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Relationship between donor defects and band structure in III-V alloys
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We examine the correlation between the existence of deep donor levels (DX centers) in III-V alloys
and the nature of their band structure. Experiments show that the energy position of the DX level is
directly related to that of the L or X valleys of the conduction band, irrespective of the nature of the im-

purity and of the lattice site it occupies. We conclude that the intervalley mixing plays a key role in

driving the donor ground state deep. We then reexamine the relevance of the cavity model, which is

commonly used to treat the intervalley mixing in the effective-mass approximation. We find that the
cavity model contains unphysical ingredients that make it irrelevant to any study of donor impurities. A
different model is proposed that involves a donor pseudopotential finite everywhere. Within this model,
the DX center in Ga„A1, As corresponds to a central-cell correction of standard magnitude (0.6 eV),
leading to a deep ground state located 0.2 eV below the L extrema of the conduction band, while all the
excited states are shallow. This pseudopotential model with central-cell correction in the multivalley
effective-mass Hamiltonian is able to account for the main observed characteristics of the DX center.

I. INTRODUCTION

In semiconductors, n-type doping with substitutional
simple donor impurities introduce shallow energy levels
close to the bottom of the conduction band, which can be
described within the effective-mass approximation
(EMA). Usually, the ground state is slightly deeper than
expected, and this is ascribed to a so-called central-cell
correction. However, in some cases this ground level is
rather deep into the gap, typically at few hundreds of
meV below the bottom of the conduction band. In that
case, we call this donor defect a DX center as a natural
generalization of the de6nition of the DX center in

Ga& „Al„As. ' In such alloys, there is strong evidence
that the rather deep DX level is directly related to the iso-
lated substitutional donor (for a recent review on the
properties of the DX center, see Ref. 2). In addition to a
relatively deep ground state, which exists for an alloy
composition x larger than -0.2, one observes shallow ex-
cited states as well.

Although extensively studied, the origin of the ground
state of the DX center is not understood and its atomic
con5guration unknown. This is due to the dual nature of
this center which makes the use of the classical approxi-
mations to investigate its electronic structure impossible:
the EMA may well describe the shallow excited states but
not the deep ground state. On the other hand, the deep
ground state suggests a localized description in terms of
Green-function supercell techniques in the local-density
approximation which, however, is not relevant for the
shallow excited states.

The aim of this work is to examine in detail the corre-
lation between the existence of the DX center in III-V al-

loys and the nature of the conduction-band structure.
For this purpose, we investigate the existence of the DX
center in the III-V semiconducting alloys, whose band

structures are reasonably known as a function of the alloy
composition x, namely Ga& „Al„As, As& P„Ga,
In, Ga P, In& Al As, Ga, „Al„Sb, As& P„In,

In, „Al„P. The results (see Sec. II) give evidence that
the DX center is present and manifests itself as a deep lev-

el Ez- located at 150—200 meV below the X or the L
conduction-band edge, provided this location places this
level in the forbidden gap (i.e., does not interfere with
conduction states issued from the I valley). We shall see
that this result supports our previous model according
to which the existence of the DX center is a consequence
of the nature of the band structure, and takes its origin in

intervalley mixing.
One can wonder why we come back to the question of

the nature of the DX center when it seems now widely ac-
cepted that it is the donor impurity D which undergoes a
large lattice distortion by trapping an extra electron, i.e.,
by becoming a D state exhibiting a negative-U behav-
ior. This model is only suggested since the type of cal-
culations on which it is based can only provide qualita-
tive trends, as i11ustrated by the fact that similar calcula-
tions provided more recently an opposite result (namely
that the D+ state is stable while the D is metastable).
The experimental evidence which supports this model is
mainly based on the observation by electron paramagnet-
ic resonance (EPR) and related techniques. The nonob-
servation by EPR of the DX ground state is said to be the
proof that this state is nonparamagnetic, i.e., not D, al-

though shallow donor states are similarly not detected in

Ge. Many other indications, too numerous to be cited
here, are also presented as argument in favor of the
negative-U model. But they are apparently not convinc-
ing enough since additional arguments continue to ap-
pear. Recently, a spectrum associated with the Sn impur-
ity in Sn-doped Ga, Al, As has been detected under
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photoexcitation at low temperature. With this spectrum
exhibiting a hyperfine interaction, it is concluded that the
DX center must have a strongly localized wave function.
However, the materials in which such observation is
made contain a Sn concentration 40 times larger than the
detected spin concentration [as revealed (yet unpublished)

by secondary-ion mass spectroscopy], and the observed
spectrum can well be associated with a Sn related defect
and not with substitutional Sn on Ga sites. Moreover,
this spectrum does not exhibit the so-called persistent
photoconductivity (PPC) effect (i.e., it decays even at 4 K
when the photoexcitation is shut off), while this PPC
efFect is the typical characteristics of the DX center
detected in case of Sn-doped materials by deep-level tran-
sient spectroscopy (DLTS). Finally, the experimental evi-
dence for the identification of a DX center as a D state
is thus still weak, and even in contradiction with the ex-
istence of a very shallow stable D state which has been
recently detected. '

Here we shall not discuss the negative- or positive-U
character of the DX center. We will be dealing with the
physical reason for the localized nature of this center.
We intend to show that the more or less localized charac-
ter of the DX center is a consequence of the nature of the
band structure. That this localization leads to a negative
electron-electron interaction is another problem beyond
the scope of this paper.

