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I. Ground-state properties of the Hubbard-Peierls model
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%e present detailed studies of the self-interaction-corrected local-spin-density method. As an applica-
tion, we consider ground-state properties of a highly correlated many-electron system interacting with

phonons, namely, the one- and two-dimensional Hubbard-Peierls model. An efficient minimization
method is presented which allows one to find fully self-consistent solutions to the self-interaction-
corrected local-spin-density total-energy functional without assuming any symmetry of the one-electron
states. Charge- and spin-correlation functions, the energy gap, and phonon-induced electronic energy
gains for the two-dimensional Hubbard-Peierls model are in significantly better agreement with numeri-

cally exact results than the standard local-density method. Noticeably, we find that phonons tend to de-

stabilize the antiferromagnetic ground state in two dimensions and show a negative-U behavior in the

energy gap, in contrast to the situation in one dimension. This is relevant for the theory of high-

temperature superconductivity.

I. INTRODUCTION

The density-functional theory of Hohenberg, Kohn,
and Sham' provides an exact mapping of the ground-
state properties of a system of many interacting electrons
onto a system of noninteracting particles. In practice,
however, the exact exchange-correlation part of the
total-energy functional is unknown and replaced by an
approximate functional. Virtually all modern electronic
structure calculations in solids and many in atoms and
molecules are based on the local-density approximation
(LDA) or local-spin-density (LSD) approximation. The
LDA and LSD have an impressive history of successes in
describing a wide variety of electronic properties of
atoms, rnolecules, and solids.

On the other hand, a number of deficiencies of the
LDA and LSD have also become apparent in recent
years. In the case of free atoms, the local-density ap-
proach predicts negative ions such as H, 0, and F to
be unstable and yields too diffuse electron densities.
Moreover, the LDA systematically overestimates ioniza-
tion energies, whereas the calculated s-p and s-d transfer
energies are somewhat too small.

In solids, the LDA (LSD) severely underestimates the
band gaps in semiconductors and insulators by typically
50% or more. Also, the predicted cohesive energies of
condensed systems lie above the experimental values.
Generally, the discrepancy between theory and experi-
ment is larger for properties of surfaces and finite systems
than for bulk properties. The LDA also underestimates
the stability of antiferromagnetic phases which became
particularly apparent in the predictions of the insulating
phase of high-temperature superconductors such as
LazCu04 and YBa2Cu306 (for a review, see Ref. 3). In
addition, the LDA also fails to predict the antiferromag-
netic ground state of several transition-metal oxides.

Presently there is an intense search for systematic irn-
provements of electronic structure calculations. One

possibility to go beyond the LDA (LSD) was pointed out
several years ago by Perdew and Zunger. In the exact
density functional for a single electron system, the Har-
tree electrostatic energy should be exactly cancelled by
the exchange-correlation term. Owing to the approxi-
rnate character of LDA or LSD, however, this is not the
case within these schemes. Consequently, there remains
a spurious unphysical self-interaction of the electron with
itself. One consequence is the effective one-electron po-
tential in the Kohn-Sham equations' to possess an in-
correct asymptotic behavior at large distances. Perdew
and Zunger proposed to subtract the self-interaction en-

ergy of all occupied one-electron states from the LDA
(LSD) total-energy functional for a many-electron sys-
tem. This defines the self-interaction-corrected local-
density (SIC-LDA) or local-spin-density (SIC-LSD) ap-
proximation.

Since the self-interaction correction to the effective
one-electron potential depends on the individual electron
states, the total electron potential becomes orbital depen-
dent. As a consequence of this orbital dependence, the
SIC Hamiltonian is no longer invariant under a unitary
transformation among the occupied orbitals —unlike the
LDA (LSD) Hamiltonian. These orbitals must be deter-
mined self-consistently in such a way that the SIC
ground-state energy becomes minimal. However, this
condition is di%cult to implement in real systems. There-
fore, much of the work so far has relied on approximate
orbitals of some plausible form, e.g., atomic orbitals or
some type of Wannier or bond orbitals. In this simplified
form, the SIC method has been applied to atoms, mole-
cules, insulators, " semiconductors, ' f-band met-
als, ' impurities in isolators, ' and to the homogeneous
electron gas. '

Recently, fully self-consistent SIC-LSD calculations for
model systems' ' and for transition-metal oxides have
been reported. It turns out that the self-consistent SIC
method yields antiferrornagnetic moments and energy
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II. SELF-INTERACTION-CORRECTED
LOCAL-DENSITY FORMALISM

A. SIC total-energy functional

In the local-spin-density (LSD) approximation to the
density-functional theory, the total-energy functional is a
sum of the kinetic energy, external potential, electronic
Coulomb and exchange-correlation interaction:

E„,=To+ V,„,+U, +E (2.1)

For a molecule or a periodic solid, the term V,„, arises
from the electron-nucleus —or, in a pseudopotential
approach —the electron-ion interaction. We can write
these terms in the form

V,„,[p]=fp(r)v;, „(r)dr, (2.2)

gaps in much better agreement with experiment than the
LSD method. Indeed, studies of the one-dimensional
Hubbard model have shown ' that the moments, gaps,
and total energies predicted by the SIC-LSD method
compare very well with the known exact results, in con-
trast to the LDA or LSD. Since the implementation of
the fully self-consistent SIC method for solids is highly
nontrivial, further studies of exactly soluble models and
critical evaluations of the SIC-LSD method are called for
in order to assess the strengths and weaknesses of this ap-
proach.

