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Some interesting physical effects are predicted for diluted magnetic semiconductors. It is shown that
the spin properties of zinc-blende-type A "B"'diluted magnetic semiconductors depend crucially on the
electronic configuration of the transition-metal ions. Depending on the filling of the ionic d shell, the ki-
netic exchange Hamiltonian evolves from antiferromagnetic to ferromagnetic Kondo-like form via more
complicated forms sensitive to Jahn-Teller distortions.

I. INTRODUCTION

In metals, the spin-dependent interaction of free car-
riers with localized magnetic moments has been
thoroughly investigated, being responsible for the spin
polarization of the electron gas, which in turn leads to,
e.g. , the Kondo effect. Two fundamental interaction
mechanisms were considered: the direct Coulomb ex-
change and the kinetic exchange, i.e., the hybridization
of the band states with localized ionic (d or f) orbitals.
In contrast to the former mechanism known to favor the
parallel, or ferromagnetic, alignment of the interacting
spins, the latter can lead to an antiferrornagneticlike in-
teraction.

Kinetic exchange may be viewed as a second-order
perturbation-theory effect involving virtual transitions of
an electron between the band states and the ionic orbit-
als. An elegant derivation of the effective kinetic-
exchange Hamiltonian has been given by Schrieffer and
Wolff. These authors applied the canonical transforma-
tion method to the Anderson Harniltonian in the model
case of one singly occupied d orbital. Subsequently, a
more realistic case of five such orbitals in an S-state
transition-metal ion was considered. In both cases the
kinetic-exchange Hamiltonian was shown to have the
form of the Kondo Hamiltonian with an energy-
dependent, antiferromagnetic exchange constant Jk k . It
is worth noting, however, that the above results are sub-
jected to change for the non-S-state transition-metal ions.
As shown by Parmenter, for these ions (with some empty
or doubly occupied d orbitals), the Anderson Hamiltoni-
an is not adequate.

Spin-dependent interactions of free carriers with mag-
netic ions were also found to play a significant role in
semiconductors, being responsible for many peculiar elec-
tronic properties of magnetic and diluted magnetic serni-
conductors (DMS's). The latter are solid solutions of
II-VI (or IV-VI) semiconductors with some cations re-
placed by transition-metal ions. In these materials, in
spite of the high concentration of randomly distributed

magnetic ions, all the standard notions of semiconductor
physics, i.e., energy bands, effective mass, g factors, etc.,

proved to be valid. Moreover, the separation of the
effects of exchange interactions is quite straightforward
in DMS's, as for each such alloy a nonmagnetic reference
material can be found. Because of these features, the
DMS's are particularly convenient systems for detailed
studies of the exchange interactions and their physical
consequences.

Evidently, the theory of exchange interactions
developed for metals does not apply directly to DMS's,
for which the electronic states from several bands with
different Bloch functions have to be considered, the
crystal-field effects and spin-orbit interactions may not be
neglected, etc. Still, it has been found that the most ac-
tively studied DMS's doped with S-state Mn + ions can
be described by incorporating a Kondo-like Hamiltonian
into effective-mass theory. Comprehensive magneto-
optical studies together with band-structure computa-
tions have elucidated the microscopic origins of the ex-
change couplings in these DMS s, pointing to the impor-
tance of the kinetic exchange.

In the last few years, a significant number of experi-
mental results for new DMS's doped with other
transition-metal ions (e.g. , Fe +, Fe +, and Co +) have
been accumulated. ' For the theoretical interpretation of
these results, knowledge of the effective-mass kinetic-
exchange Hamiltonian appropriate for the interaction of
band electrons with non-S-state magnetic ions is essen-
tial. In our previous work, we have shown, using the
second-order perturbation theory, that for DMS's with
D-state ions additional, non-Heisenberg terms occur in

the effective Hamiltonian" and that they can lead to new
physical effects. '

In this paper we apply the canonical transformation
method to the Parmenter Hamiltonian in order to derive
the effective kinetic-exchange Harniltonian for valence-
band electrons interacting with any member of the family
of transition-metal ions. Our results demonstrate a
variety of possible physical situations which can be en-
countered and experimentally tested in DMS's with vari-
ous magnetic ions: The exchange coupling can be antifer-
romagnetic or ferromagnetic or perturbed by non-
Heisenberg terms, sensitive to Jahn-Teller distortion.
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II. MODEL