II. EXISTENCE OF THE DX CENTER
IN III-V ALLOYS

The band structures of the alloys mentioned in the In-
troduction are displayed in Figs. 1(a)-1(h}. The criterion
we propose to be fulfilled in order for the DX center to
exist is the following. In Ga& Al„As, the DX level is lo-
cated at an energy about 150-200 meV below the L val-

ley of the conduction band. Moreover, this energy is lit-
tle afFected by the nature of the donor impurity and its
lattice site: experimentally, within the experimental accu-
racy, the DX energy level appears to be the same" for a
given x value for whatever the nature of the impurity and
the lattice site it occupies. Therefore, we expect this lo-
cation to be very similar in all alloys, which exhibit corn-
parable effective masses. We thus predict that the DX
center will exist, provided a level at about 200 meV below
the X or L valleys of the conduction band falls in the en-

ergy gap. The approximate ranges of alloy compositions
for which this condition is fulfilled are listed in Table I
and the conduction-band structures sketched in Fig. 1.

1. Ga& „Al„As. Since the criteria used to predict the
existence of the DX center are derived from the observa-
tions of the DX center in Ga, Al As alloys, there is of
course a one-to-one correspondence between prediction
and observation. For x )0.2 [Fig. 1(b}] the ground DX
level is a deep level at about 150-200 meV below the L
valleys. " ' At first sight, one might also envision a DX
level, higher in energy than the ground state, at 200 meV
below the X valleys of the conduction band, since such a
level would also fall in the gap. We shall see, however, in
Sec. III that two such levels cannot coexist. Only the
ground level remains deep. The basic reason for this is
that the upper level must be orthogonal to the ground
state. Like in any orthogonalized plane-wave band calcu-
lation, this orthogonalization to the core state amounts to
a repulsive central-cell correction to the effective poten-
tial, so that the upper state is forced to be shallow.

2. GaAsi „P„. The DX center is also present
undoubtedly in GaAs& „P„alloys, where it has also been
studied in some detail' ' and found to exhibit a behav-
ior very similar to the case of Ga, „Al„As alloys: similar
ionization energy (0.3—0.4 eV), an energy level located at
about 170 meV from the X band, large distribution of

TABLE I. List of the various III-V alloys in which electrical measurements have been performed and given experimental evidence
of DX centers in n-type-doped materials. The range of alloy composition x where the DX center is observed is reported in the fourth
column. The nature of the associated donor impurity is indicated when known. The second and third columns illustrate the compo-
sition range in which the existence of the DX center (originating from the L or X valleys) is predicted, according to the proposed cri-
terion. The fulfillment of this criterion for both the L and X valleys does not imply the existence of two deep levels: in this case, there
still should be one deep state only, associated with either L or Xor a mixture of L and X valleys, depending on their relative position.

Alloys

Gal Al„As
In) „Ga P
In& „Al„As

Ga, Al„Sb

Asl „P„In
In& Ga„Sb
Sbl „As„Ga
As, „P Ga
Inl Al„P
Gal „In„As

Prediction
X

0.4—1

0.7—1

0.6-1

0.3—1

?
0.3—1

0.4—1

x value
Prediction

L

0.3-0.9
0.6-0.9
0.5 —1

0—0.9

0.9—1

?
0.4-0.6

?

Experimental
observations

0.2—1 (Si, Se, Te, Sn)
0.5:No

& 0.5

0&0.2 (Te)
.0 (S,Se,Te)

&0.4 (Te)

No
0:No

?
0.3—0.6 (S, Te)

?
0.5:No

References

9-11
unpublished

24

22

?
25

12-19

unpublished
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states are indeed observed in the range 0&y &0.4 for x
varying between 0.3 and 0.5. Our recent DLTS studies in
Ga, In P confirm the prediction of the nonexistence of
DX centers for an alloy composition x -0.50 [Fig. 1(d)].

8. GaIn, As„. In this case, the DX center should
not exist, because the X and L bands remain always more
than 0.2 eV above the I band. We have verified this con-
clusion, through using capacitance spectroscopy (DLTS)
experiments, for x =0.5.