In the present paper we present a detailed study of the
self-interaction-corrected density-functional method for
the one- and two-dimensional Hubbard-Peierls ' mod-
el, which incorporates both electron-electron and
electron-phonon interactions. This work generalizes and
extends earlier SIC-LSD studies on the simple Hubbard
model. The focus is put on the two-dimensional
Hubbard-Peierls model which is of substantial interest in
the context of high-T, superconductivity. ' Since the
LSD method fails completely to describe highly correlat-
ed systems, the Hubbard-Peierls model provides an in-

teresting and stringent test for the capability of the SIC-
LSD method to account for the subtle interplay between
electron-electron and electron-phonon effects in correlat-
ed electron systems.

The present paper is organized as follows. In Sec. II,
the self-interaction-corrected local-density formalism is
discussed and an efficient method to calculate the
ground-state properties is presented. In the following pa-
per, we extend this method to calculate excitation ener-
gies in correlated systems. In Sec. III, we apply this for-
malism to the Hubbard-Peierls model and study several
ground-state properties such as total energies, energy
gaps (which are defined as ground-state energy
diff'erences), and spin- and density-correlation functions.
The implications of our results are discussed in Sec. IV.

electron in an electron gas of uniform spin densities

p&, p&. To obtain the density-functional self-consistent-

field equations for the one-electron states P (r), one sets

equal to zero the variation of E„,with respect to the g
under the constraint fdrp(r)= j[pi(r)+pi(r)]=&,
fixing the total number of electrons. This procedure
yields the Kohn-Sham equations, which read (in atomic
units)

Ho P, =e„P„(r),
Ho = —

—,
' 5+v;,„(r)+vc(r )+p„,(r),

(2.5)

(2 6)

(2.7)

The spin-density p (r) for spin 0 =1,$ arises from the
occupied solutions of these equations,

OCC

p.(r)=g lg„.l'. (2.8)

Usic= —X(Uc[p..]+E."' [p- o]) . (2.10)

We note that occupied one-electron states are labeled

by vo. throughout this paper; the index v lumps together
all quantum numbers apart from the spin o. For a sys-
tem consisting of a single electron, the total energy
should be equal to the sum of the kinetic energy and the
external potential energy, whereas the Coulomb self-

energy and the exchange-correlation energy in the func-
tional Eq. (2.1) should exactly cancel each other. This
cancellation is incomplete for the approximate
exchange-correlation functional in the LSD scheme. In
effect, the self-interaction causes each electron to move in

a total potential due to all electrons including itself. This
self-repulsion raises the filled valence bands with respect
to the empty conduction bands and can be viewed as one
reason for the underestimation of energy gaps in the con-
ventional LDA or LSD. ' ' The same type of argu-
ment also explains the underestimation of antiferromag-
netic moments in LSD.

By appending an additional term to the total-energy
functional, Us,c, one can remove a large part of this re-
sidual self-interaction. Following Perdew and Zunger,

Us,c is formed as a sum of two distinct contributions in

such a way as to remove, as completely as possible, the
self-interaction. First, one subtracts from Uc the exact
self-Coulomb energy of each occupied orbital, and
second, one subtracts from E„", the self-exchange-
correlation energy of each occupied orbital. Thus, the
self-interaction-corrected (SIC) total-energy functional
E reads

(2.9)

Uc[p]= ,' f—,dr dr'= ,
' f vc(r)p—(r)dr,p(r )p(r')

r —r'

[pi,pi]= fp(r )s(p, ,p ) hard.

(2.3)

(2.4)

If the LSD exchange-correlation functional were exact,

Us&c would vanish identically. This follows from the
fact that the Kohn-Sham equations represent equations
for noninteracting electrons. Consequently one has

Here, r.„,(pt, pi) is the exchange-correlation energy per Uc[p ]+E'„;""[p,0]=0, (2.11)
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4..+a&4.

This leads to the set of equations

H„g„(r)=+A, .„Q„. (r),

(2.12)

(2.13)

(2.14)

(2.15)

fiUS1c p (r')
VsIc — — gr~ "~ + LsD(p 0)

fip„

for each individual electron with density p . We point
out, however, that Eq. (2.11) does not hold for the total
charge density.

The presence of the individual orbital densities p„(r)
in the SIC functional implies that —unlike the density-
functional Hamiltonian —Us&c is not invariant under a
unitary transformation among the occupied orbitals. For
extended states, the self-energy correction to the total en-
ergy is positive and tends to zero as N, ' as N, ~Do,
since the exchange-correlation part in Us,c is positive
and dominates the negative Coulombic part
Uc=0(N, ') for large N, . For localized Wannier-type
states, on the other hand, the SIC correction is obviously
of the order of unity [ Ustc =0 (1)]. In this case, the
Coulombic SIC contribution dominates and leads to an
overall lowering of the total energy. Thus, the SIC func-
tional for the total energy can discriminate between
Heitler-London-type localized eigenstates and Bloch-type
extended eigenstates and yields a ground state that either
consists of a product of %'annier-like states or Bloch
states, depending on which solutions give the lower total
energy.

Importantly, the explicit orbital dependence of the SIC
total-energy functional does not invalidate the variational
density-functional basis of the method in its self-
consistent form as it is discussed in this paper. Indeed, it
was already shown in Ref. 4 that the SIC functional
obeys a Hohenberg-Kohn-type theorem in the sense that
the SIC total energy [containing an approximate
exchange-correlation energy] and the p„(r) are function-
als of the total density and E,ot becomes a minimum for
the ground state.

