dispersion relation given by
Eq. (3.2}, consider the case of a semiconductor-vacuum
interface. For this situation, the required matrix ele-
ments are given by Eq. (2.2}. For the wave vector q we
use the relation [see Eq. (2.5)]

' 1/2

. ~2 . 72 Xl
M, 2 =i Z, sin(qa)+ cos(qa),

7] 1 1

(2.51) where a] is the decay constant for the semiconductor half
space. Using Eq. (3.2), we obtain the result

1 .y2
M2& = cos(qa)+i Y&sin(qa},

Y] 7]
(2.52) Z2=Z2 .1

(3.7)

(2.53)
Z] r2

M&2 =i sin(qa)+ cos(qa) .

The quantity M is the transfer matrix for the SL period.
a]

e((t0) =
ao

' (3.&)

Taking the positive square root and using Eqs. (3.4) and
(2.3), we obtain

III. THE SL DISPERSION RELATION

A. Infinite SL

Following the approach of Mochan, del Castillo-
Mussot, and Barrera, the dispersion relation for an
infinite SL is

cos{Qd }=—,'(M»+Mzz), (3.1)

Having obtained the required transfer-matrix elements
in Sec. II, we next consider the dispersion relations for an
infinite SL and a truncated SL. These expressions involve
the matrix elements of M [Eq. (2.40}]and, consequently,
are of a very general nature, i.e., appropriate for any type
of spatial dispersion.

which is the standard result for surface polaritons at an
interface between semiconductor-vacuum half spaces.

IV. SPATIAL DISPERSION
CAUSES BY DRIFT CURRENT

A. Theory

The theory developed above is very general in that it
did not specify the components of the dielectric tensor for
a particular type of spatial dispersion. In this section, we
will consider in detail spatial dispersion caused by a dc
drift current fiowing parallel to the layer interfaces (the y
direction}. We proceed by utilizing the transport equa-
tion for the motion of a charge carrier in the semiconduc-
tor,

where Q is the Bloch wave vector and M» and M22 are
given by Eqs. (2.50}and (2.53), respectively. The quantity
d =a +b is the fundamental SL period.

Bv +(v V)v= + E+—vXB —vv,
—Vp e 1

dt m'N m' c
(4.1)

B. Truncated SL

The dispersion relation for a truncated SL is

and the continuity equation

n +V (Nv)=0,
at

(4.2)

M]2
M]1+ —ZM21 —M22 —0, (3.2)

where the matrix elements M]1 M]2 M2] and M22 are
given by Eqs. (2.50)—(2.53). For surface modes, the im-
pedance Z is given by

' 1/2

where v v, m ' e, and N are the carrier velocity, collision
frequency, effective mass, magnitude of the electron
charge, and electron concentration, respectively. The
term VP is the carrier thermal pressure gradient, and E
and B are the total electric and magnetic fields, respec-
tively. We also make use of the Maxwell equation,

C N —k2
c2 (3.3) 1 BVXE=-—

c Bt
(4.3)

—icaoZ= (3.4)

where ap is the vacuum decay constant given by

where, for a vacuum half space, E'p=1 so that we can
write

(4.4)

Linearizing Eqs. (4.1)—(4.3) and proceeding as in Ref. 3,
we obtain the following components of the dielectric ten-
sor for layer 2 taking k ={0,k, k, },v =(0, V2, 0}:

2 2 2 2

(k, co)=e„ 1—e2 ~ +~2y z

riP (co—k»V2»)
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2

e (k, co)=e (k, co)= —e {2)COe2 z ~2y
—kvCO CO

y 2y

(4.5)
and

=k2 (4.16)
2

e„(k,o))=e'„' 1—
CO

(4.6)
so that Eqs. (4.8) and (4.9) reduce to

where we have used the plasma frequency for layer s,
namely,

4mN2e
COe2e2 (2) (4.7)

From these results we can obtain expressions for the T
13

of Eqs. (2.27) —(2.29) and for y, and yz [see Eqs. (2.43)
and (2.44), respectively],

and

r2=

ik—
y c csch(kyb)