We consider a band electron interacting with a single
transition-metal ion having X d electrons. To account
properly for the antisymmetry of the wave functions of
this system of N+1 electrons, we use the occupation-
nurnber representation. We restrict our attention to the
spin-dependent interaction resulting from hybridization
of the Bloch function of the band-edge electron with ionic
d orbitals. We consider the model Hamiltonian

8, is the effective-mass Hamiltonian for an electron in
the vicinity of the high-symmetry point of the Brillouin
zone:

n, k

(2)

Here cv =g it 8 is the operator of the number of
d electrons with a common energy cd. The operators
8 and 8 are annihilation and creation operators, re-
spectively, of an electron in the d orbital with the angular
momentum projection m and the spin projection 0 (we
put the Planck constant A'= I). We assume that they an-
ticornrnute with the corresponding operators for Lut-
tinger states; in other words, we assume that d orbitals
and band states are orthogonal. P„represents the
Coulomb interactions within the d shell.

In principle, 8,. can be diagonalized to give the ener-
gies of all possible ¹lectron states. In practice, one uses
for H„simplified model Hamiltonians, reproducing only
the essential features of the X-electron spectrum, e.g., as-
serting that the fundamental term corresponds to the
maximum possible value of the total spin S (Hund's rule).
For a S-state ion (e.g. , Mn +), the simple Anderson
Hamiltonian of the form g UR' && &

can be used. Un-
fortunately, this simple Harniltonian is not rotationally
invariant (it does not commute with the angular momen-
tum operator). This becomes crucial for non-S-state ions.
In this case, however, H„can be represented by the Par-
menter Harniltonian, "which is spherically symmetric in

The indexes n and k label the Luttinger states appropri-
ate for a group of bands with energy c at the degeneracy
point. 8'„k denotes the occupation-number operator for
the Luttinger state. In (2) we have omitted the k
dependent terms of the Luttinger effective-mass Hamil-
tonian, which do not contribute to the dominant k-
independent part of the effective-mass kinetic-exchange
Hamiltonian.

In choosing the ionic Hamiltonian 8;, we adopt the
spherical approximation; i.e., we neglect the direct effect
of the ligand field on the d orbitals. This means that we
exclude the strong crystal-field case and we attribute the
crystal-field splittings in the ionic energy spectrum solely
to hybridization. In the space of the many-electron states
spanned by antisymmetrized products of one-electron d
orbitals, the spherical ionic Hamiltonian 8; can be ex-
pressed by

(3)

both orbital and spin spaces:

B„=(J—U'/2)A+ —,'( U' —J/2)A —JS.S . (4)

where Rz is the position vector of the ion (in the follow-
ing we choose the ion at R~=0). This comes from the
fact that the periodic part of a Luttinger function is k in-
dependent and the envelope part e'"' does not vary
significantly in the range of localization of the d orbitals.

By symmetry, one finds that the crystal Hamiltonian
couples the I 8 Luttinger states only with the three one-
electron d states belonging to the t2 representation of
the point group Td. The hybridization Hamiltonian Hh b
can be then expressed in the form

H„„b= g [M & +H. c.],
mL

M =( V/0' ) g (2+2crmL )'~ 5 ~ &
mjk

where mL = —1,0, 1 labels the three t2g ionic orbitals and
can be considered as the projection of the fictitious orbit-
al angular momentum L with /=1. mq= ——'„——,', —,',
and —, are the corresponding projections of the fictitious
angular momentum J with j=

—,
'

commonly used for the

Here U' and J are the nondiagonal Coulomb and ex-
change integrals, which for all orbitals are assumed to be
the same. One can easily see that the last term in Eq. (4)
leads to Hund's rule.

The hybridization Hamiltonian Bh„b permits the tran-
sitions of electrons between the Luttinger states and the
localized d orbitals:

8h„b= g g(V „&8 it„&+H.c. ),
nk mo

where V „z=(mo l Tink) is the off-diagonal matrix
element of the one-electron part of the Hamiltonian.
This matrix element involves the volume 0 of the crystal
via the normalization factor of the Bloch function. The
hybridization matrix depends on the symmetries of par-
ticular Luttinger states and on the point symmetry of the
crystal potential in the range of the d-shell localization.
In this paper we limit our considerations to A "B ' dilut-
ed magnetic semiconductors with a zinc-blende-type lat-
tice, for which both the lowest conduction band and up-
permost valence bands have extremal points at the center
of the Brillouin zone. The I 6 Luttinger states corre-
sponding to the conduction band are essentially built of s
orbitals, whereas the I 8 valence states involve mostly
anion p orbitals. In these materials the transition-metal
ions occupy cation positions with the tetrahedral symme-
try. For such symmetry the hybridization matrix ele-
ments are much more important for I 8 than for I"6
bands, since in the latter they rigorously vanish at k =0.
This is confirmed by experimental results showing no evi-
dence of the kinetic exchange for conduction electrons.
We recall here that within effective-mass theory we are
interested in small k vectors only. For such wave vec-
tors, the k dependence of the matrix elements is trivial:

'&m~1 Tlno&,
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I 8 Luttinger states. V is a single hybridization constant,
which can be related to Slater-Koster interatomic matrix
elements (see, e.g. , Ref. 9).

III. CANONICAL TRANSFORMATION

where

g = ( b iv
—2a JS, ) [b iv ( b iv +J ) —J S.S]

8 = —JS 2 [EN(bN+J) —J S S] (12)

In the canonical transformation method, one expresses
the second-quantized Hamiltonian 8=H(8, 8 ) in terms
of new operators c and c ( c =e &e ) obeying the same
anticommutation relations as 8 and & . The desired
properties of the new functional form H(c, c ) of the
Hamiltonian 8,

H(c, c )=e H(c, c )e (8)

can be assured by an appropriate choice of the anti-
Hermitian operator 0.

For our Hamiltonian (1), we require H(c, c ) not to
contain terms linear in the hybridization constant V; i.e.,
we have to find 0 satisfying the condition

[Ho(c, c ),0]=Hh„b(c, c ) . (9)

Then the second order in the V part of the Hamiltonian
(8) is given by

Hz(c, c )=—,'[O, H„„b(c,c )] . (10)

For reasons which will become clear later on, in the fol-
lowing we consider separately the cases of ions with
N 5 and N ~ 5 electrons.

For N & 5, we choose the operator 0 satisfying Eq. (9)
in the form

0= gQ [rl c +8 c ]
—H. c. ,

mLo

EN=a, —cd —J—(O' —J/2)8' .

The spin-raising (S+&} and -lowering (S &) operators
have the form

S Cm —eCm cr + g Ci aCi c—rL L
mL =1,0—1 i =1,2

(13)

We denote by c; (i =1,2) the transformed annihilation
operators of electrons with the spin projection 0 in the e
one-electron orbitals.

With such a canonical transformation operator 0, we
get from (10}the effective Hamiltonian (compare Ref. 3)

H2 —Ho+Hch +H& d (14)

The term Hp, involving no band-electron creation and
annihilation operators, represents the hybridization-
induced tetrahedral corrections to the ionic Hamiltonian
H;, which in our model are responsible for the crystal-
field splittings, i.e., the energy difkrence between t2g and

eg one-electron states. The next term describes the high-
energy processes, changing the number of d electrons by
2, and will be disregarded. The kinetic-exchange Hamil-
tonian H d describes the scattering of a band electron on
an impurity ion. In contrast to the simple case discussed
by Schrieffer and Wolff in Ref. 3, here there is no clear-
cut separation into spin-independent and -dependent
parts of this term:

I
m

PAL
cT

(15)

For N & 5, we choose

0'= g O' .Ic .f.+c
mLa

(16)

with

r) =(bN —2a'JS, }[A~(EN—J)—J2$ $]

8 = —JS [5' (6' —J)—J S S]

~+=~a+ U'

and, by calculating the commutator (10), we get

(17)

I g

mLg

+c c, ,rl +c c, ,8' +8' c c (18)
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IV. KINETIC EXCHANGE

+(Es+8 Es —1/2
)
—1] (19)

where EN denotes the unperturbed energy of the d shell
with N electrons and total spin S:

We consider a sequence of transition-metal ions with
N=1, 2, . . . , 9 electrons in the d shell (Fig. 1). The
kinetic-exchange Hamiltonian describing the interaction
of the low-energy I 8-band electron with a given
transition-metal ion is derived by restricting the Hamil-
tonian H~ d to the subspace of the lowest-energy states of
the ion. In our model the ion is described by the sum of
the free-ion Hamiltonian 8; and the hybridization-
induced spin-independent cubic Hamiltonian Ho. There-
fore the lowest-energy states of the ion are the Hund
states, i.e., the states with the maximum value of the total
spin S [S=N/2 for N= ~5 and S=(10—N)/2 for¹5].In these states the number of singly occupied
one-electron d orbitals is equal to 2S. We note here that
the annihilation or creation of an electron in an initially
singly occupied orbital leads to the decrease of the total
spin of the d shell by one-half. This implies that the an-
nihilation of an electron in the Hund state for N & 5 pro-
duces also a Hund state for N —1 electrons. In contrast,
for N & 5, the creation of an electron in the Hund state
gives a Hund state for N+1 electrons. Now one can see
that our choice of operators 0 in Eqs. (11) and (16)
guarantees that the operators rl and 8 in (15) and (18) act
only on Hund states (for N and N —1 electrons in the
case N ~ 5 and for N and N+1 electrons for N &5).
Then the inverse operators entering the definitions of g
and 8 reduce to c-numbers. This does not mean that we
neglected the virtual processes involving the electron
creation for N & 5 and annihilation for N & 5. In fact, all
the expected energy denominators will be recovered in
the kinetic-exchange constants BN and C& appearing in
the final results.

We define the constant B~:
—

( I/2/2S )[(Es Es —1/2 s )
—I

Es (8 +J U /2)N+ '(U J/2)N2 JS(S+1)

(20)

BN collects the contributions from all virtual transitions,
changing the occupation of the initially singly occupied
orbitals.

In an empty orbital, the creation of an electron, as well
as the annihilation of an electron from a doubly occupied
orbital, can produce virtual states with two values of the
total spin, S+—,

' and S—
—,', having di5'erent energies.

Such processes contribute to the constant Cz..

2

CN =
2S [(EN+a~ Ex~,' —

)

(Esses Es —1/2
)
—1] (21)

where the upper sign corresponds to N (5 and the lower
sign to N &5.

Both constants Bz and Cz are negative if only the
state of N d electrons and one band electron is energeti-
cally stable. They depend on four parameters: the three
parameters of the Parmenter model, i.e., cd —

F~, U', and
J, and the hybridization constant V. These parameters
can, in principle, be inferred for each DMS from experi-
mental data, e.g., in a way similar to that reviewed by
Fujimori for the case of Anderson Harniltonian. '

A. N=5

H,„=—(1/Q)2B5S.J . (22)

Here J; and S; are matrices representing the ith com-

In an S-state ion with N=5 d electrons (e.g. , Mn +),
a11 the orbitals are singly occupied, so that C5 =0. In this
case the kinetic-exchange Hamiltonian obtained from ei-
ther Eq. (15) or (18) has the following antiferromagnetic
Kondo-like matrix form

d2 d3 d5 d7 ds d9

[eg, Sc3'} (e.g, Ti '} (e.g,V ) (e.g,Cr ) (eg.,MH') (eg.,Fe ') (eg. , Co2') (eg., Ni } (eg.,C12 ')

MANY- ELECTRON STATES IN TETRAHEDRAL CRYSTAL FIELD
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FIG. 1. Low-energy orbital states and the filling of one-electron d orbitals for transition-metal ions in a tetrahedral environment
(in the intermediate crystal-field case).
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B. N=6and7

The d shell in free iona with NA5 electrons has a non-
vanishing orbital momentum. The cubic Hamiltonian Ho
lifts the orbital degeneracy by increasing the energy of
the three tz orbitals hybridizing with I 8-band states as
compared to the two e orbitals. The many-electron
ground orbital states are the doublet E for N=6 and the
singlet A z for N =7. In these states all the tzg orbitals
are singly occupied just as in the N =5 case, the sixth and
seventh electrons occupying e orbitals. As a result, the
kinetic-exchange Hamiltonians, derived from Eq. (18), for
I s-band electrons interacting with Fe + (N=6) or Co +

(N=7) ions in their ground orbital states are given by
(23) with B~ replaced by B~ and B7, respectively.