The basic set of equations which need to be solved to
determine the ground-state energy in the SIC-LSD
scheme in a self-consistent manner follow from a two-step
variational minimization procedure. ' ' To specify our
notation and make this paper self-contained, we brieQy
summarize these equations. One wishes to determine
self-consistently the set of mutually orthogonal orbitals

giving rise to orbital densities p„=lP„(r)l that
minimize the SIC total energy. First, the E«, is required
to be stationary with respect to infinitesimal variations of
the type

were independent of the state v, one could immediately
apply a unitary transformation to Eq. (2.13) and diago-
nalize the Lagrange parameters A, . In SIC, however, the
off-diagonal elements of A. are a key feature in the method
and cannot be neglected. The above equation (2.16) has a
simple interpretation. The first term on its right-hand
side removes the self-Coulomb potential of lf l

and the
second term removes the self-exchange correlation. In
most cases, this SICpotential provides an attractive local-
izing potential for each occupied SIC state (va) since the
(positive) Hartree potential usually exceeds the (negative)
exchange-correlation potential, except for very low densi-
ty. On the other hand, when the self-consistent SIC or-
bitals turn out to be delocalized Bloch-type states,
V„' =O(1/N, ) tends to zero and each electron is sub-
ject to the same periodic potential as in conventional
band theory.

As mentioned above, the SIC total energy is not invari-
ant with respect to all unitary transformations among the
occupied states. This leads to the second condition that
Es,', is stationary not only with respect to Eq. (2.12) but
also with respect to rotations among the individual occu-
pied orbitals g„, i.e., with respect to

0,+y a„„.4„. (2.17)

This leads to the condition that

(y„..l
v'„,".—v'„". l q,.& =0 (2.18)

Then, Eq. (2.18) reads

(A, .)'=A, ~ (2.20)

i.e., the matrix A, must be Hermitian.
Equations (2.13)—(2.16) together with Eq. (2.20) cannot

be transformed into an eigenvalue problem and thus ap-
pear to be more difficult to solve than the standard LSD
equations. However, with the recent advent of efficient
direct minimization techniques for electronic structure
calculations, these equations can actually be solved
with comparable effort. An efficient minimization
scheme for the SIC-LSD equations is presented in the
next section.

B. Minimization procedure

The total energy is a function of the N occupied SIC
states g„. In this section only, we omit the spin index
and lump it into the orbital index, such that

for all pairs v, v'. These equations guarantee that the
solution of Eqs. (2.13)—(2.16) has the energetically op-
timal degree of localization and have therefore been
termed "localization equations. " Since the ttt„are or-
thogonal to each other, one obtains from Eq. (2.13)

(2.19)

(2.16) Et.t =Et.t( [4.] ) . (2.21)

where Ho has been defined in Eq. (2.6), and V ' is the
SIC potential for a single orbital P„. As mentioned
above, the index vo. labels all occupied states. If V '

In order to find the ground-state energy of the system,
one wishes to minimize E„,with respect to the set of g„,
subject to the constraints Eqs. (2.14) and (2.20) for



12 222 J. A. MAJEWSKI AND P. VOGL 46

v, v' = 1, . . . , N. By introducing these conditions via
Lagrange multipliers p and p, the expression to be rnini-
mized becomes

E...= E...([1(,I)+g p,.(&y„lq„&—6„,)
VV

minimize the total energy. In general, all g„need to be
varied independently. Often, however, translational and
point-group symmetry can be used to reduce the number
of independent equations. If all N, atoms are equivalent,
for example, then one has

(2.22) g„(r—R, ) =l(t„(r—R„), (2.30)

At the extrernum, the Lagrange multipliers in Eq.
(2.22) are shown in the Appendix to be given by

Pvv' ~vv'~ pvv =0, v, v'=1, . . . , N . (2.23)

To accelerate the convergence of the minimization pro-
cess, it is advantageous not to take these expressions but
to choose them in the following form:

p„, = —
—,
) (A,„'„+)(,„„),

Pvv' ' v'v ~vv'

(2.24)

(2.25)

with A,„.„given by Eq. (2.19) and P taken from the current
iteration (see below). The form Eq. (2.24) for p guaran-
tees that the localization condition is obeyed when the ex-
tremum is reached (see the Appendix). The expression
for p has the important effect to accelerate the conver-
gence into the minimum where A, is Hermitian, since

vv vv

vv

(2.26)

We have used the following variant of the conjugate
gradient method in order to efhciently minimize Et
The (n+1)th iteration for 1(„is obtained from the equa-
tion

I tn+1),l(n)+, &(n)h (n) n 0'Yv 'Yv v (2.27)

where e'"' are small positive constants and h'") are gen-
eralized gradients given by

where

(n —k)) (n —k)
&k=p sg [g

(2.28)

g(n)g(fl)QE(q(n))/gq(n) (2.29)

In contrast to the standard conjugate gradient tech-
nique, which employs additional line minimizations, we
have chosen e'"' to be a small positive constant indepen-
dent of n and inversely proportional to a typical energy in
the problem. The present method may be considered a
blend of the conjugate gradient technique and the
steepest-descent method. For the applications present-
ed in Sec. III, we found this scheme to be 5 —10 times fas-
ter than the steepest-descent method. In principle, line
minimizations are more effective than choosing a con-
stant relaxation parameter e. However, it is extremely
time consuming to perform line minimizations when sub-
sidiary constraints have to be taken into account.

We have used Eqs. (2.13)—(2.16), (2.22), (2.24), and
(2.25) to find the solutions of the SIC equations which

which reduces the number of independent orbitals in the
minimization process from N to just 1.

III. THE HUBBARD-PEIERLS MODEL
IN THE SELF-INTERACTION-CORRECTED

LSD FORMALISM

The discovery of high-temperature superconductivity
has revived the theoretical interest in the Hubbard
model —particularly in two dimensions —as a simple yet
nontrivial model for highly correlated systems. ' Since
this model can be solved (numerically and/or analytical-
ly) exactly in limiting cases, it is ideally suited to test the
SIC-LSD scheme for a wide range of electronic correla-
tions.

In this section, we investigate a wide range of electron-
ic properties of the one-dimensional (1D) and 2D
Hubbard-Peierls model within the SIC-LSD scheme. In
particular, we present results for the half-filled Hubbard
and Hubbard-Peierls model in the thermodynamic limit
(at zero temperature) which is difficult to reach in Monte
Carlo simulations.