III. INTERVALLEY MIXING MODEL

Table I demonstrates that there is a good correlation
between our prediction and the experimental observa-
tions in all the cases where data are available. The ex-
istence of the DX level is thus closely related to the L or
X valleys. The only feature which distinguishes these val-
leys from the I one is the fact that there is only one sin-
gle I valley against %=4,3 valleys for L and X, respec-
tively. Hence the idea that intervalley mixing plays a key
role in the formation of a deep DX level. ' '

In the presence of intervalley mixing, the potential to
be used in the EMA Schrodinger equation of the en-
velope wave function associated with the donor is the po-
tential V(r) modulated by a spatial renormalization fac-
tor I@(O,r)l . ' The standing wave function with the
appropriate symmetry of the ground state is a linear com-
bination of the unperturbed crystal Bloch states 1(t,(k„,r)
corresponding to the conduction band around the N
equivalent minima k„. At this stage of the analysis, it is
postulated that the ground state has the A

&
symmetry, in

which case

Within a few percent, 1(t, —1 at r =0, which leads to
fully constructive interference effects near the origin.
The phase coherence is lost at a typical distance rp such
that lk„lro I

—1, so that we can make the approximation

N for r &rp

The basic idea is that the enhancement of the attractive
potential V(r) in the core region r (ro by a factor N is
responsible for the deep nature of the DX ground state.
This factor N is clearly due to the A, symmetry of the
ground state, Eq. (1) being then a simple superposition of
the p components. As a matter of fact, in the intervalley
EMA equation, only A, levels which have nonzero wave
functions at the origin can go deep. We have already
pointed out that our interpretation of the DX level in
terms of the intervalley EMA is thus in contradiction
with a prior work of Morgan. Using qualitative tight-
binding arguments, this author proposed that the DX lev-
el originates from a T2 state and not an A, state, as a re-
sult of a huge Jahn-Teller distortion. However, it is now
understood from more recent tight-binding calculations
that the DX level originates from the A

&
state, and not

from the T2 states, which justifies our approach.
Note that we used the intervalley EMA to explain the

existence of a deep state related to the L or X valleys; let
us show now that this deep state is unique, i.e., all the
other states are necessarily shallow. To fix the ideas, let
us assume that the DX level is related to the L valleys (the
demonstration is the same in case it is bound to the X val-
leys). A very simple demonstration can be made using
the Green-function formalism to solve the intervalley
EMA. Since rp is the order of the lattice parameter in

Eq. (2), the factor I 4(0, r ) I
leads to an additional

central-cell correction. Let us call 5V this central-cell
correction. Let Gp be the Green function of the EMA
equation with the effective potential replaced by the
Coulomb potential alone, and G be the Green function of
the EMA equation including the term 5V (which is al-
lowed to be large). Assuming that Go is known, 6 is

given by the Dyson's equation

6 —60=5G=605VG . (3)

The problem is then readily solved following the
Koster-Slater impurity model. Equation (3) can be
solved by iteration:

5G =60(5V+5V605V+ )60 . (4)

—U Re& 016010& =0 (7)

(Re means the real part. ) Let 1(„designate the eigenfunc-
tion of the Hamiltonian without the central-cell correc-
tion, for the eigenenergy F.„. Then 1(„ is also the basis
which diagonalizes Gp. The use of the closure relation
implies that Eq. (7) can be written

&016,10& =
I &oly„& I'& q„lG, ly„&

so Eq. (7) becomes

1&01@„&I'
F(E)=g E—E„U

In the energy gap, the E„spectrum is discrete and
reduces to the Palmer series of the shallow hydrogenic
levels relative to an electron with effective mass m * in an
effective medium of dielectric constant c. The variation

Since 5 Vis a central-cell correction, the Dyson's equation
is most easily solved if we express it in the Wannier repre-
sentation. Let &m & denote the Wannier state at site m,
and & 0 & designate the donor site. The only nonvanishing
matrix element of 5V is U= &OI5VIO&. Then, by inject-
ing the closure relation gz lp & &p I

= 1 between the opera-
tors in Eq. (4), Eq. (3) can be cast under the form

& n 156 I
m &

=
& n

I Go I
0 & (1+U & 0

I 6, IO & +
XU&OIG, lm &,

that is,

& n IG, lo& U& OI6, lm &

1 —U&OIGoIo&

The poles of the Green function in the presence of the
central-cell correction are thus located at the energy solu-
tions of the equation
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Any excited state with a dominant X character must be
orthogonal to this ground state, so that it takes the form

The substitution of Eq. (11) into the Schrodinger equation

(12)

taking Eq. (10) into account, leads to

(13)

which can be written under the form of a Schrodinger
equation on

~
4 &, of the kind

(H+ V )I@&=E,.I@& .