2
COe2

(co —
V2 k )

6~ CO 1

ik—yc coth(kyb)
2
e2

(co —
V2 ky)

(4.17)

(4.18)

and

I N P3
y, = each(b+P, /P2)

P)P2

l CO P3
y2= c toh(b+p, /p, ),

PA

(4.8)

(4.9)

For the infinite SL, the dispersion relation is given by
Eq. (3.1). Using the nonretarded forms of y, and y2
given by Eqs. (4.17) and (4.18), we obtain the following
dispersion relation:

cos(gd) =
—,
' 2 cosh(kya)cosh(kyb)

where we have used the expressions

Tyy Tzz Tyz Pl +kzP2 (4.10)
+—sinh(k a)sinh(k b)

2

zz 3

and where

(4.11) E'2

+—sinh(k a)sinh(k b)
E 1

y (4.19)

2
COe2

X 1—
(co—k V~ )

2

p2= —e„(, )
COe2

c

p'2 2
2y CO (2)

2 26~ 1—
(co—k V, ) c

2
CO 2

(a) —k V~ )

2
E'(2) CO 1—

oO

c

2 2 CO
(2) CO (2) CO

] oo 2 ooc c CO

2
COe 2

CO

(4.12)

where k is the wave vector along the SL interface and

2

1 —
2

Oel

CO

(4.20)

2

E2= 6~ 1
CO 2

(co —Vo~k )
(4.21)

In these expressions co„ is the plasma frequency specified
by

4 y2—(~. ](2) 2 e2 2y

c (co —k V~)
(4.13)

4~N;e
CO~]—

m *e")
f QO

(4.22)

and

2 2

P, = e„ 1—(2) COe2

oo 2
—k

V
(4.14)

p3

v'P)P2

—c k
2

E' CO 1
(co —

ky V2y )

(4.15)

It is of interest to explore the nonretarded limit be-
cause retardation has little effect on amplifying instabili-
ties of interest here. Consider the expressions for p&, pz,
and P3 given by Eqs. (4.12)—(4.14) which enter in the ex-
pressions for y, and y2 above. After a little algebra it can
be shown that

where N, is the carrier concentration in the ith layer, e is

the magnitude of the electron charge, m;* is the carrier
effective mass, and e'„' is the high-frequency dielectric
constant.

to take into account the presence of optical phonons in
either layer type, we add the term

2 2
COL CO T

2 2
CO T CO

to either e, or e2, or both. In this term, coT is the trans-
verse optical-phonon frequency and coL is the longitudi-
nal optical-phonon frequency.

For the truncated SL, the dispersion relation is given

by Eq. (3.2). Using the nonretarded forms of y, and y2,
as before, we obtain the following dispersion relation:
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[sinh(k a)+e,cosh(k a)]sinh(k b)ez —[(1—ef)cosh(k„b)sinh(k„a)]62

—e, [e,sinh(k»a)+cosh(k a)]sinh(k b)=0 . (4.23)

The presence of optical phonons in a truncated SL can be
taken into account as indicated above for the infinite SL.

We next discuss the criterion for the existence of sur-
face waves for the SL geoxnetry considered here. We fol-
low the analysis of Camley and Mills, who considered a
truncated SL interfacing a vacuum and with alternate
layers also a vacuum. For our geometry this corresponds
to taking Z'=r' (4.32)

I

to the result obtained by Camley and Mills when the
drift velocity Vp2 =0.

