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We report extensive convergence tests of the total energy of Si computed within the local-density ap-
proximation with a plane-wave basis and pseudopotentials. These convergence tests indicate that to cal-
culate the elastic constants to about 3% relative error requires the use of 400 plane waves in the elec-
tronic structure calculation and 10 special k points to compute the density and energy. Further, we find

that using the Ceperley-Alder exchange-correlation form in calculating the elastic constants obtains
better agreement with the experimental results than using the Wigner form. We report the calculated
lattice constants and elastic constants —bulk modulus, C», Ci2, and C44—of a "free-standing" Si/Ge or-
dered superlattice. For comparison, the results for bulk silicon and germanium are in excellent agree-
ment with existing experiment and other calculations. The calculation for C~ reported here is unique in
the sense that the "internal" atom in the diamond unit cell moves while the crystal is sheared, though
previously this relaxation has been dealt with differently. The equilibrium position of the sheared crystal
cannot be predicted by scaling arguments from the unstrained crystal. An "averaged elastic theory"
based on bulk Si and bulk Ge predicts our computed Si/Ge lattice constant and bulk modulus surpris-

ingly well.

I. INTRODUCTION

The local-density approximation (LDA) has proven to
be an effective and useful means for studying both
structural and electronic properties in many materi-
als. ' Although the method has been in existence for
many years, most published calculations do not give ade-
quate attention to the systematic study of convergence er-
rors. This is an attempt to rectify this situation in the
context of calculating elastic properties.

In this paper, we report the results of convergence
studies on various parameters in the method, such as the
size of the plane-wave basis, the density of special k
points, and the effects of different forms of exchange-
correlation functions. Using recent improvements in al-
gorithms and hardware we are able to carry the basis-set
convergence to greater lengths. Comparison between
Wigner and Ceperley-Alder forms of exchange-
correlation potential raises the need for an improved
exchange-correlation form. With the current exchange-
correlation forms available, one has to choose whether to
compromise the lattice constant or elastic constants: the
Wigner potential gives better lattice constants while
Ceperley-Alder gives better elastic constants. Next we
present the theoretical predictions for the lattice and elas-
tic constants of the "free-standing" Si/Ge superlattice (in
zinc-blende structure) with comparisons to bulk Si and

Ge. To ensure the accuracy, we calculate individual elas-
tic constants according to the relationship shown in
Table I. One unique aspect of this calculation is that the
shear modulus (C~) is obtained while allowing the atoms
to relax to their equilibrium positions. The importance of
this relaxation has been recognized and dealt with using
other means; this time this relaxation is included directly
during the minimization of total energy, as it is made
possible by using an iterative energy minimization
scheme introduced by Car and Parrinello, and later im-
proved by Teter, Payne, and Allan, which scheme will be
discussed briefiy in this paper.

An outline of this paper follows. In Sec. II, we de-
scribe the local-density approximation with the iterative
minimization approach used in our calculation, and the
details of our calculations. In Sec. III, we show the re-
sults of our convergence tests, discuss the importance of
each parameter on the results, and give a realistic esti-
mate of the errors in our results. Section IV is devoted to
the results and discussion of the calculated lattice and
elastic constants, where we compare our results of bulk Si
and Ge with existing data, and present the results for the
Si/Ge superlattice. We demonstrate the consistency of
our method by comparing the elastic constants obtained
from different lattice distortions discussed in the Appen-
dix. Finally, in Sec. V, we summarize the main results of
this paper.
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TABLE I. The relationship between elastic energies, distortions, and elastic constants. The relation-
ship between energy change (elastic energy) and distortion is shown. The choice of our distortion is to
involve only one elastic constant in the energy change. The distortion is made in such a way that only
the length scale of each translational vector changes. 5; is the fractional change of the length scale in
one of the three vectors with the direction indicated in the table.

Elastic constants

B= (Cll+2C, 2)

3

Unit cells

two-atom cell (diamond)

Distortions
5, 53

(011) (10&) (»0)

Energy E!0

9 B52
2

C44

four-atom cell (001) (110)
0
25

5

(110)
0
25
—5

(001)
5 —,

' C„5'
—', C„5'
2C445

two-atom cell (111) (110)
5

(011)
5

(111)
—25 6C~5

II. THE LOCAL-DENSITY-APPROXIMATION
SCHEME AND CALCULATION METHOD

OCC

p(r)= g lf„g(r)
nk

(2)

For materials with gaps in their band structures, such as
insulators or semiconductors, where the occupied valence
states are separated from the unoccupied conduction
states, the sum in Eq. (2) runs through only those k points
used to sample the Brillouin zone. In our calculation we
use so-called "special" k points to conduct these
Brillouin-zone summations. "

Further, the wave functions are expanded in some basis
functions. In the case when the plane-wave basis is used,
the wave functions g„z are represented as the sums of
plane waves,

Npw

g„q(r)=e'"' g Co „ke'
Cr

The sum is cut off by the size of the basis Npw, the total
number of the plane waves included.