The Hubbard model for the 1D undistorted lattice can
be solved exactly for any band filhng. ' However, it is
well known that one-dimensional electron systems with a
half-filled energy band are unstable against a phonon dis-
tortion (Peierls instability) which leads to a dimerized
ground state. If the Hubbard Hamiltonian is augment-
ed by an electron-phonon interaction, one obtains the so-
called Hubbard-Peierls model. No exact solutions are
known for this model; it was studied in 1D within the
unrestricted Hartree-Fock method, various variational
methods, ' the Monte Carlo method, ' and —for short
chains —by exact numerical diagonalization.

In two dimensions, neither the Hubbard nor the
Hubbard-Peierls model is exactly solvable. A variety of
approximate techniques has been used to study it, such as
the Hartree-Fock method, ' slave-boson mean-field
methods, ' Green's-function decoupling schemes, ' '

functional integral formulations, and variational ap-
proaches. The most accurate results have been ob-
tained by exact numerical diagonalizations of the Hub-
bard Harniltonian and by Monte Carlo simula-
tions. However, these techniques can only be used
for small finite lattices (8—16 sites for exact diagonaliza-
tions, and up to 256 sites in Monte Carlo simulations).
Whereas the strong quantum fluctuations prevent the for-
mation of long-range spin order and magnetization in
1D, all numerical results so far strongly suggest that the
ground state of the half-filled 2D Hubbard model is an
antiferromagnetic insulator with opposite spins on neigh-
boring sites for any value of the Coulomb repulsion U.
Moreo et al. have also studied various ground-state
properties for band fillings different from half-filling.
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The inhuence of various phonon distortions on the to-
tal energy in the two-dimensional Hubbard-Peierls model
was studied for small lattices previously by Monte Carlo
as well as exact diagonalization methods.

U[n]= —,
' U g (n, t+n, i)2,

bE ' =g(U[n "]+E„"sD[n',1]),

(3.4)

(3.5)

A. The SIC-LSD equations

In this section we develop the SIC-LSD equations for
the one- and two-dimensional Hubbard-Peierls model, in-

corporating both the electron-electron and the electron-
phonon interaction. The Hubbard-Peierls model is
characterized by the following Hamiltonian: N

(3.6)

where ( c; c~ )0 is the mean-field average of the operator
c; c . We can write this expectation value more explic-
itly by expanding the one-electron states g„ in terms of
the tight-binding basis functions P;,

aI= g to 1+—(u, —u ).r,"

+—,'U+ 8; n; (3.1)

g„=pc," P,

In terms of this basis, one gets

OCC

Cl&CJ& P
=

Cl C&

(3.7)

(3.&)

E„,=T+U[n]+E„, [n, g]+bE ' (3.2)

The electron number operators 8'; =c; c; are labeled

by a site index i and spin o.. We will restrict ourselves to
a one-band model with a single s state per site. U is the
intra-atomic Coulomb repulsion parameter (U)0), to is
the nearest-neighbor hopping matrix element for the
undistorted lattice, and (ij ) indicates a sum over nearest
neighbors. The lattice is a 1D chain or a 2D square lat-
tice. The undistorted nearest-neighbor distance is denot-
ed by a. A distortion or phonon displacement [u;]
changes tp by an amount proportional to the electron-
phonon coupling constant a. The vector r; is a unit vec-
tor pointing from site i to site j.

At zero temperature and for an undistorted lattice, the
model Hamiltonian is characterized uniquely by two pa-
rameters, that is, the strength of the Coulomb interaction
relative to the transfer integral, U/to, and the average
concentration of electrons N/N„where N and N, are
the total number of electrons and lattice points, respec-
tively. The change of the hopping parameter owing to a
phonon can be characterized by a dimensionless parame-
ter 5=au, /t p, where u, is the amplitude of the phonon
displacement ( —1 5 1).

For convenience, we measure all energies in units of tp
and take the orbital energy of the atomic s state as the
zero of energy. The wave vectors are given in units of
n /a.

In a tight-binding model, the charge density is avail-
able only in the form of discrete site occupancies. Conse-
quently, local-density-functional theory cannot literally
be applied to such a model. Invoking the spirit of DF
theory, however, one may define a discrete version of the
LDA, LSD, and SIC-LSD method where Coulomb and
exchange-correlation energies are functionals of the local
occupancies n; = (h; ). ' This approach has previously
been used for the standard Hubbard model. ' ' Adopt-
ing this concept for the present system, we find the fol-
lowing SIC-LSD energy functional for the Hubbard-
Peierls model:

In particular, the site occupancy of the state vo is given

by n;" =(c )'c; and the total occupancy of site i with

electrons of spin o is n, =g'„"n,
'

Following Ref. 16, we take the LSD exchange-
correlation functional in the form

ELSD[n g]

(I+(;) ~ +(1—g;) —2
=Urn; ~ —a b—

2(2' —1)

(3.9)

The parameters a =0.3840 and b =0.0705 have been
chosen such that the total energy and the position of the
spin-down eigenvalue in the atomic limit (t;~ =0) agree
with the conventional LSD results for a free hydrogen
atom. The results discussed in this paper, particularly in

Sec. III, do not depend critically on these parameters a
and b, as will be discussed in Sec. IV. Here, g, and n; are
the spin polarization and the occupancy of site i, respec-
tively,

n, &

—
n;&

n;=n;&+n;i .
n, &+n,.&

' (3.10)

bE ' = —Ug g [—,'(n;") —(a+b)(n, ) ] .
V l

(3.11}

Note that the LSD functional for the total energy is
given by Eq. (3.2) with the SIC correction set equal to
zero. The LDA functional for the exchange-correlation
energy, on the other hand, is obtained from the expres-
sion Eq. (3.9}with the parameter b =0.