For truncated SL, we first consider a semiconductor-
vacuum interface. To obtain this geometry, we take a =0
and b = 00 [refer to Fig. 1]. It is straightforward to show
that the dispersion relation [Eq. (3.2}] for this case
reduces to

F1=1 . (4.24)
where

(1—ez)[cosh(k a)+sinh(k a)]=0, (4.25)

For this case the dispersion relation given by Eq. (4.23)
reduces to ik» c coe2

toe'„' (co—Vz k„)
(4.33)

from which we obtain the result

q2
——+1 (4.26}

In their treatment of the truncated SL, Mochan, del
Castillo-Mussot, and Barrera give the following form for
the dispersion relation:

M, 2

M„—e'~
M eigd

22

M2,
(4.27)

X —sinh(k b)+cosh(k b)
1

2
(4.28)

For e2= + 1, Eq. (4.28) reduces to

e ~d=e 'k d
(4.29)

which gives —P=k . This is not a surface wave, as dis-
cussed by Camley and Mills. For e2= —1, we find that

P=k. (4.30)

which gives a surface wave as long as

where for our case, the M; are given by Eqs.
(2.50)—(2.53). Equation (3.2) was obtained from eliminat-
ing e'~ from Eqs. (4.27). Using the first equation of
(4.27), replacing iQ by —P, we have that

e ~"=M + M, 2
11 Z

= [sinh(k»a)+cosh(k a)]

Using Eq. (4.33) and the expression for Z given by Eq.
(3.4), we obtain from Eq. (4.32) the result

2
COp2

(4.34}
(co —

Vz» k» }

which has been obtained previously using a different ap-
proach.

If we replace the vacuum with an insulator with dielec-
tric constant eo, Eq. (4.34) becomes

2

E'~ 1
2

= 6P .
COe2

(co —
V~ k„)

(4.35)

Further, if we replace this insulator with a nondrifted
solid-state plasma with dielectric function e'„"(1
—to, &/co ), Eq. (4.35) becomes

2
COe2

(co —V2 k )

N1—e1
2

(4.36)

For this case, we have amplifying instabilities.
We next consider a more complicated limiting case,

namely, that of a two-interface system. Referring to Fig.
1, we take a =0 to eliminate the first layer, retain the spa-
tially dispersive layer with dielectric function ez(co, k} and
thickness b, and add a layer of thickness t3(~ ~ ). We
label this region 3. Its transfer matrix is

cos(qt3) iZ3sin(qt3 }
M3=

iF3s111(qt3 } Cos(qt3 }
(4.37)

Thus for our two-interface system, the transfer matrix is

b)a . (4.31)

It is of interest now to look at some limiting cases of
the above dispersion relations and compare them with
published results.

where

m11 m12

m21 m22
(4.38)

B. Limiting cases

=y2
m» = cosh(a3t3 )—

71

Z3 .
sinh(a3t3 ), (4.39)

Regarding the infinite SL dispersion relation given by
Eq. (4.19), it can easily be shown that this is equivalent

m12 = V2 Yl y2
cosh(a3t3 ) — Z3sinh(a3t3 ), (4.40)

71
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y2 1
m2, = Y3 sinh(a3t3 )+ cosh(a3t3 )

V1
(4.41)

f71 22
=

2 2
32 Vl y2

Yi sinh(a3t3 ) +
Vl

cosh(a&t3 ) . (4.42)

In obtaining these expressions we have used the result

2
1/2

q=i k —e3
CO

3' 3 2
=i(13 . (4.43)

Putting the above matrix elements in Eq. (3.2), multi-
plying through by y1, and grouping terms, we have

V2 71
2 2

Z3—Z cosh(ait3)+ —Z3 —
y2 +y2ZY,Z

+(y2 —yi)Y

Xsinh(a3t3 }=0 .

(4 44)

In the limit t3 ~ 00, the above equation can be reduced to

(yz —Zi)(yz+Z)=yi .

Now

(4.45)

lC CX3

Z3=
COE'3

(4.46)

and Z is given by Eq. (3.4) so that Eq. (4.45) can be writ-
ten in the form

C. Numerical results

In order to provide an explicit example of the results
that can be obtained with our treatment, we have ob-
tained numerical solutions to the dispersion relation for
an infinite SL given by Eq. (4.19). We use the reduced
variables co/co„, k~a, and V2~/acoe1 for frequency, wave
vector, and drift velocity, respectively. The values of the
parameters appearin in the dispersion relation were tak-
en to be co,2

= 2co„, b =2a, V2~ /a co,1=0.5, and
e'„"=e'„'=1,a value appropriate to GaAs.