The solution of the LDA equations for minimization of
the total energy is accomplished by an iterative precondi-
tioned conjugate gradient algorithm. The use of itera-
tive schemes to replace traditional matrix diagonalization
provides a method which scales in computational effort
as NpwlnNpw instead of Np~, which is clearly helpful as
the number of plane waves Npw grows large. The
preconditioned conjugate gradient method further

The local-density formalism' ' ' expresses the total
energy of ground state as a functional of total electron
charge density p as

&tot [p j = Tip)+&;..Ip j+&„(pj+&,.[p j,
where the various terms represent the kinetic energy, the
core-electron interaction, the electron-electron interac-
tion, and the exchange-correlation energy. The density p
is obtained as the sum of the occupied electronic states,

enhances the elciency of the iterative minimization.
The forces on atoms are computed using the

Hellmann-Feynman theorem. ' ' The ability to move
the atoms according to the calculated force is quite im-
portant in calculating the shear modulus (C44) since in a
shear distortion the atoms move to equilibrium positions
different from the ones predicted by simple scaling of the
distortion. We will discuss this in detail in Sec. IV.

Throughout our calculations, we employ the general-
ized norm-conserving pseudopotentials developed by
Hamann' with the nonlocal pseudopotential being made
separable using Kleinman-Bylander procedure. ' In par-
ticular the s-wave potential is chosen to be local since
that results in direct gap with nearly the same absolute
error throughout the Brillouin zone for both Si and Ge,
and in addition that produces a gap in bulk Ge. The
Ceperley-Alder electron gas data, ' parametrized by
Teter, ' is used for the exchange and correlation energy.
Except for our systematic studies, we use a 400-plane-
wave basis (corresponding to a kinetic-energy cutoff of 10
hartrees) and 10 special k points of the fcc irreducible
Brillouin zone. " ' These k points are generalized as
k~(1+p) k in the distorted lattices, as done by Niel-
sen and Martin, with equivalent k points added in the
distorted lattices of lower symmetry. The equality of
these k-point sets are verified with calculations performed
using both the high- and low-symmetry sets of same
structure. The systematic studies are done for the total-
energy convergence versus both the size of plane-wave
basis Npw and the density of special k points, where Np~
changes from 60 to 1200, and the number of special k
points from 2 to 60.

III. SYSTEMATIC CONVERGENCE STUDIES

Systematic studies of convergence are carried out for
diamond structure Si. The studies are designed to test
the total-energy convergence versus the k-point sampling
density Nk, and the size of plane-wave basis Npw ol
kinetic-energy cutoff E,„,. Also we look into the effects
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TABLE II. Special k-point sets and k-point density. The relationship between special k-points and

k-point density (volume or linear) is shown. The special k-point sets are usually named by the k-point

numbers under fcc symmetry; the lower symmetry cells are those used in calculations of C» and C~,
when the cell is chosen tetragonal or orthorhombic, with length scale as;/&2, as;/&2, and as;, along

(110), (110), and (001) direction in the equilibrium. The volume density is the total number of k points
within (2m/as; ), and the linear density is the divisions in each of (2m/as; ). The density increases when

the unit cell size increases (since the reciprocal cell size decrease which the total number of k points
remains the same).

Full diamond symmetry Oz

Number of special k-point sets

10 60

Lower symmetry with double length in (001)
Tetragonal D2d
Orthorhombic D»

8

16
12
24

36
72

80
160

Corresponding density of k points
Volume density of k points (2m/as; )

Linear density of k points (2~/as; )

27
3

216
6

512
8

of two different exchange-correlation functional forms:
Wigner and Ceperley-Alder. '

The k-point sampling approximates the Brillouin-zone
integration by a sum over some special k points"

k dk= w~
BZ k

(4)

where the summation is over the set of chosen k points,
and wt, is the weight for each chosen k point, with

gl, ml, =l. It is important to note that the special k
points are actually uniformly spaced k points in the ex
tended zone. With this observation, the k-point density
(whether linear or volume) is the appropriate variable for
a study of the convergence over the number of k points.
Table II shows the relationship between special k-point
sets and the volume and linear densities of k points, mea-
sured in units of (2m/as; ) and (2n/as; ), respectively.
For distorted cells with lower symmetries, Table II shows
the rapidly increasing numbers of k points. The details of
how a "two special k-points grid" is represented in
different unit cells are shown in Table III. In this study,
we concentrate on how well the integration leading to the
total energy is represented by a summation over succes-
sively larger numbers of k points.

The plane-wave-basis convergence study forces on how
well the incomplete basis set (with finite number of plane

We estimate the number of plane waves within an energy
cutoff E,„, by filling the volume of the sphere of radius

k,„,= i/2E, t with cubes with a volume of the Brillouin

zone (2m) /0,
3/2Npw= »QE«, (6)

where 0 is the volume of the unit cell; for Si the numbers
are shown in Table IV. We will study how this incom-
plete basis set affects the total energy, and in turn the cal-
culated lattice and elastic constants.

A. Total-energy convergence against special k-point density

A systematic study of the total energy as a function of
the linear density of k point (special k points) requires a
well-defined procedure. There is no unique procedure
known at this time. Ours is subject to criticism.