V is an additional central-cell correction such that

(14)

F(D

of F(E) as a function of E is illustrated in Fig. 2. The
solutions of Eq. (9) are given by the intercept of the curve
F(E) with the straight line parallel to the x abscissa at
the ordinate 1/U. Of course, if the potential U is posi-
tive, all the energy solutions of Eq. (9}are higher than the
1s hydrogenic level EI so that all the levels are shallow.
For an attractive central-cell correction (U large and neg-
ative), we can see that the ground level goes deep below

E, . However, all the other levels are shallow at an ener-

gy strictly larger than E, .
At this stage we have shown that only one deep state

can be related to one type of valley (say the L valleys), but
the existence of the X valleys has been neglected. We can
argue that these x valleys cannot generate a second deep
level either, by using the pseudopotential concept: let g
be the ground state related to the L valleys, with the en-

ergy c, , so that, if H is the Hamiltonian,

(10)

Note that E,„—c, is positive, since E,„ is the energy of
an excited state, so V is a repulsive central-cell contribu-
tion, which prevents the excited level to be deep. This is
in essence why, in general, there can be only one deep
state associated to the DX center.

The description of this deep state is at the limit of va-
lidity of the EMA. A deep state is normally a combina-
tion of all conduction-band states. However, it is possi-
ble to treat each subband separately, in a variational
manner, and, if one of them (that of the L states in the
occurrence) leads to a much more stable state than the
others, then it dominates the situation. Indeed, tight-
binding calculations give evidence that the DX ground
state retains a dominant L character. This is due to the
prominent peak of the L states which dominates the den-
sity of states of the conduction band. A confirmation
that L and not X drives the DX center deep in this alloy is
the observation of an almost site independence of the DX
binding energy. We have already mentioned earlier in
this work that only A

&
levels, which have nonzero wave

functions at the origin can become deep as a result of the
central-cell correction, and at X, they must come from X,
bands (yielding 3&+E), not X3 (yielding T2 only). Sub-

stituting the anion X, is the lowest band, whereas substi-

tuting the cation X, is higher than X3, by as much as 0.5
eV in pure AIAs. Then, a Si dopant (on an As site)
should produce a considerably less bound DX center than
a Se dopant (on a Ga site), for example, contrary to the
experimental result. On the other hand, the L~ band is

always the lowest for both anion and cation substitution-
als, yielding 3, + T2, hence a deep almost site indepen-
dent A&.

Therefore, we believe that the EMA is a reasonable ap-
proximation to describe the electronic states of the DX
centers on a qualitative basis. Yet, the solution of the
EMA effective Hamiltonian requires the choice of the
effective potential V(r), and, as we shall see in Sec. IV,
this is a major problem.

IV. THE CAVITY MODEL: V(,r)= —e /c(r)r

0
1

U

E

C3

The cavity model has been used for decades to explain
the shallow-deep instability of donors in semiconduc-
tors. ' The basic idea is that the Coulomb potential
experienced by the donor electron is e /(sr) in conven-
tional notations, for r ) ro, where ro is the order of the
size of the Wigner-Seitz cell. For r &ro, however, the
bare Coulomb potential remains unscreened, so we can
write (see Ref. 6, and references therein}

2 2

V(r)= — + 1 ——
cor coro

r (ro
(16a)

FIG. 2. Poles of the Green function in the presence of a
central-cell potential showing that only the ground-state energy

cl can be deep, those of the excited states c; (i ) 1) remaining the
order of the energies E; of the shallow EMA states without
central-cell correction.

V(r)=—e2 r) rpcr

which can be cast under the form V(r }=e /[rs(r)], with
a spatial-dependent dielectric function. Thus, one has to
solve the Schrodinger equation for an electron in a poten-
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tial ~@(O,r}~ V(r), with the following spatial dependence
of the electron mass:

m(r)=mo for r &ro and m for r &ro . (16b)

The spatial dependence of e(r ) and m (r ) are correc-
tions to the effective-mass approximation which, other-
wise, would break down in the central-cell region r & ro.
The solution of the Schrodinger equation can be written

P»~ =M»~R»(r ) YI~(8y) (17)

where M is a normalization coefficient, YI the spherical
harmonics, and R „I the radial functions

R &(r)=A„„I(p')'exp( —p'l2), r &ro

R & (r ) =B„lp'exp( —p/2), r & ro

where the reduced variables are

(18)

2N r
p

ab

2 &om* r
v F m a

where a~ is the atomic Bohr radius; u and U are the solu-
tions of a confluent hypergeometric equation. We require
that R (r) is regular at r =0 and r ~ 00, which implies

u = A((}(l+1—v', 21+2,p'), r &ro

v=BV(1+1—v, 2l+2, p), r &ro
(20)

where 8 and 4 are the Tricomi function and the
Kummer's series, respectively. The boundary conditions
are

R ~ (ro)=R ~ (rp)

dR (ro)

mo

dR &(ro)

m

(21)

where po, po are the values of p and p' for r =ro. The
principal quantum numbers v and v* are related to the
energy E of the donor levels according to the relations

m*e4v2-
2c. h E

1 1 m ~o

2(p» )~ N~ mo

2
I 1 aa ~o+— 1——

Nro c

(23)

Note in general v and v' are not integers here. '

