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Role of antiferromagnetic interlayer coupling on magnetic properties of YBazcu306+„
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In this paper we have studied the role of interlayer coupling on the Neel temperature of
YBa2Cu306+„. We have used the expression for the Neel temperature derived from the three-
dimensional anisotropic Heisenberg model in the random-phase approximation. With the help of nu-

merical calculations we have obtained an analytical expression for the Neel temperature as

T~=J~~/[0. 16161n(J~~/J, }+0.5055]/ks. This expression shows that T&~0 as J,~O. We have also

compared our theoretical results with the doping-dependent Neel temperature of YBa2Cu306+„corn-
pounds. Here, x is the doping concentration of oxygen. Good agreement between theory and experi-
mental results is achieved provided that the ratio of interplanar to intraplanar coupling strengths depend

linearly on the doping concentration x. Further, the intraplanar coupling strength is treated as a con-

stant independent of x in the numerical calculations.

a. Introduction. The anomalous magnetic and elec-
tronic properties of YBa2Cu306+, (1:2:3) and

La& «Sr«Cu4 „(2:1:4)high-temperature superconduc-
tors (HTSC) have attracted much attention ever since
their discovery. The insulating phase of these supercon-
ductors provides much information about the magnetic
dynamics of these systems. ' ' These high-temperature
superconductors are antiferromagnetic in the normal
state with a large anisotropy in the antiferromagnetic
coupling constant within Cu02 planes and between Cu02
planes in the c direction. This remarkable anisotropy in

the antiferromagnetic correlation coupling in these lay-
ered structures is known to be responsible for most of the
unusual magnetic properties. '

The very structure of 1:2:3and 2:1:4suggests that their
ratios of interplanar to intraplanar coupling would be
different. It has been shown that antiferromagnetism
(AFM) in these compounds is driven by weak interlayer

J~ coupling, which is a manifestation of the large amount
of orthorhombic distortion present in these compounds.
It has been observed that the Neel temperature depends
crucially on the interplanar coupling in these materi-
als. ' ' It has been ascertained that as two-dimensional
(2D) correlations become sufficiently long ranged in these
high-temperature superconductors, 3D ordering follows
due to the presence of this weak but finite interlayer cou-
pling. In the temperature range T & Tz, 3D ordering sets
in and the interlayer coupling plays a crucial role in

determining the antiferromagnetic correlation in these
materials. ' ' Here, Tz is the Neel temperature.

A 1ot of experimental evidence has come up during the
1ast couple of years suggesting the importance of inter-
layer coupling in the magnetic dynamics of layered super-
conductors. It has been shown that the Neel tempera-
ture decreases as the material is doped with oxygen. At a
critical value of x -0.4 in 1:2:3 the Neel temperature is
found to reduce to zero. ' The changing concentration of
oxygen in YBa2Cu306+ makes the system undergo an
antiferromagnetic-to-superconducting transition. Addi-
tion of oxygen into these layered compounds would des-

troy the antiferromagnetic long-range order along with
the appearance of the metallic superconducting phase.

The doping is crucial, since a variety of interactions come
into play because of it. These interactions are discussed
extensively by Singh.

The weak interlayer coupling in these layered super-
conductors and its role in the magnetic dynamics has re-
cently become a highly pursued topic. Two-dimensional
and quasi-two-dimensional Heisenberg models have been
extensively studied to get an insight into the magnetic dy-
namics of these HTSC. Neutron-diffraction experiments
of Tranquada et al. ' revealed the structure and the vari-
ation of Neel temperature with doping in YBa2Cu306+„.
By considering the dependence of Neel temperature in
layered systems as kTtv =J~ gzD where (zD is the correla-
tion length in two-dimensional plane and J~ is the
effective coupling between planes, they achieved an
effective interplanar coupling of 0.002 meV in 2:1:4. 2D
exchange parameters calculated from the inelastic-light-

scattering experiments give an estimate of 98 meV for
1:2:3and 128 meV for 2:1:4compounds.

There has been considerable theoretical effort to
study the role of interplayer coupling on the magnetic
properties of HTSC. For instance, Chakravarty, Halpe-
rin, and Nelson have calculated the correlation length
at low temperatures by using the renormalization-group
approach and by taking quantum nonlinear 0. model.
They have estimated the interlayer coupling in La2Cu04
(2:1:4) to be of the order of 10 J~~ and have shown that
the interlayer coupling has insignificant effect on two-
dimensional correlation above 3D Neel ordering temper-
ature. Further, the zero-temperature properties calculat-
ed for an isolated CuOz plane are only weakly affected by
such a small value of J~. Singh and co-workers ' have

pursued the role of interlayer coupling to study the mag-
netic dynamical properties of these compounds. They
have shown that due to excitation of spin waves there is a
crossover from three-dimensional to quasi-two-
dimensional behavior with temperature dependence of
sublattice magnetization varying from —T (three-
dimensional case) to —T ln T (quasi-two-dimensional
case). According to them, the Neel temperature in

copper-based antiferromagnets fall logarithmically with
decreasing interlayer coupling. Liu has investigated the
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role of interlayer coupling to study the specific heat by
using the quasi-two-dimensional Heisenberg model.