Our three-part procedure involves (i) assembling the

waves) can represent the electron wave functions of the
systems we study. The number of plane waves included is
determined by an energy cutoff E,„„which limits the
highest kinetic energy of the plane waves,

(5)

TABLE III. Example of special k points of different symmetries and unit cell size, and their density.
The numbers and the coordinates of the two special k points are shown with different unit cell choices.
A two-k-point set in full fcc symmetry, Oz, results in two k points in a tetragonal double cell, and four
k points in an orthorhombic double cell, with a linear density of two k points per (2m/a), and eight k
points per (2m/a ) . G is the reciprocal vector in (2m/a) with the direction indicated.

Cells G vectors (2m. /a) Symmetry k point Coordinates

Diamond
Tetragonal

Orthorhombic

(111)
(110)
(110)

(111)
(110)
(110)

(111)
(001)
(001)

Extended zone (100) (010) (001)

0
&2d
D2~

none

(1/4, 1/4, 1/4)
(0,1/4, 1/4)
(0,1/4, 1/4)
(1/4, 0, 1/4)

(+1/4, +1/4, +1/4)

(1/2, 1/2, 1/4)
(1/4, 1/2, 1/4)
(1/4, 1/2, 1/4)
(1/2, 1/4, 1/4)
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TABLE IV. Energy cutoff E,„, and number of plane waves
Np~. The relationship between numbers of plane waves Np~
and energy cutoffs E,„, is shown for the diamond Si cell. The
number of plane waves is related to the energy cutoff by the ap-
proximation Np~ = 2', QE,'„, , where 0 is the unit cell volume in

bohr', E,„, in hartrees. For Si, 0=263 bohr'.

E,„, (hartrees) 3 5 10 14
No. of plane waves 66 141 397 656

20
1124

data set, (ii) devising a way of analyzing the data set, and
(iii) using that analysis to estimate errors in specific prop-
erties. After this has been done for several systems, one
might hope to be able to generalize the results. There is
one paper of which we are aware ' that exhibits some
convergence behavior for use of special points in phonon
ca1culations, which should bear some relation with the
convergence of elastic constant calculations, but those re-
sults are for a different system and are not in a readily
generalizable form. In this section and the next we use
the above procedure to study the convergence of the total
energy as a function of the linear density of k points Nk~,
(see Table II) and the numbers of plane waves Npw (see
Table III).

~ A

—3

Q

C)

M0 —7

0
10 ~
14 +
20 x

0.0 0.2 0.4 0.6 0.8
Iog|o[N~q (unit of 2m/a)]

1.0

FIG. 1. Total energy convergence vs k-point density. The
logarithm of the energy differences, log[E(E,„„NI,~, )
—E(E,„„oo)], is plotted against the logarithm of Nk~„ the
linear density of k points. E(E,„„~) is obtained from a
least-squares fit of our data as log [E(E,„„NI,„)

E(E,„„co—)]=—a(E,„,)log, (oNl, )+log, [oA(E,„,)]. The D

denotes E,„,=5; 6, 10; +, 14; and X, 20 hartrees. The slopes
are very close for different E,„, as long as E,„, is larger than 10
hartrees.

1. Data set

2. Analysis ofdata

We assume that for any given cutoff energy the total
energy will converge as the density of k points (the num-
ber of special k points) approaches infinity. Unfortunate-
ly, there is no mathematical analysis as to what function-
al form it should have. We have tested two possible con-
vergence forms. The first is the power law

(E )
cut

&kI ~

(7)

We compute the total energy for five special k-point
sets, see Table II, which correspond to a linear density of
two, three, four, six, and eight k points per (2m/a). For
each of these sets, the energy is computed for five
different cutoff energies E,„,. We thus accumulate, after
25 h on an IBM3090, twenty-five total energies:
E(E«„Nk, ), shown in Table V. To add five more points
at the next larger k-point set would double the CPU time.

the other one is the logarithm

E(E,„„Nk,)
—E(E,„„oo) =bE10

Both forms have three parameters which must be fitted to
only five data points for each E,„,—a clearly unsatisfac-
tory situation; but this difficulty is true for almost all cal-
culations with a finite computing budget. In Table VI,
we record the values of these two sets of parameters.
Even though the two E(E,„„oo) produced by Eqs. (7) and
(8) for each E,„, are the same, (they differ by less than
10 meV), neither fit satisfactorily goes through all five
data points, which indicates that either the actual conver-
gence form, if one exists, might be more complicated
than a simple power law or logarithmic relationship, or
that our data are not in the asymptotic region where the
form (7) or (8) might apply.