The functional derivative of the Etpt with respect to
the orbital density gives the potential on site i for an elec-
tron in the state vcr,

With this exchange-correlation functional, the SIC
correction to the total energy, Eq. (3.5), reads

occ N

T= g to 1+—(u, —u ).r,~ (c; cj )o, (3.3)
Vvo' U + VLSD, cr+ VSIC, vcr

l l Xcl l
(3.12)

where V„, ;' is the LSD exchange-correlation potential
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and reads for spin up (+) and spin down (—) electrons,
respectively,

VLsD, (+)—U4n 1/3 a [( I+g )&/3 —1]xc I 3 I 21/3

(3.13)

V;
' '" in Eq. (3.12) is the self-interaction correction to

the potential V;", and is given by

I/SIc, va U [n vo 4(a +b)(n va)l/3] (3.14)

This is the only potential contribution which depends on
the individual electron state vo. .

Employing the method detailed in Sec. II, we can now
find the ground-state energy of the Hubbard-Peierls
Hamiltonian for any number N, of atoms, distortion pat-
tern, and number N of electrons. The total-energy func-
tional is minimized with respect to the coefficients c;
starting with some initial guess. The simplest initial con-
dition is to assume completely localized electron states,
c;" =5(x„,x;). During the minimization process, the
coefficients c; relax towards the self-consistent solution.
This initial condition is very efficient provided the self-
consistent SIC orbitals are localized Heitler-London-type
solutions.

For a half-filled band, we have used initial conditions
with zero total z component of the spin and many
different spin orderings in order to ensure the conver-
gence of the SIC-LSD equations to the lowest-energy
state. As will be further discussed in Sec. IV, the ground
state of both the LSD and the SIC-LSD Hamiltonian for
half-filling turns out to be either paramagnetic or antifer-
romagnetic in any dimension. Thus, the effects of quan-
tum fluctuations for large U, particularly in 1D
systems —which cannot possess a symmetry broken
ground state —are still not fully captured by the SIC-
LSD method. However, the qualitative as well as quanti-
tative improvements brought about by this scheme com-
pared to the standard LSD or LDA will be seen to be
considerable. In the remainder of this section we focus
on the antiferromagnetic state.

B. Results for the 2D Hubbard-Peierls model

on a 4X2 lattice

First, we present results for various correlation func-
tions for a small finite Hubbard-Peierls system, namely a
square lattice consisting of two rows of four atoms each.
For such a small system, one can compare the SIC-LSD
solutions with the results from an exact numerical diago-
nalization of the Hamiltonian Eq. (3.1) and assess the ac-
curacy of the self-interaction-corrected density-functional
scheme.

Employing iterative diagonalization techniques, we
have first calculated the exact eigenstates of the Hamil-
tonian Eq. (3.1) on a 4X2 square lattice for a half-filled
band [i.e., constant site occupancy n; =1]. For an 8-site
lattice, there are 16 available one-electron states. Since
these states are occupied by 8 electrons, this gives

(II ) =12870 many-body basis states. Since states with

different total z component of the spin, S„do not couple
with one another, it suffices to diagonalize much smaller
submatrices. The Hamiltonian matrix corresponding to
S, =O, for example, leads to a 4900X4900 matrix. Only
this matrix is needed to compute the ground state.

The small size of the Lattice causes additional degenera-
cies of the ground state for small U, which can be lifted

by suitable boundary conditions. There are only two pos-
sibilities on a 4 X 2 lattice, namely either periodic or an-
tiperiodic conditions along the x direction (i.e., the direc-
tion with four atoms) and periodic ones along the y direc-
tion. Doubly antiperiodic boundary conditions are
equivalent to periodic ones for this lattice. In order to
obtain results on the 4 X2 lattice which agree with the re-
sults on an infinite lattice for U =0, we employed period-
ic boundary conditions for all total-energy differences
(Secs. III B1, IIIB2, and III B4) but antiperiodic ones
for all correlation functions (Sec. III 8 3). For large U,
the two types of boundary conditions give identical re-
sults.

Injluenee ofphonons on the ground state energy-

CP 0

C%

—-2
O

4x2 Iattice
LSD--

exact

I

10 20
U

30

FIG. 1. Comparison of the exact total energy (full line) with

the LSD (dashed line) and SIC-LSD (dot-dashed line) approxi-
mations for the two-dimensional Hubbard model on a 4X2
square lattice, as a function of the on-site Coulomb repulsion U.

The energy in this and all following figures is measured in units
of the nearest-neighbor hopping matrix element to which is pro-
portional to the bandwidth.

The total electronic energy of the Hamiltonian Eq.
(3.1) can be lowered by zone-boundary phonons. ' In
this section, we consider those two types of distortion
patterns u, =uocos(q r;) which give the largest gain in

the electronic energy. These are the longitudinal acoustic
(LA) zone-boundary phonons (i) with phonon wave vec-
tor q" ' = (m /,a 0), and (ii) with wave vector
q' '=(~/a, m/a), where a denotes the undistorted
nearest-neighbor distance.

In Fig. 1, we present the SIC-LSD and LSD results and
compare them to the exact ground-state energy for the
undistorted lattice —as obtained from the diagonalization
of Eq. (3.1). The SIC method slightly overestimates the
ground-state energy for small U but yields a considerable
overall improvement on the standard local-spin-density
method.