C. N=l and 2

For such ions in a tetrahedral environment, the ground
orbital states are E for N= 1 (e.g. , Sc +) and A z for N =2
(e.g., Ti +). In these cases one gets from (15) the kinetic-
exchange Hamiltonian in the form

H,„=(1/Q)2C~S J . (24)

In contrast to (22), only the constants C~ enter the final

result, because in the ground orbital states of N = 1 and 2
ions e orbitals are occupied, whereas all the tz orbitals
are empty. The Hamiltonian (24) has a ferroinagnetic
character. This comes from the fact that virtual states of
N+1 electrons on the d shell with spin S+—,

' have lower

energy than those with S—
—,
' spin. This time the mean-

field Hamiltonian for a random distribution of magnetic
I

ponent of the fictitious angular momentum j=
—,
' and the

ionic spin, respectively.
Summing up the thermodynamical average of (22)

i (k —k').Ry
(multiplied by e ', over randomly distributed mag-
netic ions in DMS's, one gets the well-known diagonal-
in-k one-electron mean-field kinetic-exchange Hamiltoni-
an for a I 8-band electron:

H XNo(p/ )(Sll) (23)

where xNO is the concentration of magnetic ions, (S~~ ) is

the thermodynamical average of the impurity spin com-
ponent along the external magnetic field. J~~ can be easily
diagonalized by an appropriate rotation of the Luttinger
basis. /3=6B& is the conventionally used exchange con-
stant. '4

ions has the form

H,„=—xNO(X/3) (S (25)

The estimate of the positive constant y= —6C& indi-
cates that in I 8 bands the ferromagnetic kinetic exchange
for both Sc and Ti, although weaker than the antiferro-
magnetic one for DMS's with Mn + ions, should still
dominate over the direct Coulomb exchange. '

In an earlier paper, " primarily concerned with kinetic
exchange for ions with N=4, 5, and 6 d electrons, we
speculated also about other transition-metal ions. The
naive intuitions based on the use of the Anderson Hamil-
tonian led us to an erroneous conclusion about the ab-
sence of kinetic exchange for N=1 and 2. This con-
clusion has also been reached by Bhattacharjee, ' who
reconsidered the problem addressed in Ref. 11 by apply-
ing the irreducible-tensor method to the Anderson Ham-
iltonian.

In all cases A, B, and C, the occupations of all three tz
orbitals were identical. For all other transition-metal
ions, some of the tz orbitals are singly occupied, whereas
the remaining ones are empty (for N ( 5) or doubly occu-
pied (for N) 5). In this situation both types of virtual
processes (contributing to B~ and C~, respectively)
should thus be important, with different relative weight,
for different ions. The ground states of all these ions are
either T, or Ti orbital triplets (Fig. 1). It is now con-
venient to introduce a fictitious angular momentum
operator L (with 1=1) and to choose the eigenvectors of
its z component L, as the basis vectors for these orbital
triplets (see the Appendix). The fictitious angular
momentum operator L will appear in the effective
kinetic-exchange Hamiltonians coupled with the opera-
tors S and J, in addition to the Kondo-like term propor-
tional to S J.

D. N=3 and 8

The ground orbital states for both V + (N=3) and
Ni + (N =8) are the T, triplets (see Fig. 1). In the former
the three d electrons occupy two eg and one tz one-
electron orbitals. The latter can be obtained from the S-
like A, orbital configuration of the Mn + ion by adding
three electrons also into two e and one tz orbital. For
both cases we have obtained very similar kinetic-
exchange Hamiltonians, which differ only by the sign of
one term:

H,„=(1/A)[[(C~ B~) J+(C~+B—~)(J—[Qg+L J,L—J]+)] S—D~(Hg+L. J)],
with the upper sign for %=3 and the lower for N = 8 ions. Here

D~ =(S+1)C~+SB~

and the operator

H~ =(L.J) +—'L.J——' ill+1)j(j+1)

(27a)

(27b)

has the form of an electric quadrupole-quadrupole interaction.
The first term in (26), which involves the spin operator S of the ion, represents the modification of the Kondo-like

Hamiltonian by the L.J coupling. The second term represents a new type of interaction of the band electron with the
magnetic ion that depends only on the orbital state of the ion.
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E. N =4 (e.g., Cr2+) and N =9 (e.g., Cn2+)

In these two cases (with the ground-state triplets T2), the occupations of the one-electron orbitals t2 hybridizing

with the band states, when interpreted in terms of holes, are identical with the occupation of these orbitals by electrons

in cases N=8 and 3, respectively. The Hamiltonian H,„obtained for DMS's doped with Cr + and Cu + ions can be

written in the form

H,„=(1/Q)[[(CN B~—).J (C~+B~)(J+[8g—L J,L+J]+}].S+D~(Pg —L J)], (28)

H,„= Np(2C, )&S (2&)

similar to those for DMS's doped with Sc + or Ti + ions.
For DMS's with Cr + ions, we obtain the antiferro-

magnetic Hamiltonian

H,„=—xNp —,'(2B4 —C~}(S(()J(( . (30}

This time the Hamiltonian is similar to those obtained in
the cases of Mn +, Fe +, and Co + ions, but with the ex-
change constant —', (2B~—C~) reduced as compared to
2B~.