The numerical calculations then require a value for c
and m*(e=13 in Ga& „Al„As). In a prior work the

The ground state is an s state, so that we set 1=0 in the
equations, in which case it is a simple matter of algebra
to reduce Eq. (21) under the form

3 po} v' so—(1—v"), +
P(1—v», 2,po) vN e

4( —1 —v, —l,po)
X 1— =0, (22)

po qi( —v, O, po)

equations have been solved; for the choice m'=0. 56mo
for L valleys. The solution has been illustrated under the
form of the variations of the quantum number v and the
binding energy —E as a function of the cutoff parameter
ro in the vicinity of the shallow-deep instability. Similar
plots have been also reported by Chandhuri and Coon
with application to interstitial impurities in semiconduc-
tors; for example, see Ref. 42.

There is, however, a hidden artifact in this procedure:
the plots recorded so far in the literature for v and E are
not related to the ground state. The reason is that the ra-
dius of the Wigner-Seitz cell of the lattice ro is much

0
larger than as(=0. 5 A). As a consequence the ground
state is essentially a 1s atomic hydrogenic state; since the
extension of its wave function is az, an electron in this
ground state experiences only the region r & ro where the
base Coulomb potential is unscreened, so its eigenenergy
is about 1 Ry. Therefore, the ground state of the
Schrodinger equation, with V(r) given in Eq. (16), is al-
ways a 1s-hydrogenic state located about 13 eV below the
bottom of the conduction band. This has presumably not
been realized before since a lot of effort has been devoted
to a more accurate description of the screening of the
electrostatic charge (see, for example, Refs. 33, 34, 41, 43,
and 44}. In all cases, the refinements amount to replacing
Eq. (16) by V(r ) =e /[e(r )r ], with a continuous r-
dependent dielectric constant, and various models of e(r)
However, in all semiconductors, the electrostatic charges
are screened near the impurity site. Therefore, all the
models of dielectric constants have in common the fact
that c-1 for r az, and as we have shown earlier, this is
sufficient to push the A&(ls) level off the conduction
band. Therefore, such refinements are useless. An addi-
tional proof can be found in Ref. 33, where the authors
reported that the numerical value of the binding energy
of the A, ( ls) ground state is several times the fundamen-
tal gap when it is computed from the EMA equation,
with rn', 4(O, r) and e(r) relevant to silicon, e(r) being
derived in a Thomas-Fermi screening model. For the
same reason, refinements on 4(O, r) (Refs. 33 and 34) will
not modify this result either.

Within the cavity model, it is thus the first excited
A ~(2s) level which is a good candidate for the shallow-
deep instability, not the ground level which is always
deep, for any donor impurity. This is best evidenced in
Fig. 3 which illustrates the wave function of the A&

donor state associated to the L valleys in Ref. 6, for the
value ro =1.7 a.u. yielding a binding energy 0.2 eV. The
wave function presents a node and is then clearly a 2s or-
bital. The same result has been reported in Ref. 33, for
the particular case of the EMA applied to silicon. This
feature has been missed in the other works. ' The
reason is that attention has been focused on the principal
quantum number v. However, v has a physical meaning
for the region r) ro only. Since the wave function is
mainly localized in the region r ~ro, the relevant quan-
tum number is v* and not v. We indeed find v*=2.0
within an accuracy 10 for the state in Fig. 3.

These results force us to reconsider the relevance of the
cavity model. It is usually believed that the cavity model
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2

0
0

r (a.u.)

FIG. 3. Spatial extension (g vs r, in a.u. ) of the wave func-
tion for the A& donor state, located at 200 meV below the L
band, calculated in the model of Ref. 6.

A, (2s) state. We believe this is the key problem with the

impurity potential —e l[E(r)r] which is not only large
for r & r0, but even diverges at r =0. In EMA, one wants
to write the impurity wave function in terms of the states
of the lowest conduction bands. Then one has to calcu-
late the potential matrix elements in this finite basis set.
If one wants to have a picture of these elements in real
space, one has then to transform this matrix to the real-
space basis formed by the Wannier functions. In this pic-
ture, the diagonal elements ( W„pI VI IV„p) of the Wan-
nier functions at the impurity site R0 do not diverge,
while more distant ones obviously behave as
( IV„pI VI W„ tt) = —e /[eR ]. It follows that the
relevant potential V(r) entering the EMA equation is
regular at r=0 like the pseudopotential used by Resca
and Graft for Si impurities in silicon.