In Fig. 2, the same type of comparison is shown for the
electronic energy gain E„,( U, O) —E«, (U, 5) due to the
(m/a, O) phonon as a function of U. The phonon ampli-
tude is given by 5 =a

~ uo ~

=0. 1 and the displacement pat-
tern is indicated as an inset in this figure. Figure 3 shows
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FIG. 2. Electronic energy gain by a lattice distortion in the
two-dimensional Hubbard-Peierls model on a 4X2 square lat-
tice as a function of U, calculated by exact diagonalization,
LSD, and SIC-LSD, respectively. The frozen-in lattice displace-
ment corresponds to a (~/a, 0) phonon and is shown in the in-

set. The relative change in the hopping matrix element 5 is 0.1.

the corresponding results for the longitudinal (m/a, n'/a)
phonon. As can be deduced from the exact results shown
in these figures, the electronic energy gain by the
(n/a, m/a) p. honon is smaller than that of the (n./a, O)

phonon for values of U & 15.7 but the opposite holds for
larger U. This crossing of the energies was the subject of
a controversy in Refs. 58 and 59. In the SIC-LSD ap-
proximation, the energy gain for the (n/a, O) phonon is
always lower and approaches the one by the (~/a, n/a)
phonon for U~ Oo.

These figures demonstrate the rather dramatic failure
of the standard LSD method to predict the subtle inter-
play between the electron-electron and electron-phonon
interaction in a correlated many-electron system. The
SIC-LSD method, on the other hand, corrects most of
these errors in the entire regime of U.

5a
"'o 4

T

3C

Sl

p
p5 0

10 20
k

30

FIG. 3. Analogous to Fig. 2, but for a (m/a, m. /a) phonon, as
indicated in the inset.

2. Energy gap

The energy gap of an insulator can be defined by

Es, = [Eto, (N + 1)—E„,(N) ]—[Eto, (N) —E„,(N —1)],
(3.15)

with E«, (N) denoting the ground-state energy for N elec-
trons. In Fig. 4, different calculations of E ~s/U as a
function of U for the undistorted 4X2 lattice are com-
pared to one another. Note that for U~00, one has

Es, /U~l. For the half-filled 1D Hubbard model and
for a three-band 2D Hubbard model in the context of
high T, materials, similar calculations have been per-
formed in Refs. 16 and 17, respectively. The notorious
underestimation of the energy gap by the standard LSD
or LDA method is evident from Fig. 4. The SIC-LSD

FIG. 4. The energy gap in the half-filled two-dimensional

Hubbard model on a 4X2 square lattice, as a function of U and

measured in units of U.

method, on the other hand, gives much better agreement
with the exact results but tends to somewhat overesti-
mate the energy gap in the intermediate regime of U
values.

3. Correlation functions

Spin- and density-correlation functions in a correlated
electron system provide a stringent test for approximate
models. We have computed several correlation functions
in the present mean-field-type schemes, namely LSD and
SIC-LSD. In this section, these results are compared to
exact ones obtained by diagonalization of the many-body
Hamiltonian. In a one-band Hubbard model, a lattice
site may be empty, singly, or doubly occupied. We intro-
duce operators for the spin at site i, S =8';& —R;.&, the lo-
cal density 8;=8;.&+8';~, and the double occupancy at
site i, 8, = it; 8';&. In addition, we define cross-correlation
functions C;, = (X,Y, ), where X and Y represent one of
the quantities S; il, or 8, and the brackets indicate the
many-electron ground-state expectation value.

The exact ground-state wave function can be written as
a linear combination of Slater determinants

~
G ),

(3.16)

iG) =c; f c; &c i c iiO) . (3.17)
I

The operators c,~& and c;& create electrons in the basis
specified in Eq. (3.6), and i„& (1~k &N& ) and j»
(1 ~ l ~ N& ) label the sites occupied by the N& electrons
with spin up, and N~ electrons with spin down, respec-
tively. The summation in Eq. (3.16) extends over all pos-
sible configurations ~G) with a given total S, =N& N&-
(note that S, coinmutes with the Hamiltonian). The
number of different configurations ~G) for given S, is

N
equal to (~' ) (z' ), where N, is the total number of lat-

1

tice sites.
In effective mean-field-type theories such as LSD and

SIC-LSD, the expansion coefficients in Eq. (3.16) are
given by the product of the (N

&
+Ni ) coefficients c;

g SIC-LSD 1 t. . . ~ I 1$
G I

&
'N ~1 JN

l

Here, the c;" are defined in Eq. (3.7), and result from the
minimization of the total-energy functional in Eq. (3.2).
The calculation of the correlation functions within the
LSD or SIC-LSD schemes is straightforward but requires
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some tedious operator algebra. For this purpose, it is
useful to introduce the matrix elements Pj

0.3
4x2 lattice

(3.19)

%'ithin mean-field schemes, all correlation functions can
be expressed in terms of these matrix elements, P; . Us-
ing Eqs. (3.16)—(3.18), they read

N

P ~ ( c(ve})e c(vn}
lJCT ~ l J

v=1
(3.20)

Another useful relation which facilitates the calculations
and is valid for single Slater determinants is

2=Pii 0 Pjj o. Pij (3.21)

In the present study, we have calculated the density-
density and spin-spin correlation functions, p;~ =(&;h~ )
and q;J =(S S~'), respectively, both for the exact many-
body ground state of the Hubbard Hamiltonian as we11 as
within the LSD and SIC-LSD approximations. The
Fourier transforms of the correlation functions p;. and q;.
are the density-density structure factor Sd,„(q) and the
magnetic spin-spin structure factor Sm,s(q),

Sd,„(q)= g exp[iq(R; —R )]p, , (3.22)= 1

ij

S,s(q) = g exp[iq (R, —R )]q,
1

a ij

(3.23)

The latter function is a measure of the antiferromagnetic
long-range order in the system.

In the limit U=0, the ground state is paramagnetic
and represents a completely delocalized Bloch state. In
this limit, the correlation functions have the following
values: p, , =(n; )=—'„p;,=(n;n, )=—,

' (i');
q;;

= (S;, ) =
—,'; and q,j= (S,,S, ) = —

—,
' (i Wj ) In an a. n-

tiferromagnetic Neel state, on the other hand, one has
p, = 1 for all i and j, and q; = 1 (q;. = —1) if i and j lie on
the same (opposite) spin sublattice.