The three-dimensional anisotropic Heisenberg model is
difficult to study and there has been very limited effort to
analyze the magnetic dynamics in such a model of HTSC.
Most of the above-mentioned results were obtained in a
two or quasi-two-dimensional Heisenberg model. Re-
cently we have examined the three-dimensional Heisen-
berg model keeping the anisotropy in the exchange cou-
pling. By using the two-sublattice approach developed by
Hewson and ter Haar, and solving the equation of
motion for the Green's function in random-phase approx-
imation, we obtained an analytical expression for magne-
tization and Neel temperature. In this paper, we study
the role of interlayer coupling on the Neel temperature of
1:2:3 compounds. We have calculated the variation of
Neel temperature with the doping concentration and

compared with the existing experimental results. We
have taken intraplanar coupling as a constant indepen-
dent of the doping concentration x throughout our calcu-
lations. We discuss the behavior of Neel temperature
with the variation of the ratio of interplanar to intrapla-
nar coupling and show that in the limiting case when

Ji /J(( —+0, the 3D antiferromagnetic ordering is lost. An
excellent agreement between our theory and experimental
results is achieved with the assumption that the ratio of
interplanar to intraplanar exchange coupling strength is
directly proportional to the doping concentration x.

b. Theory. In the previous paper, we applied the
two-sublattice approach to antiferromagnets and ob-
tained an analytical expression for the Neel temperature
by considering the 3D anisotropic Heisenberg model and
using the random-phase approximation in the evaluation
of Green's function. The expression is given by

1 1
T~ = —g 2J((+J

8
4(2J +J }2 'J y ik() —f)+J P ik() —f)'P

3 fII b )—f)[c

where k~ is the Boltzmann constant and N is the total number of spin sites. 2J~~ and 2J& are the AFM coupling con-
stant in CuOz plane and perpendicular to CuOz plane, respectively, in high-temperature superconductors. If we assume
that the summation over j and f runs over nearest neighbors, then Eq. (1) changes into the following equation:

T~ =J/k~I(r),
where I(r) is given as

I(r)=—g (2+r)/j(2+r) —
f cosk„a+ cosk a+r cosk, c] ] .=2

(2)

(3)

Breaking the fraction in the above equation into two parts and changing the summation over k into integration

dk dk dk, dk„dk„dk,+
(2—cosk„a —cosk a)+r(1 —cosk, c) (2+ cosk„a+ cosk a)+r(1+ cosk, c) (4)

Here, V is the volume of the unit cell. In the above equations we have replaced the ratio of interplanar to intraplanar
coupling strengths by r( =J~/J~(). It can be proved that the last term gives the same contribution to I(r) as the first
term. Therefore, the above expression of I(r) reduces to

I(r)= f f f dk„dk dk, /[(2 —cosk„a —cosk a)+r(l —cosk, c)] .

Making the substitution u =k a, v =k a, m =k,c, and integrating over m we get

I(r)= du dv/[&(2 —cosu —cosv}&(2—cosu —cosv)+2r ] .
0 0

a =4r /(1 —cosu +r )(3—cosu ) . (10)

Now, performing the integration over v the above in-
tegral reduces to

I(r) =f F(u, r)I(. (u, r)du,
0

where F and E are given as

F(u, r) =2/&(1 —cosu +2r)(3 —cosu )]
and

I(. (u, r) =f d B/&1 —a sin 8,
where

For very small r, E becomes constant m. /2 and the lead-
ing contribution to the integration comes from small u.
With the help of numerical calculation, we found that
I(r) is proportional to ln(1/r). This point will be dis-
cussed in the next section. Incorporating this depen-
dence of I(r) in Eq. (2), we find that the Neel tempera-
ture depends inversely on ln(1/r). It might be noted
here that as r~0, T&~0. This agrees with the experi-
mental results.

c. Numerical results and discussion. In this section we
have applied our theory to calculate the Neel tempera-
ture and its variation with the doping concentration. We
have compared these calculations with the experimental
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results of 1:2:3 compounds. It can be easily shown
from expression of I(r) given in Eq. (7) that when
r =0, I(r)= ~. Hence, the Neel temperature
Tz=J~~/ksI(r)=0 for r=0. This is in agreement with

the Mermin and Wagner theorem that there cannot be
long-range order in 2D systems at finite temperature.
Note that the Mermin and Wagner theorem does not ex-
clude long-range order for 2D systems at zero tempera-
ture. We have calculated numerically I (r) as a function
of r using Eq. (7). The numerical results are presented in

Fig. 1 by solid lines. It is shown that the value of I(r) de-
creases as r increases.