applies to donor impurities, whenever their ground ener-

gy level is deep into the gap. ' ' For example, it is
taken for granted that the cavity model, i.e., the impurity
potential V(r ) = e ls(r )—r is appropriate for interstitial
donor impurities in silicon such as hydrogen and lithium
impurities. ' To the contrary, we claim that this kind
of impurity potential is never justified because the fact
that the A, ( ls) level is deep is actually an artifact due to
the screening effect of the electrostatic charges implying
E(r)-1 for r &a~. The proof is that, in this model, all
the donors in all the semiconductors should have a deep
ground level. Incidentally, the binding energy should not
exceed the energy gap. The 1-Ry binding energy in the
model is thus unphysical and due to the fact that the cou-
pling of the impurity donor states with the valence-band
states must be taken into account when the binding ener-

gy is not small with respect to the gap. Moreover, the
common procedure which amounts to forgetting the ex-
istence of this deep At(ls) state and discussing the
shallow-deep instability, or even fitting the experimental
value of the binding energies as if the A, (2s) state was
the gap. Moreover, the common procedure which
amounts to forgetting the existence of this deep A, (ls)
state and discussing the shallow-deep instability, or even
fitting the experimental value of the binding energies as if
the A t(2s) state was the real ground state in the frame-
work of the cavity model, is meaningless: we have argued
in the preceding section that an impurity should not have
more than one deep bound state in a semiconductor.
Therefore, the fact that the A, (2s) level can go deep is
just another artifact of the model. The fundamental
reason here does not come from the particular choice of
the impurity potential, but rather from the EMA itself.
In effect, the EMA reduces the Schrodinger equation to
that of a free electron in a local potential. This Hamil-
tonian thus admits an unbound continuum of eigenstates,
in violation with the Bloch theorem which implies that
the bands have a finite width due to the periodic crystal
field. The EMA is thus valid only when the impurity po-
tential is small as compared with the bandwidth of the
conduction band. This condition is violated for impurity
potentials leading to a shallow-deep instability for the

V. AN EMA MODEL
FOR THE SHALLOW-DEEP INSTABILITY
WITH APPLICATION TO THE DX CENTER

IN Ga& „A1„As

Although the procedure to build realistic pseudopoten-
tials is known, the expression of V(r ) for the DX center
in III-V compounds is unknown. A semiempirical ap-
proach consists in keeping the expression of V(r) as given
in Eq. (16) for r & rp since it is the correct asymptotic
fortn for large r, and take V(r) constant at r & rp to re-
move the divergence of the Coulomb potential:

V(r)= Vp, r &rp
(24)

Note in the case of substitutional impurities, V0 also
includes the central-cell correction associated to the sub-
stitution of the host element by a different chemical
species. It is then convenient to rewrite this potential as

V(r) = V, (r )+ V, (r),
where

(25)

(26)

Then

V, (r)= V(r) —V, (r)

represents the central-cell correction since it differs from
zero only for r r0, in which region it is a constant.
Note that the potential V(r ) thus defined is discontinuous
(except if V, =0). In principle, one might object that the
derivation of the EMA equation requires that V(r ) varies
smoothly at the scale of the lattice parameter. Neverthe-
less, the patent success of the EMA in the derivation of
the eigenstates and dispersion relations of minibands of
superlattices, where the potential varies discontinuously
at the interfaces between adjacent layers, proves that a
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h 2 1

2 m(r)
V Vg(r ) + V(r)i@(O, r)i g(r) =Ef(r)

(28)

with rn(r), V(r), and 4(O, r) given in Eqs. (16) and (1), re-
spectively. The solution for the radial part of the en-
velope function is

' 1/2
kR, (r)= A Jt+in(k, r),
r

R & (r ) =BC(I+1—v, 2i+2, p)p e t'i, r ) ro

with

(29)

discontinuity of V(r) does not affect the validity of the
EMA. The objection that a discontinuity of the pseudo-
potential V (r) is unphysical is not serious either, because
we do not pretend to achieve a quantitative description of
the DX center, far beyond the EMA: we only aim to get
some insight on the physical origin of the electronic
properties, which do not depend on such details as
whether the pseudopotential varies sharply or discontinu-
ously in the vicinity of the central cell. In particular the
pseudopotential used here inside the central cell is not the
one, composed of an attractive Coulomb part and of a
core repulsive part, considered in tight-binding calcula-
tions. Instead, our choice of the pseudopotential aver-
ages the true potential over the elementary cell. This
choice is actually implied by the fact that it is crucial,
within the EMA, to deal with a potential which is small
everywhere. A potential, which shows important peaks
inside the unit cell as a result of the repulsive core poten-
tial and Coulomb potential, does not satisfy this criterion
and is not compatible with the use of the EMA when the
electron density is large in this region. This average
value of the pseudopotential inside the central cell is
determined by the condition that it reproduces the bind-
ing energy of the I effective-mass state.

The EMA equation to be solved for the envelope func-
tion F(r) is now

Since v depends on the energy E [see Eq. (23)], Eq. (31) is
an equation for E, which can be solved numerically.