We begin our discussion with the double occupancy
D; = ( it;tR'; ~ ), which is depicted in Fig. S as a function of
U. This figure illustrates the significant overall improve-
ment achieved by the SIC-LSD method on the standard
LSD results. An important implication of this result is
that the electron-electron interaction energy, given by
U g; D;, is much more accurately accounted for in the
SIC-LSD method.

We have calculated S, (q) for various q vectors and
found S, (q) to be sharply peaked at q=(m/a, m. /a),
both for the exact ground state and for the mean-field ap-
proximations (SIC-LSD,LSD). Indeed, the vector
(~/a, m /a) is the nesting vector for the Brillouin zone of
a square lattice at half-filling which drives the antiferro-
magnetic instability. The magnitude of S,s(q) as a
function of U turns out to be grossly overestimated by
SIC-LSD, however. This is shown in Fig. 6. Both SIC-
LSD and LSD theory predict S, (m. /a, m/a) to reach
the perfect Neel state value X, for U~ co since these ap-

A 02
CC

0.1

0.0
0 10 20

U
30

FIG. 5. The mean double occupancy on one atomic site in
the two-dimensional half-filled Hubbard model on a 4X2 square
lattice, as a function of U, calculated by exact diagonalization,
LSD, and SIC-LSD, respectively. For U(8 and U(2. 5, the
self-consistent LSD and SIC-LSD solutions are paramagnetic,
respectively, and antiferromagnetic for larger U.

(3.24)

Note that Lo involves only D, . Figure 8 demonstrates
the notorious underestimation of the local spin moment
by the LSD method which leads to its well-known un-
derestimation of antiferromagnetism.

Figures 6—8 exhibit another difference between the ex-
act and the spin-density results on the 4X 2 square lattice.
Both SIC and LSD solutions show an artificial "phase
transition" from the delocalized paramagnetic to the lo-
calized antiferromagnetic solution at some critical U,1„.
Below this threshold, only paramagnetic solutions exist

8 . 4x2 lattice

SIC
I

I
I

I
I

LSD

exact

0
0 10 20 30

FIG. 6. The spin-spin structure factor S,~(m/a, m/a) in the
two-dimensional half-filled Hubbard model on a 4X2 square
lattice.

proaches do not properly take into account spin Auctua-
tions and always favor the broken symmetry solution
with wave vector (n/a, n/a) In th. e limit U~00, any
spin configuration without double site occupancies is an
eigenstate of the Hubbard Hamiltonian and contributes
to the many-electron wave function, whereas only the
Neel state contributes in a mean-field-type scheme. Slave
boson mean-field methods yield similar discrepancies.

%hen spin fiuctuations do not play an essential role,
however, the SIC-LSD calculation is in very good agree-
ment with the exact many-body result, in contrast to the
standard LSD method. This is illustrated in Fig. 7 for
the case of the density-density structure factor
Ss,„(n/a, m. /a) and in Fig. 8 for the local spin moment
Lo
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FIG. 7. The density-density structure factor Sd,„(m./a, m./a)
in the two-dimensional half-filled Hubbard model on a 4X2
square lattice.

both for the LSD and SIC-LSD equations. However, the
SIC-LSD scheme yields a much smaller threshold value
than the LSD method and additionally shows the correct
asymptotic limit Uth, ~0 for N, ~ 00, in contrast to the
LSD method (see Sec. IV A).

4. Exact density functional

The present tight-binding representation of density-
functional theory allows a direct comparison of the exact
exchange-correlation density functional for the 4X2 sys-
tem with the approximate expressions of the LSD and
SIC-LSD schemes. The density functional may generally
be defined as '

nonint
EDF Etot Ekin EHartree (3.25}

1.0

where Ek;'„"'"' is the kinetic energy of the noninteracting
electrons and EH„„„is the Hartree Coulomb energy. In
the present model system, Ek,

'„"'"' equals the total
ground-state energy for U=O which can be evaluated
analytically.

The exact, SIC-LSD, LSD, and LDA density function-
als in the ground state, as defined by Eq. (3.25), are de-
picted in Figs. 9 and 10 as a function of U. Figure 9
shows the half-filled band case ( ( n ) =1},whereas Fig. 10
shows the density functionals for the half-filled band con-
taining one hole ( ( n ) =

—,
' ). The difference between these

two figures shows the effects of doping which are poorly
described in the LSD approximation. For the whole
range of U, the SIC exchange-correlation functional lies
very close to the exact one. This is particularly relevant

-0.45
0 10 20 30

U

40

FIG. 9. Comparison of the exact density functional in the
half-filled Hubbard model ((n ) =1) on a 4X2 square lattice
with the approximate LDA, LSD, and SIC-LSD functionals.

for the theory of high-T, materials where the effects of
doping play a crucial role.

C. SIC-LSD results for the 2D Hubbard-Peierls model
on larger lattices

It will be demonstrated in this section that the SIC-
LSD method renders possible systematic studies of very
large lattices where finite-size effects are negligible.

-0.2
4x2 lattice
&0& = 7/8

1. Total energies and hole binding energies

As we have seen, the SIC-LSD method captures most
properties of highly correlated electrons in the Hubbard
model quantitatively, in contrast to the standard LSD or
LDA method. The only exception are properties which
depend sensitively on quantum fluctuations. This finding
remains valid also for larger lattices. In Table I, several
correlation functions and electronic energies obtained
with the SIC-LSD method are compared with previously
obtained exact results on 4X4 lattices. For 8X8 lat-
tices, our SIC-LSD calculations give total electronic ener-
gies of —0.871 ( —0.8620.04), —0.536 ( —0.5320.04),
and —0.289 ( —0.28%0.06) for U =4, 8, and 16, respec-
tively, in excellent agreement with recent Monte Carlo re-
sults which are cited in parentheses.