To characterize the fit, we plot the data and Eq. (7) in
Fig. 1, we observe the following: (i) The "rate of conver-
gence" is set by the power 0;. The deviation of the total
energy from the estimated converged value decreases by
an order of magnitude when the k-point density increases

TABLE V. Data set, the total energies of different linear k-point density, and number of plane waves E(E,„„Nkp,). The total ener-

gies (per atom) of a two-atom Si cell is shown with various energy cutoffs E,„, and k points Nkpt Nppt is the linear density of k points,
E,„, is in hartrees, and the total energies are in eV. The total energy is reported here with ten effective digits as the difference be-
tween self-consistent iterations gives error in the 12th digits, while the finite size of the fast-Fourier-transform box gives error in the
11th digits.

pt( 2'�/a)
Ecut /E( N pw

3
5

10
14
20

—105.583 1342
—106.772 855 8
—107.231 429 4
—107.249 243 5
—107.270 395 6

—106.262 820 3
—107.509 512 8
—107.982 055 2
—108.000 192 7
—108.022 052 5

—106.253 666 3
—107.511 826 3
—107.990 266 2
—108.008 662 9
—108.030458 9

—106.263 003 5
—107.5162174
—107.991 743 5
—108.010050 7
—108.031 870 1

—106.261 6144
—107.517 320 5
—107.991 760 5
—108.010 116 1
—108.031 914 8
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TABLE VI. Fitting parameters for convergence with k-point densities, fitted by both of power law

and logarithm. The two sets of fitting parameters are shown; the two forms are as follows: The power
law fit has the form E(E,„„Nk~,}—E(E,„„ao) = [No(E,„,)/Nl ~, ] (E,„,), and the logarithmic fit has the

form E(E,„„Nk„)—E(E,„„~) =AE(E,„,)e I"/Np(E, „,). The three parameters E(E,„„~),
Np(E, „,), and a(E,„,), or E(E,„„~), hE(E,„,), and Np(E, „,), are obtained through the least-squares fit

to the data sets shown in Table V.

Power la
,„, (hartrees) 10 14 20

E(~) (eV)
Np
a

—107.517 321 80 —107.991 761 32 —108.010 11678 —108.031 91544
1.928 52 1.944 64 1.942 85 1.944 76
8.1564 9.766 4 9.434 1 9.559 7

Logarithm
E(00) (eV)
AE (eV)
Np ( 2'�/a)

—107.517 320 51 —107.991 760 47 —108.010 11607 —108.031 91474
146.076 94 499.31444 380.186 80 378.120 81

0.872 19 0.709 76 0.740 63 0.737 19

by a factor of 10'~ ( —1.3). Also the rate of convergence
is not sensitive to E,„, for E,„, greater than 5 hartrees. (ii)
The "norm" of the Nk „No(E,„,), is also not sensitive to
E,„, for E,„, greater than 5 hartrees. (iii) The deviations
of total energies from the fitted values are less 2.5 meV,
for E,„, greater than 5 hartrees.

We have excluded the 3-hartrees data point from the fit
because it is the only data point which does not exhibit
monotonic behavior as the k-point density increases.
There is no variational principle of the total energy with
respect to k-point integration, so this is not disallowed,
but the deviant behavior makes the fitting of a functional
form more difficult. We also estimate that the conver-
gence behavior at a 5-hartrees cutoff is not as "typical" as
that of higher cutoff energies either.

points increases as, since the total number of k points
remains the same while the reciprocal vector length (orig-
inally 2mlas;) decreases, Nk, ~Nk, (1+5). Using Eqs.
(7) and (9), the relative uncertainty in the energy
difference is

(E ) cut

Nkp

a(E,„,i-
1

1+5 (10)

This hydrostatic distortion yields an elastic energy
E,l„„„hence we can define the relative error as the ratio
of relative uncertainty 5E in the energy difference, to the
elastic energy E„„„,:

E
relative error =

elastic

3. Error estimate

5E=E(E,„„Nk „)—E(E,„„Nk,2)

No(E,„,) '"' No(E,„,)
kpt1 kpt2

Gilt

(9)

Under hydrostatic strain where lattice constant a in-
creases as (for Si) as;~as;(I+5), the linear density of k

In the calculations for lattice and elastic constants, we
are interested in the energy differences between various
geometries, therefore, we are more interested in the rela-
tive uncertainty rather than the absolute uncertainty.
For example, when we calculate the bulk modulus, we
calculate the total energies for unit cells with different
lattice constants, and the total energy differences between
these unit cells are the elastic energies induced by the dis-
tortions. Hence the error in the bulk modulus results
from the error in the energy differences rather than the
absolute error in the calculated energy for each unit cell.

We define the relative uncertainty as the total energy
change induced by a small change in the linear density of
k points connected with some physical "measurement",
e.g. , computing the elastic constants. We use the power-
law fit LEq. (7)] here, with all the other physical parame-
ters remaining the same,

To estimate 5E (for E,„,=10 hartrees and a ten special
k-points set) we use the largest volume change in our cal-
culations, 6%, corresponding to a 2% change in the lat-
tice constant. (We use a five-point quadratic fit with
+2%, +1%, and 0% to obtain the equilibrium lattice
constant. ) Using the parameters shown in Table VI, we
find 5E =0.15 meV. In terms of the elastic energy due to
a 6% hydrostatic volume change -75 meV, the relative
error is about 0.2%. Even though this estimate is for the
hydrostatic distortion, we expect that the relative error
should be comparable for uniaxial and shear strains,
when the other elastic constants Cll and C44 are calculat-
ed. Our evidence for this expectation is that our calcula-
tions of six and ten special k points in the unit cells with
increased number of k points associated with the calcula-
tions of C» and C44 (in cells of lower symmetry) yields
same total energies as those with higher symmetry.