In the opposite limit, with all distortions along the
same crystallographic axis, the cubic symmetry is broken
and the form of the Harniltonian depends on the direc-
tion of the external magnetic field.

(with the upper sign corresponding to the Cr + ion).
Equation (28) could be also deduced from Eq. (26) by ex-

ploiting the rules of electron-to-hole transformation.
In order to examine the effect of kinetic-exchange in-

teractions on the properties of I 8-band electrons in cases
D and E, we have to sum up the thermodynamical aver-

ages of the single-ion Hamiltonians for a random distri-
bution of magnetic ions. In contrast to the Hamiltonians
discussed in cases A, B, and C, (26) and (28) depend cru-
cially on the orbital state of the ion. This makes them
sensitive to Jahn-Teller distortions, spin-orbit interaction,
and the external magnetic field, which are lifting the or-
bital degeneracy of the ground state.

In Ni +, the strong spin-orbit interaction and, in Cu +,
the dynamic Jahn-Teller effect make the orbital composi-
tion of the low-energy states depend strongly on the mag-
netic field. ' Therefore the calculations of the thermo-
dynamical averages of the single-ion Hamiltonians (26}
and (28) cannot be reduced to the calculations of the
averages of the ionic spin component S~ .

The V + and Cr + ions in A "B ' compounds are
known to undergo a strong static Jahn-Teller effect (tri-
gonal and tetragonal, respectively' ' }. Even in this sim-

plest case, when the fictitious angular momentum of each
ion is totally quenched, the form of the mean-field
kinetic-exchange interaction has a nontrivial dependence
on the relative number of ions with the distortions along
different equivalent crystallographic axes, as well as on
the direction and magnitude of the external magnetic
field. Still, if none of the possible equivalent directions of
the Jahn-Teller distortions is privileged (so that, in aver-

age, the cubic symmetry is conserved), the mean-field ex-
change Hamiltonian in the high-magnetic-field limit has a
simple form.

For DMS's with V + ions, we get the ferromagnetic
mean-field exchange Hamiltonian

For DMS's with V + ions (trigonal Jahn-Teller effect)
with all distortions and the magnetic field along the [111]
axis, we get, for an arbitrary magnitude of the field,

H,„=xNoD4( ,' J
ii

)——

—xNp2(S~~ )J([B3(—', —J(~ )+C3(—,
' —Ji )] . (31)

Similarly, for DMS's with Cr + ions (the tetragonal case),
with the distortions and magnetic field along the [001]
axis, we obtain

+XNp2(S(( )J( [C4( 4 J(( )+B4( 4 J(( }] (32)

V. SUMMARY

In this paper we considered the kinetic-exchange in-
teractions in zinc-blende A "8 ' diluted magnetic semi-
conductors doped with various 3d ions. To account for
the intrashell electron correlations, we used the Par-
menter Hamiltonian. By generalizing the Schrieffer-
Wolff canonical transformation to the case of the Par-
menter Hamiltonian, we derived the kinetic-exchange
Hamiltonians for I 8 electrons interacting with different
transition-metal ions. For Mn +, Fe +, and Co + the an-
tiferromagnetic, whereas for Sc + and Ti + the ferromag-
netic Kondo-like Hamiltonians were obtained. For ions
with the ground orbital triplet, we found the kinetic ex-
change to contain extra terms dependent on the orbital
state of the ion. This makes the kinetic exchange sensi-
tive to the Jahn-Teller effect. It was shown within the
mean-field approximation that new physical effects
should be expected for diluted magnetic semiconductors
containing other than Mn +, Fe +, or Co + transition-
metal ions.