The results for the dispersion relation are shown in
Fig. 2 when we input a real frequency co and calculate a
value of the wave vector, which may be real or complex:
k~=k, +iki. For given Q and reduced frequencies well

above the value 1/&2, we obtain the fast (F) and slow
(S) space-charge waves with real k» that are localized at
each interface. As the reduced frequency approaches
1/&2, the wave vectors for the fast and slow space-
charge waves approach —~ and + 00, respectively.
When the reduced frequency lies below 1/&2, two solu-
tions are found to the dispersion relation with their wave
vectors complex and, in fact, complex conjugates of each
other. One solution, therefore, decays as it propagates,
while the other solution grows as it propagates. We have
verified that the growing wave solution corresponds to a
convective (amplifying) instability by using a real wave
vector as input into the dispersion relation and obtaining
a complex conjugate pair of frequencies. ' The unstable
branch (I) starts out linearly from the origin, attains a
maximum value of

~ k2 ~, and then bends back to the left.
This behavior is in contrast to that of two contiguous half

2.0—
lC CK3

COG'3

lC CXp

CO
V1 (4.47)

I.8—

and

2

E'2 =E'~ 1
(2)

(co —k V~ )
(4.49)

For the nonretarded limit, using Eqs. (4.17) and (4.18) we
can rewrite Eq. (4.47) as

( Ei+ 1 )( e2+ e& ) —( e~ —1 )( e'2 —
e3 )exp( —28)=0, (4.48)

where

l.6—

l.4—

1.2—
~eI

I.O—

0.8—

0=k b, (4.50} 0.6—

a result equivalent to those obtained by other means for
V2~ =0, and for V2~&0. ' This dispersion relation [Eq.
(4.48)] exhibits amplifying instabilities.

Finally, we consider the limiting case of a truncated SL
in the nonretarded limit, neglecting the drift current.
The dispersion relation is given by Eq. (4.23), with e,
given by Eq. (4.20}and ez by Eq. (4.21) with Vz =0. This
result is in agreement with those obtained by Szenics
et al. ,

" and by Camley and Mills, using a different ap-
proach.

0.4—

0.2—

0.0
-2 —

I 0 I

FIG. 2. Dispersion relations for fast (F), slow (S), and insta-

bility (I) branches of space-charge waves for V»/ace, 1=0.5,
b/a =2, and c0,2/co, ]

=2.
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able in Fig. 2. Broadening of the gain curves also occurs
as seen in Fig. 3.

0.8 V. DISCUSSION

0.6

~ei
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0.0
0
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FIG. 3. Magnitude of the imaginary part of the reduced wave
vector vs reduced frequency for the instability branch of Fig. 2.

spaces of dielectric constants e, (to) and ez(ks, co) for
which the unstable branch is strictly linear. Another
difference is that the unstable branch extends above re-
duced frequency l i&2 to reduced frequency unity.

The gain of the convective instability is measured by
the value of k2~. In Fig. 3 we plot the reduced gain as a
function of reduced frequency. The gain is seen to in-
crease as the frequency increases, reach a maximum, and
then decrease. As the SL wave vector Q is varied, the
fast, slow, and unstable branches broaden into bands, al-
though the broadening of the slow branch is not discern-

We have investigated the use of the transfer-matrix ap-
proach for a semiconductor superlattice with alternating
spatially dispersive and nonspatially dispersive layers.
The dispersion relation for this configuration was ob-
tained and applied to several limiting cases where the
spatial dispersion is caused by a dc drift current parallel
to the SL interfaces. The results for the limiting cases are
in agreement with those obtained by other means.

Of particular interest, however, is the exploration of
amplifying instabilities in semi-infinite SL structures. In
addition to the instabilities mentioned above, there are
optical-phonon amplifying instabilities. ' The semi-
infinite SL dispersion relation obtained above can be
readily modified to take into account optical phonons. In
addition, magnetic-field effects are of interest and possi-
bly can be incorporated into the above theory. These and
other effects, such as those due to temperature, ' are un-

der investigation.
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