We have applied this model to Ga& „Al„As, since it is
the material where the DX center has been most investi-
gated. The DX ground level is mainly bound to the L val-

leys in this case. These valleys are very anisotropic, with
m T (mL, where m T, mL are the transverse and longitudi-
nal masses, respectively. Since the anisotropy is ignored
in our model, one can wonder which value of m' is
relevant to this case. Faulkner has solved the classical
EMA equation, taking the anisotropy into account. The
result of the exact calculation is that the energy of the 1s
state is close to the value it should have for the isotropic
case with m*-mT. In particular, the choice of the
effective mass of the density of states for m' widely un-
derestimates the binding energy. That is why in the
present case, we choose m ' =mz-=0. 08mo and we set ro
equal to the radius of the Wigner-Seitz cell, namely
ro=5. 5 a.u. Under such conditions, the 1s ground level
of Eq. (31) in the absence of the central-cell correction V,
is shallow. A deep level at an energy E= —0.2 eV is ob-
tained only for V, (r &ro)=0.627 eV. Note that this
value is quite reasonable since a central-cell correction
for the pseudopotential associated to a substitutional
donor is expected to be a fraction of an electron volt. For
a single valley, like an extremum at the I point, such a
potential only shifts the ground state by a few meV. For
the L multivalley case, however, the enhancement by a
factor N=4 in the core region [see Eq. (2}] forces the
ground state to be on the deep side of the shallow-deep
instability. This is illustrated in Fig. 4 where we have re-
ported the variation of the binding energy as a function
of V, (r &ro) for the parameters rn'=0. 08me, a=13,
N=4 appropriate to Ga& „Al,As. The shallow-deep in-
stability occurs for V, (r & ro ) =0.53 eV. This means that
the X-associated state (N =3) remains below the instabili-
ty, i.e., shallow. This calculation illustrates that the role
of the central-cell correction has been grossly underes-

[2'( NV —HEI)]' —' .
1

h
0 (30)

R & (r) has the same expression as in the cavity model;
its expression has been recalled for completeness. Jl+&/2
is the Bessel function of index I+ 1/2. After some calcu-
lations reported in Appendix A, we find that the bound-
ary conditions [Eq. (24)] lead to the following equation
for the energy E of the ground state:

I
LU

0.2 ~

Po

I( —1 —v, —1;po)—2(1+v} I( —v, O;po)

0.1 ~

m*+ [1—krecotg(kro}] +1=0,
mo

where I is the following integral:

(31)

0
0.2 0.4

Vgev3
0.6

n./2I(a,c;p)= J (coax) 'cos +tgx+(2a —c)x dx .
0

(32)
FIG. 4. Variation of the binding energy Eb calculated as a

function of the depth of the central-cell potential V, .
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timated in our prior work and more generally in all the
models of deep levels based on the cavity model. Our re-
sult is in agreement with the result of Green-function
studies of impurity levels in multivalley semiconductors
according to which an impurity level goes deep under the
combined effect of a high projected density of states and a
suSciently strong central-cell correction.

Figure 5 also illustrates that the binding energy of the
intervalley effective-mass equation is sensitive to the
central-cell contribution of specific impurity pseudopo-
tentials in the shallow-deep instability region. This, of
course, represents an overestimate, since the interaction
with valence states becomes increasingly important as the
impurity level is deeper, hence a repulsion from valence
states, not taken into account in the model. Neverthe-
less, such a repulsion from the valence band should not
smear out the dependence of the binding energy upon
V, (r (ro). This dependence may be at the origin of the
qualitative difference in the electronic structure of vari-
ous impurities in semiconductors. For instance, accord-
ing to Figs. 10 and 12 of Ref. 51, Sb, S, and Se in A1As
have binding energies of about 0.2 eV while Te is shallow,
but that of Si is about 0.6 eV. Also in Si, it has been ar-
gued that group-V substitutional donors produce
central-cell pseudopotentials weak enough to keep them
at the shallow edge of the instability. The same may
hold true in Ge.

Another feature of our model is that the binding ener-

gy (-0.2 eV) of the DX center is smaller than the
Coulomb energy at the edge of the central cell e /(ere),
as it is illustrated in Fig. 5. This is a clear evidence that
the Coulomb tail plays a much more significant role than
acknowledged before. This important feature accounts
for the fact that the electron emission of the DX center is
sensitive to an applied electric field through a so-called
Poole Frenkel effect, a property which could not be un-
derstood in the absence of a long-range potential. Indeed
such a sensitivity on the electric field cannot be observed
for deep defects.

We also note that the wave function of the DX electron

in its ground state is strongly localized, as it can be seen
in Fig. 6. Such a strong 1ocalization means a high-
electron density close to the impurity site, which favors a
strong electron-lattice interaction. Starting with the
model of Toyozawa, with the trial electron wave func-
tion

(33)

one finds that the kinetic term scales like a, the
Coulomb energy scales like a ', and both the short-range
contribution of the central-cell correction UsR and the
electron-lattice coupling term corresponding to a
position-dependent dilatation scale like a . With this
regard, the electron-lattice interaction may well be in-
cluded in our model, and only amounts to a renormaliza-
tion of the central-cell potential. It is then possible that a
fraction of the central-cell potential comes from the
electron-phonon interaction, the remaining part originat-
ing from the chemical difference between the impurity
and the host element to which it is substituted.