To compare our error estimate with other works, we
consider the relative error for two special k points. Our
estimate yields a relative error about 100%, from Table V
we can see that the total energy changes (decreases) more
than 750 meV when the linear k-point density increases
from 2 to 3. Others have suggested a smaller relative er-
ror. For example, Nielsen and Martin report 5% for the
two special k points in their calculations for Ge. It is
worth pointing out here that a two special k-point set for
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the two-atom unit cell of volume a /4 has the same k-
point density as a single k point (at I') for a 64-atom unit
cell of volume (2a) . The latter is commonly used in
molecular-dynamics calculations, hence we believe it
has the similar relative errors (100%). While this is far
from a systematic treatment of k-point convergence, we
can use a 10 special k-points set to ensure that the rela-
tive error is much less than 1% (0.2% in hydrostatic
case).

B. Total-energy convergence
against the size of the plane-wave basis

0
6 0

10 ~
28 +
60 ~

—1 —
N)q)t

t
R

00o

10s[216+
E(E«q, inf)]

1440.96
—62.86
—80.77
—82.99
—83.33

E(Npw, Nkp, ) E( ~,N—k„,) = Np(Nk, )

Npw
(12)

and logarithmic fit

In this study, we use the same data basis established for
the convergence study with k-point density. Again, we
assume that for any given linear k-point density, the total
energy will converge as the energy cutofF E,„, (or number
of plane waves Npw, as shown in Table IV) approaches
infinity. We tried both power-law and logarithmic form
for this fit, power law having the form

2

logio[Npw]

FIG. 2. Total energy convergence vs the size of plane-wave
basis NI, pf The logarithm of the energy differences,
log[E(Npw Nkpt) E( oo, N&p, )], is plotted against the logarithm
of Np~ the size of the plane-wave basis. E( oo, N&„,) is obtained
from a least-squares fit of our data as log, p[E(Npw Ngp, )

E( ~,N—„p, ))= —a(Nkp, )log, p(Npw )+loglp[ A( Ng p)]. The
denotes two special k-point set; 0, 6; 6, 10; +, 28; and X, 60
hartrees. The slopes are almost the same for all those different
k-point sets considered.

E(Epw, Nkp, ) E( cQ, Nk—p, ) =bE10 (13)

Both have three fitting parameters which are shown in
Table VII. We stress that neither of these two fitting
forms represents the data well, and the predicted con-
verged values from these two forms are quite different:
the power law gives the converged values about 10 meV
lower than that obtained frotn logarithmic fit (Table VII).
This big difference in the converged energies affects the
reliability of our error estimate. In the Appendix, we
present details on the nature of convergence with Npw.

Here we focus on the power-law fit shown in Fig. 2.
We have the following observations. (i) The rate of con-
vergence is set by a(Nkp, ), which is insensitive of Nkp, .
We can characterize the convergence by saying that the
deviation from the converged values reduced by an order
of magnitude every time the number of plane waves in-

Np(Nk, )

Npw&

Np(NI, , )

+PW2

(14)

The relative error (for a ten special k-points set and 10-
hartrees energy cutoffl caused by a 6% volume change
with our fitted parameters (shown in Table VII) is

creases by a factor of 10' (
—3.5). (ii) The norm of

Npw Np(Nkp, ), is likewise insensitive to Nkp, .
The relative error estimate is done the same way as for

k-point density (discussed in Sec. III A), with the relative
uncertainty for two slightly different numbers of plane
waves being

TABLE VII ~ Fitting parameters for convergence with the size of plane-wave basis, fitted by both
power law and logarithm. The two sets of fitting parameter are shown. The two fitting forms are as fol-
lows: The power law fit has the form E(Npw, Nl, p, ) E( ~,Nkp, ) = [No—(Nkp, )INpw]'(Nl, p, ), and the log-

—N /N (E )

arithmic fit has the form E(Np~, Nkpt) E( ~ Nkpt) AEe &" &' . The three parameters
E(oo,Nkpt) No(Nkpt), and a(Nk~, ), or E(ao, Nk~t), AE(Nk~, ), and No(Nk~t), are obtained through the
least-squares fit to the data sets shown in Table V.

,(2m/a)
Power

E(~) (eV)
No
a

—107.279 52
92.351 9

1.877 7

—108.031 43
91.348 3

1.853 9

—108.040 39
91.151 7

1.835 2

—108.041 50
91.346 9

1.845 8

—108.041 67
91.265 0

1.841 4

Logarithm
E( ) (eV)
bE (eV)
No

—107.270 420 —108.022 072 —108.030 479 —108.031 893 —108.031 934
3.182 19 3.371 196 3 ~ 371 26 3.251 31 3.366 27

231.99 227.90 228.53 231.82 228.54
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6E =6.8 meV, compared to the elastic energy of 75 meV.
This relative uncertainty in energy differences produces a
large error of 9% in our predictions for both lattice con-
stant and bulk modulus. It is a shock that such a high
energy cutoff still produces such a large relative error of
9%. But if we focus on our data shown in Table V, for
the ten special k-points set, the total energy for E,„,=20
hartrees is more than 40 meV lower than that of 10 har-
trees. We recognize that we could be overestimating the
error since the fit is not satisfactory; see the Appendix.
This relative error results from the finite numbers of
plane waves which change as the unit cell volume
changes with a fixed energy cutoff. We expect that this
error estimate for the hydrostatic distortion hold for oth-
er uniaxial distortions also. But lacking a precise formu-
lation of how the energy should converge as, for example,
the number of plane waves increases, we may be dramati-
cally overestimating the convergence error.