From our numerical calculations we find that I(r) can
be approximately written as

I (r) =0.1616ln —+0.5055
1

(11)

for values of r ranging from 1.0X 10 to 1. By using the
analytical expression of I(r) given by Eq. (11), we have
calculated I(r) as a function of r. The results are shown
in Fig. 1 by the dashed line. One can see from the figure
that the above analytical expression is a good approxima-
tion for I (r) given in Eq. (7). Therefore, for all practical
purposes, the Neel temperature can be approximately
written as

T =J~~/k [0.16161n(J~~/J )+0.5055] . (12)

A similar logarithmic term has been previously obtained

by Singh et aI.
We have studied the dependence of the Neel tempera-

ture on the doping concentration and the role of interpla-
nar exchange interaction on the Neel temperature. We
use Eq. (2) to calculate the Neel temperature. It is clear
from this equation that doping dependent behavior of Tz
depends on the variation of r in I(r) for a constant value

of J~~. It means there should be a direct relation between

r and x. Let us for a moment assume, that the ratio of
interplanar- to intraplanar-exchange-interaction strength,
r is a linear function of the doping concentration. For ex-

ample,
r(x)=c(1—x/xo),
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FIG. 2. The variation of Neel temperature as a function of
doping concentration x in 1:2:3 compounds. The solid curve
represents the theoretical results. Crosses represent the experi-
mental points. Here, a linear relation between x and r is as-

sUIIled.

where c =6.0X10 and X0=0.41. By using this equa-
tion, we have calculated the Neel temperature as a func-
tion of doping concentration. The theoretical calculation
is presented along with the experimental values in Fig. 2.
In our calculation we have taken the intraplanar-
exchange-coupling interaction as a constant (2J~~ =98.0
meV) throughout the entire doping range. This is con-
sistent with the experimental results reported so far for
1:2:3 and 2:1:4 compounds. ' ' In these experiments it
was shown that as doping increases the interplanar cou-
pling decreases and reaches zero as Neel temperature be-
comes zero. But, intraplanar coupling does not vanish
when Neel temperature reduces to zero. We found that
the agreement between the theoretical results and experi-
mentally measured values for the Neel temperature is

quite good. This means that the above approximation
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FIG. 1. The variation of I(r) as a function of r. Solid curve

is obtained from Eq. {7). The dashed curve is obtained from the

analytical expression given in Eq. (11).

FIG. 3. The variation of Neel temperature as a function of
doping concentration x in 1:2:3 compounds. The solid curve

represents the theoretical results. Crosses represent the experi-

mental points. Here, the solid curve is obtained by fitting Eq.
(7) with experimental points by choosing the proper value of r.
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where doping parameter is a linear function of r works
pretty well, and it seems a reasonably accurate approxi-
mation.

We have also fitted the experimental results by using
Eq. (2) and choosing a proper value of r at each value of
doping concentration, while fixing the value of intrapla-
nar coupling at 98.0 meV. The results are presented in
Fig. 3. In Fig. 4 we plot the variation of r with x. We
find the value of r by fitting our theoretical expression to
the experimental points at each value of x. The dotted
curve in Fig. 4 represents these values of r as a function
of x. As we discussed earlier, Fig. 2 was obtained by as-
suming that r is a linear function of x. The solid curve in
Fig. 4 represents this linear dependence as is given in Eq.
(13). One can see from this figure that at x =0 and 0.4
there is no difference between the two curves but other
than these values there is some deviation. The dashed
curve seems to give a quasilinear relation between x and r
for 0.05 &x &0.3. The slope of dashed curve is slightly
different than that of the solid curve. For x &0.0 and
x )0.3 the dashed curve shows a large nonlinearity. It
can hence be concluded that the linear dependence be-
tween x and r is a fairly good approximation for most
values of x.

In conclusion, we have calculated the Neel tempera-
ture as a function of doping in YBa2Cu306 corn-
pounds. The comparison between theory and experiment
is made. We found that if we assume a linear dependence
between x and r a good agreement between theory and
experiments is achieved. We also found an analytical ex-
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FIG. 4. The variation of r as a function of x. The solid curve
represents the value of r obtained from Fig. 3 as a function of x.
The dashed line represents the linear dependence of r with x.

pression for Neel temperature as a function of r, where it
is shown that Neel temperature is inversely proportional
to ln(1 lr). This shows that as r approaches zero, Neel
temperature goes to zero. This is consistent with all the
experimental results.
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