In this spirit, the electron-phonon interaction induces a
local lattice relaxation but a negligible (if any) static
Jahn-Teller distortion. Indeed the barrier for electron
capture is equal (within the experimental accuracy) to the
energy difference between the I. band and the bottom of
the conduction band, except in the case of Si where a
200-meV constant m.ust be added to this energy. " This
can only be understood if electron capture occurs
through a cascade mechanism via the excited state associ-
ated with the I band. This capture cannot take place via
the excited states of the bottom of the conduction band
since the corresponding excited states cannot be filled at
the temperature the process occurs.

Finally, the potential V(r) illustrated in Fig. 5 only
represents an average of the pseudopotential over the an-
gular spherical coordinates. It then does not allow any
investigation of the shallow excited states. The reason is

V(r) 0.08 ~

0.04

1'

FIG. 5. Pseudopotential of a donor impurity in Ga& „Al„As
giving rise to a binding energy of the ground state equal to 200
meV for the case of L valleys, illustrated by the horizontal bro-
ken curve (ro=5. 5 a.u. , m*=0.OSmo, c.=13). The binding en-
ergy of the ground state for this potential is only a few meV in
case of a I valley.

0
0

r(a.u.)

FIG. 6. Spatial extension (g vs r, in atomic units) of the cal-
culated ground-state wave function of the L associated state for
a binding energy of 200 meV, according to the model of the
present work.
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that such states are very sensitive to the anisotropy,
which, for example, splits the p states into p, and p+'
states. For the large anisotropy observed in III-V com-
pounds, the energy splitting is so large that the first excit-
ed states are the 2p states instead of the 2s state. The
spherical approximation is thus relevant only to the study
of A, states, including the ground state.

VI. CONCLUSION

After a careful reconsideration of the treatment of the
cavity model in the case of intervalley mixing, we have
shown that the donor impurity in III-V alloys, if accom-
panied by a central-cell correction of normal magnitude
(-0.6 eV) has a deep ground state (0.2 eV below the L
valleys in the archetype alloys Ga, „Al„As), while all

the excited states remain shallow. Although the corre-
sponding wave function of the ground state is rather lo-
calized, it remains nonetheless sensitive to the Coulomb
tail of the binding potential. This result justifies the ex-
istence of a DX center made of a substitutional impurity,
the electron-phonon interaction inducing only a lattice
relaxation but no distortion. Such a model is verified by
the correlation between the observation of the DX center
in various III-V alloys and the nature of their band struc-
ture.

ACKNOWLEDGMENTS

We acknowledge many fruitful discussions and sugges-
tions with M. Lannoo (Institut Superieur d'Electronique
du Nord, Lille, France) and L. Resca (Catholic Universi-
ty of America, Washington). In particular, the demon-
stration of the unicity of a deep state in the form present-
ed here has been explained to us by M. Lannoo. This
work has been supported by a European Economic Corn-
rnunity Basic Research Contract No. 3168. The Group
de Physique des Solides is "Unite associee du Centre Na-
tional de la Recherche Scientifique. "

APPENDIX A

The equation for the energy in our model is provided
by the boundary condition [Eq. (21)],under the form

d lnR&

m* dr mo

dlnR&

dr
(Al)

The logarithm derivative of J and 4 functions can be
determined from the recursion relations:

d ln[Jt+in(kr )] i+I/2 1+3/2(k—k
dr r Jt+&r2(kr)

d in[%(a, c;p)] %(a,c+ I;p)
dp %(a,c;p)

Making use of the relation

qt(a, c;p)=p' %(a —c+1,2 —c+1;p)

Eq. (A2) can be written under the form

d ln[%'(a, c;p)]
1

1 qt(a —c,2 —c+1;p)
dp p 0'(a —c+1,2 —c;p)

(A2)

(A3)

(A4)

x
kr d (kr)

sin(kr )

kr
(A5)

and

%(a', c';p)= —2' 'I (1 a')et'~ I(a—', c';p)1

7T
(A6)

valid for p &0, Rec'& 1. I is the integral defined in Eq.
(32). Note that from Eq. (29), we have

a =I+1—v,'e =21+2; (A7)

so that c ) 1. The use of Eq. (A3) to transform Eq. (A2)
into Eq. (A4) is aimed at writing d inR & /dr as a function
of Tricomi functions 4(a', c',p) with real arguments
c'(I, for which the integral representation (A6) holds.
It is then straightforward to write Eq. (Al) under the
form of Eq. (31) for the ground state, taking into account
that this state has an A, symmetry, for which l =0.

The Tricomi and Bessel functions are easily evaluated
from their representations:

Jt+&&z(kr)=( —I )'(nkr/2) ' (kr)'+'
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