C. EfFects of the diferent exchange-correlation forms,
Wigner, and Ceperley-Alder

Aside from the above convergence studies, we have
also considered the effects of two different exchange-
correlation forms —Wigner versus Ceperley-Alder-on
the bulk modulus and the lattice constants for all three
systems we studied: bulk Si, Ge, and superlattice
Si&/Ge, . We find that the Wigner form gives a larger lat-
tice constant (better agreement with experiment) and
Ceperley-Alder gives a larger bulk modulus (better agree-
ment with experiment). This is true for all three systems,
as summarized by two observations. (i) When we com-
pare the exchange-correlation n energies around the elec-
tronic density of Si or Ge, (r, =2), we find that Wigner's

V„, is less attractive than Ceperley-Alder's V„, ; this de-
creased attraction explains why we get larger lattice con-
stant with Wigner s exchange-correlation potential. (ii)
When we compare the bulk moduli, we find that the
exchange-correlation contribution to the bulk modulus is
negative around r, =2, and it is 70 kbar more negative us-

ing the Wigner form than using Ceperley-Alder; this
larger negative contribution explains the smaller bulk
modulus resulted by using Wigner form. Hence a smaller
bulk modulus resulted from the Wigner form. These ob-
servations, well known in the electronic structure com-
munity, once again point to the need for an improved
exchange-correlation form.

D. Conclusions

The Wigner exchange-correlation potential gives better
lattice constants while Ceperley-Alder gives better elastic
constants. We choose the Ceperley-Alder potential, since
this work is more focused on the elastic constants than on
the structural properties. We have introduced the "rela-
tive error" as a measure of convergence and error esti-
mate. We find that a 10 special k-point set will virtually
eliminate the error (0.2%) due to finite sampling k point
in Brillouin zone, but that even a large (10 hartrees) ener-
gy cutoff still yields an error of 9%%uo.

IV. THE CALCULATED RESULTS
FOR Si, Ge, AND Si/Ge

+
2
C~(e42+e25+e26), (15)

where 0 is the supercell volume, and C» &244 are the
elastic constants, and e& 6 is the six-dimensional strain
"vector."

There are two aspects in this work we want to em-
phasize: (i} The distortions are chosen to involve only
one single elastic constant in the total energy change for a
given geometry. With this choice of strain, we can
rewrite Eq. (15) in the following form:

tot
=EC;J.ek, (16)

where the C," is the elastic constant we wish to calculate,
ek is the strain due to the chosen distortion, and the E is
just a proportionality constant; see Table I. (ii} This time
atomic relaxation is directly included when unit cell is
under a shear distortion, though the effect of this relaxa-
tion was included by Nielsen and Martin using a
different approach. The relaxation d of the atom in dia-
mond structure Si and Ge (zinc-blende Si/Ge) under
shear distortion e4, 6 in Cartesian coordinates is ex-
pressed as

a
d=04(e4 es e6}

where a is the lattice constant, e4 5 6 are the shear strains,
and g is the internal shift parameter. Our results show
that this relaxation reduces the C44 obtained from nonre-
laxed calculation by about 25% to agree with the experi-
mental value, for both bulk Si and Ge.

A. Si and Ge provide test of method

Table VIII shows our calculated results together with
the experiment and other LDA calculations for
bulk Si and Ge. The slight differences between our result
and that of Nielsen and Martin are the (i) different
exchange-correlation forms used in calculations for Si
(they used Wigner form while we use Ceperley-Alder
form); (ii) difFerent special k-point sets for Ge (they used
two special k points while we use ten special k points).

Comparing our results to the experiment, we can see
that, except for g, our results for both Si and Ge agree
well (no more than 3' difference). The good agreement
between our results and experimental data prove that our
method is accurate, and establishes the solid foundation
for predicting the properties of new materials, in our
case, the zinc-blende Si&/Ge& superlattice.

The large discrepancy between our calculated g and

The elastic constants are calculated through finite
differences, with quadratic fits for five to seven data
points (five points for bulk modulus, lattice constant, and

C», seven points for C44}. According to Nye, the total
energy change per volume due to the elastic distortions is

EEtot
l 2

0
=—'Cii(e i+e2+es )+Ci2(eie2+e2e3+esel )



12 418 SIQING WEI, DOUGLAS C. ALLAN, AND JOHN W. WILKINS 46

the experimental values is believed to be experimental er-
ror. ' ' In part, this belief is supported by our estimate
of g using empirical two- and three-body potentials for
Si. ' Consider a distortion g in the (111) direction; the
elements of strain tensor p are

(18)

E(dl, d8)=A g dO,

L9

+g 8 (I+3/)
27 g

=g A [( I —g) + —,', (1+3g) ]

(20)

Using Eq. (17) and the definition of strain tensor the re-
laxed atomic position is where A and B are force constants. Minimizing