The first term in (31) and (32) leads to the concentration-
dependent zero-field splitting at k =0 between the
mz =+—,

' and +—,
' I 8 bands with a different band ordering

for Cr + and V +. The terms proportional to (S~~ ) give
unusual patterns of the I 8 band Zeeman splittings. For
the mJ=+ —,

' bands, the expected splitting is antiferro-
magnetic ( ~B4) for Cr + and ferromagnetic ( ~ C3) for
V +. In contrast, for m& =+—,', the order of the bands is

reversed —the splitting is ferromagnetic (~ Bz+2C4) for
Cr + and antiferromagnetic for V +

( ~ 2B3+C3). These
effects should show up in exciton magneto-optical transi-
tions in strained DMS's doped with these ions.
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APPENDIX: LOW-ENERGY STATES
FOR TRANSITION-METAL IONS

We specify the orthonormal bases spanning the sub-
spaces of the lowest-energy many-electron states for sub-
sequent transition-metal ions in the tetrahedral crystal
environment. For each ion we write down explicitly only
the states ~o, , ms=2oS) with the maximum absolute
value of the spin projection (ct stands here for the orbital
quantum numbers). All other states can be generated by
using the formula

~a, m ) =(S ) ~ct, 2oS)

N=3, T, triplet (mt =1,0, —1):

~m~, ms=3o &=c c', c'," ~0);

N =4, Ti triplet (mL = 1,0, —1).

~m, m =4o ) =( —1) ' c ~m =So ),
where ~ms=5tr ) is the state of the half-filled d shell;
N=5, A, singlet:

~ms=5o ) =c, co c, c, c2 ~0);

N =6, E doublet (i =1,2):

~i, m =4o &=c,
'

~m =5o. &;

N=7, A2 singlet:

~ms =30 & =c, c~ ~ms =5tr &;

(S+2o ms)!
X

(2S)!(S—2o ms )!

N = 1, orbital doublet E (i = 1,2):

Ji, ms =et ) =c,'t )0);
N =2, orbital singlet A2.

~ms=2o &=c', c,
'

~0&;
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(Al)
N =8, T, triplet (mL = 1,0, —1):

lmL, ms=2o. ) =2oc c', cz lms=5o') '

N=9, Tz triplet (mt =1,0, —1):

~m~, ms=o & =( —1)"" c ~ms=0&,

where ~ms=0) is the state of the completely filled d
shell:

~ms=0) =2oc,~conc, c', cz~c, co c, ~cI c2

'S. H. Liu, Phys. Rev. 121, 451 (1961).
R. E. Watson, S. Koide, M. Peter, and A. J. Freeman, Phys.

Rev. A 139, 167 (1965).
J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).

4J. R. Schrieffer, J. Appl. Phys. 38, 1143 (1967).
5R. H. Parrnenter, Phys. Rev. 8, 1273 (1973).
S. Methfessel and D. C. Mattis, in Handbuch der Physik, edited

by S. Fulde (Springer, Berlin, 1968), Vol. 18.
7For a review, see e.g., Diluted Magnetic Semiconductors, edited

by J ~ K. Furdyna and J. Kossut, Semiconductors and Semi-
metals, Vol. 25 (Academic, San Diego, 1988).

J. Kossut, in Diluted Magnetic Semiconductors (Ref. 7).
See, B. E. Larson, K. C. Hass, H. Ehrenreich, and A. E.

Carlsson, Phys. Rev. B 37, 4137 (1988), and references
therein.

' See, e.g. , Diluted Magnetic Semiconductors, edited by M. Jain
(World Scientific, Singapore, 1991).

"J. Blinowski, P. Kacman, and H. Przybylinska, Solid State
Commun. 79, 1021 (1991);J. Blinowski and P. Kacman, in

Proceedings XX of the International Conference on the Physics

of Setnieonductors, Thessaloniki, Greece, 1990, edited by E.
M. Anastassakis and J. D. Joannopoulos (World Scientific,
Singapore, 1990), Vol. 3, p. 1827.
J. Blinowski and P. Kacman, Mater. Sci. Forum 83-87, 523
(1991).

' A. Fujimori, in Diluted Magnetic Semiconductors (Ref. 10).
'4J. Gaj, in Diluted Magnetic Semiconductors (Ref. 7),
' J. Blinowski, T. Dietl, and P. Kacman, Acta Phys. Pol. (to be

published).
'6A. K. Bhattacharjee (unpublished).
~7H. A. Weakliern, J. Chem. Phys. 36, 2117 (1962).
~~J. Schneider, B. Dischler, and A. Rauber, Solid State Com-

mun. 5, 603 (1967).
J. T. Vallin and G. D. Watkins, Phys. Rev. B 9, 2051 (1974).