E(dl, d8)/(rl), we have the optimal g,
r'=(1+@)r+d, (19)

where r is chosen as (a /4)(1, 1, 1) in the undistorted cell.
With both p and g, we can calculate the changes of the
bond lengths and bond angles of the relaxed atom to its
four nearest neighbors. The change in bond length I
along the (111)direction dl, is (1 —g)rll, while the change
of the other bond lengths dlz, dl3, and dl4 in the direc-
tions of (1 11), (111),and (11 1) are the same and equal to
(1+3()rll/9. The three bond angles d8to2, d8, Q3 and

d8, o4 involving the (111) bond are changed by the same
amount of &8(1+3()/9, while the other three bond an-
gles d82o3, d8204, and d83Q4 have a change of the same
magnitude but opposite sigh. The numbers in the sub-
scripts indicate the nearest neighbors of the relaxed atom
(with 0 being the position of the central atom). The equi-
librium bond angle 8=cos '( —

—,').
To estimate the optimal g, we assume a simple elastic

energy form of a quadratic function of bond length (two-

body) and bond angle (three-body)

2 1 —(2/8 )(8/A )

1+(4/8')(& /A )
(21)

In order to evaluate the ratio of (8/A), we use the data
from the empirical two- and three-body potential
developed by Stillinger and Weber. ' Expanding their
potential around equilibrium bond length and bond an-
gle, we find B/A =0.149 98. Substituting this ratio into
Eq. (21) yields (=0.5255, which agrees with our calculat-
ed result for Si (0.53—0.56).

B. Results for Si/Ge superlattice

As a first attempt at characterizing our results for the
superlattice (zinc-blende Si, /Ge, ) (Table VIII), we com-
pare with the corresponding values of bulk Si and Ge.
Note that the superlattice results lie intermediate be-
tween, as common sense would suggest. For a closer
look, we compare our LDA results with "elastic theory"

TABLE VIII. Lattice constants a, bulk modular B, elastic constants C;, of Si, Ge, are Si/Ge. Lattice constant in a0 elastic con-
stants in Mbar (100 GPa). C» deduced from B and C» via C» =

z (3B—C»). Unrelaxed elastic constant C44, internal relaxation

parameters g.

NM'
This work
This work

Si

10.21
10.17

a
Ge

10.57
10.51

Si/Ge

10.32

Si

0.93
0.97

B
Ge

0.72
0.77

Si/Ge

0.88

Si

1.59
1.64b

1.62'

Ge

1.30
134
1.32'

Si/Ge

1.50b

1.51'

Si

0.61
0.64

Cl
Ge

0.45
0.49

Si/Ge

0.57

Expt. ' 10.27 10.68 0.99 0.77 1.68 1.32 0.65 0.49

NM'
This work (110)
This work (111)'

Si

10.21
10.17

a
Ge

10.57
10.51

Si/Ge

10.32

Si

1.11
1.10

C44
0

Ge

0.77
0.89

Si/Ge

0.99

Si

0.85
0.80
0.77

Ge

0.68
0.69
0.68

Si/Ge

0.73
0.75

Si

0.53
0.56
0.53

0.44
0.57
0.50

Si/Ge

0.59
0.51

Expt. '
Expt.

10.27 10.68 0.80 0.68 0.73"
0.64'

0.72"
0.64'

'O. H. Nielsen and Richard Martin, Phys. Rev. B 32, 3797 (1985).
Volume changed, distortion in (001) (see Table I).

'Volume unchanged, compress in (001), expand in both (110)and (110) (see Table I).
Expand in (110)and compress in (110) (see Table I).

'Distortion in (111)direction (see Table I)~

'H. J. McSkimin, J. Appl. Phys. 24, 988 (1953);35, 3312 (1964), except otherwise indicated.
IJ. Donohue, The Structures of the Elements (Wiley, New York, 1974).
"H. d'Amour et al. , J.Appl. Crystallogr. 15, 148 (1982);C. S. G. Cousins et al. , ibid. 15, 154 (1982).
'A. Segmuller and H. R. Neyer, Phys. Kondens. Materie. 4, 63 (1970).
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=—'Bs.
'2

(us'/o ~s )

as

predictions on lattice constant and bulk modulus.
What we mean by "elastic theory" is this: we require

the compound (Si, /Ge& ordered alloy) to have minimum
elastic energy with each atomic species retaining its origi-
nal lattice constant and bulk modulus. In the case of
Si&/Ge&, the elastic energy per volume is

El(us/G ~s ) (~s/6 ~G )I

0

25

0
CQ

+
II

~ -25
0

I4

—50
Full set of data points

+ 4'BGe
(usi/Ge +Ge )

QGe
(22)

10 20 30
E~t (hartree)

40

where as;/o, is the lattice constant of Si, /Ge, . Minimiz-

ing the elastic energy respect to as;/G„we have

Bsi BGe Bsi BGe
~Si/Ge + 2+ 2~Ge QSi QGe

(23)

By the same token, we can get the elastic theory predic-
tion of bulk modulus for Si, /Ge/1,

BSi/Ge 2 BSi

'2
~Si/Ge

Ge
&si ~Ge

~ Si/Ge
'2

(24)

The LDA results for bulk Si and Ge can then "predict"
values for Si|/Ge|. See Table IX. The difference be-
tween the LDA calculated property and the one predict-
ed by elastic theory is less than 0.1% for the lattice con-
stant and 1% for the bulk modulus. Such close agree-
ment is unexpected since this mean-field elastic theory
would be expected to valid at most in the long-
wavelength limit.

To sum up, (i) we have developed a scheme to calculate
each elastic constant separately, which eliminates the er-
ror in the fitting process; (ii) we allow atoms to relax dur-
ing the calculations of shear modulus C~ and the relaxa-
tion reduces the calculated value by 25% to agree with
the experiment; (iii) this is a prediction for the elastic
properties of the as yet unsynthesized Si&/Ge|. We argue
that the accuracy of these predictions are supported by
the agreement between our results for bulk Si and Ge
with both previous theory and experimental data.

10.17
0.97

10.51
0.77

10.33
0.87

10.32
0.88

TABLE IX. "Elastic theory" (ET) predictions of lattice con-
stant and bulk modulus for Si&/Ge& ~ The elastic theory predic-
tion of the Si&/Ge& lattice constant and bulk modulus is shown.
The lattice constants are in bohr; bulk moduli in Mbar (=100
GPa). The predictions are based on our LDA results for bulk Si
and Ge (lattice constant and bulk modulus), and the comparison
is made with the LDA results of Si&/Ge&. The worse agreement
seen on bulk modulus is due to the limited number of digits re-
ported; actual agreement is within 0.4%.

Si (LDA) Ge (LDA) Si/Ge (ET) Si/Ge (LDA)

FIG. 3. Total energy vs energy

cutoff

,„,. The total energy,
in eV, is plotted against the energy cutoff E,„„in hartrees. The
inset shows a "step" for E,„, between 25 and 40. This step in

the convergence makes it impossible to fit the data with any

simple form. The solid curve is the fit of the total energy by
power law, and the dashed curve is by logarithm, the dots are
the data points used for the fit (see Table VII); note that the two
lowest data points, at E,„,=3 and 5, are not shown.

V. CONCLUSIONS

We have reported convergence studies of total energy
versus various aspects in the local-density approximation
calculations, such as a function of the size of the plane-
wave basis and of the density of the special k-point grids.
The results show that the incompleteness of the plane-
wave basis is the major source of error in these calcula-
tions; even with a large energy cutoff of 10 hartrees (400

E,g, (hartrees)

3
5

10
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Total energy (eV)

—106.253 666 3
—107.511 826 3
—107.990266 2
—108.008 662 9
—108.018612 7
—108.026 144 5
—108.030458 9
—108.032 325 5
—108.032 8860
—108.032 9906
—108.032 9997
—108.033 032 2
—108.033 098 4
—108.033 176 8
—108.033 244 9
—108.033 294 7
—108.033 327 6

&PW

65.06
140.16
397.75
658.0
804.09
960.5

1125.0
1298.9
1479.0
1666.8
1864.1

2065.19
2274.75
2491.44
2716.56
2944. 12
3181.59

TABLE X. Total energy of ten special k points for various
energy cutoffs. The calculated total energy for the two-atom Si
cell is shown here. The total energy is reported with ten
effective digits as the error in our self-consistant shows in the
12th digits and finite fast-Fourier-transform box shows in the
11th digits. E,„, is in hartrees, total energy is in eV, and Np~ is
the average number of the plane waves for ten special k points
used in the calculations.
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plane waves), there is still about 9% relative error in the
lattice and elastic constants. The finite density of k
points accounts for less error, only 0.2%%uo for a ten special
k-point set. These convergence studies point to a way to
realistic error estimation in the future work. But we
could stress that we expect the error due to the k-point
set to increase as the energy gap decreases.

One unique aspect of our elastic constant calculation is
that we actually allow the atoms to relax during our cal-
culation. This relaxation produces agreement between
theory and experiment for the shear modulus C44. As a
first step in our effort to understand Si/Ge superlattices,
we have presented the results on Si, /Ge, ; these results
are validated by the agreement between our results and
experiment on bulk Si and Ge.

In conclusion, we have (i) an efficient and accurate
method to determine the ground-state properties of
Si/Ge systems; and (ii) a realistic error estimation, and
these methods may be used in more complicated Si/Ge
systems.
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APPENDIX: TOTAL ENERGY AND ENERGY CUTOFF
(SIZE OF PLANE-WAVE BASIS)

Since, as pointed out in Sec. III 8, neither a power law
nor a logarithmic At is satisfactory, we decided to look
more carefully at how the total energy changes as the en-

ergy cutoff increases. Table X shows the total energies of
ten special k points with E,„, from 10 to 40 hartrees with
an interval of 2 hartrees. The total energy is plotted
against the energy cutoff in Fig. 3; we can see that in the
full scale plot, the total energy decreases as E,„, in-

creases. But in the inset for E,„, between 25 and 40, we
see that the convergence is not smooth: the rate of con-
verge slows down, and then speeds up and slows down
again. This change in convergence pace makes it impos-
sible to fit the data set with any simple form, and results
in a poor fit, as discussed in Sec. III B.
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