Additionally, we compare the binding energy of two
holes 6=(Ez Eo)—2(Et E—o)=(Ez E&)—(E—

&

—Eo—)

0.9

Q 0.8a
E

0 7
0

0.6

0.5
0 10 20

U
30

FIG. 8. The local spin moment on one atomic site (S,') in
the two-dimensional half-filled Hubbard model on a 4X2 square
lattice.

LSD

LDA

-0.4
0 10 20 30 40 50

0

FIG. 10. Comparison of the exact density functional in the
Hubbard model on a 4X2 square lattice with the approximate
LDA, LSD, and SIC-LSD functionals. The average electron
density amounts to ( n ) = s.



J. A. MAJE%'SKI AND P. VOGL

TABLE I. Several electronic ground-state properties calcu-
lated by the SIC-LSD method, the LSD method, and by exact
diagonalization (Ref. 48), for the two-dimensional Hubbard
model on a 4X4 square lattice for U =4 and two different band
filling factors. The table contains the total energy per atom
E„,/N„ the kinetic energy per atom Ek;„/N„ the local spin
moment {S, ), the on-site density fluctuation ( n ), and the
density-density structure factor Sd,„(m. /a, ~/a ).

+tot /Na Eg;„/N, (S ) (n ) S,„(ir/7r)

Exact
SIC
LSD

( n ) = 1 (half-filled band)
—0.851 —1.312 0.76 1.23
—0.857 —1.329 0.67 1.27
—1.076 —1.493 0.44 0.59

0.39
0.47
0.62

Exact
SIC
LSD

(n ) =14/16 (two holes)
—0.984 —1.337 0.70 1.05
—0.944 —1.394 0.67 1.13
—1.258 —1.488 0.54 1.28

0.42
0.54
0.62

2. Electronic energy gain by lattice distortions

For larger values of U, the eigenstates of the electronic
system in the SIC-LSD method are localized Heitler-
London type states and approach an antisyrnmetric prod-
uct of atomic wave functions for U~ oo. Quantities such
as the total energy converge very rapidly to their limiting
value on infinite lattices. For U ~2, for example, the to-
tal energy in the 112-site (14X8) lattice differs from the
one for the 512-site lattice by less than 0.5%%uo.

as obtained by SIC with Monte Carlo simulations for a
4X4 square lattice (cf. Fig. 11). E„denotes the energy
of the ground state with n holes. This quantity is particu-
larly relevant in the context of pairing and the formation
of a bosonic condensate. It has been suggested that the
ground state of the Hubbard model for small deviations
from half-filling is unstable against the formation of
domain walls resulting in an incommensurate antifer-
rornagnet. Such a transition does not occur in the SIC-
LSD approach. We have used various initial conditions
with partially localized holes, but always obtained a
ground state with fairly localized holes and a Neel-type
magnetic ordering far away from the holes. As a conse-
quence, the SIC-LSD only qualitatively predicts the
dependence of b, as a function of U (see Fig. 11).

We have studied in some detail the electronic energy
gain associated with four different distortion patterns: (i)
two superimposed phonons with eigen vectors
e(q)=e(ir/a, O)~~(1,0) and e(O, ir/a)~~(0, 1); the LA pho-
nons (ii) e(rr/a, O)~~(1,0), (iii) e(ir/a, ir/a)~~(1, 1), and (iv)
e(rrla, rrla)~~(1, 0). So far, the effect of those distortions
on the ground state of Eq. (3.1) was investigated only for
U =0 or on very small lattices where some of these pho-
nons are degenerate with one another.

For the distortion pattern of type (iii), the 2D system
dissociates into weakly coupled vibrating chains, while
patterns of type (i) lead to weakly coupled breathing 2X2
plaquettes. A complete dissociation is reached for the
phonon amplitude 5=1. For both limiting cases, the ex-
act solutions of the Hubbard-Peierls model are known.

In Fig. 12, we depict the energy gain for these phonons
on a 32X16 lattice, as predicted by the present SIC-LSD
calculations. For phonons of type (i), one finds a very
different behavior of the electronic energy gain as a func-
tion of U than for the 4X2 lattice (cf. Fig. 2). This
difference is primarily caused by the higher symmetry
and mode degeneracy on the 4X2 lattice. The electronic
energy gain for the other distortion patterns is qualita-
tively similar to the small lattice case. In particular, the
gain for the phonons of type (iii) and (iv) for large U are
practically identical to gain for the distortion patterns (i)
and (ii), respectively.

3. Energy gap: 2D versus ID Hubbard-Peierls system

A physically unexpected result of this study is shown
in Fig. 13. We have calculated the energy gap Eq. (3.15)
of the 2D half-filled Hubbard-Peierls system as a function
of the distortion (iii). For comparison, in Fig. 14 we also
show the energy gap of the 1D chain as a function of di-
merization amplitude 5 for several values of U. In the
latter case, a zone-boundary phonon induces an energy
gap which is enhanced by the electron-electron interac-
tion U. In other words, both the electron-phonon and
the electron-electron interaction tend to stabilize an insu-
lating ground state in one dimension and increase the en-

ergy gap. In two dimensions, however, the situation is
exactly reversed: the 2D Hubbard-Peierls model exhibits

0.2
32x16 lattice
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FIG. 11. Comparison of Monte Carlo (from Ref. 68) with the
present SIC-LSD results for the binding energy of two holes in

the Hubbard model on a 4X4 square lattice.

FIG. 12. Electronic energy gain by four different lattice dis-
tortion patterns as described in the text [type (il, full line; type
(iil, dotted line; type (iii), dashed line; type (iv), dash-dotted line]
in the two-dimensional Hubbard-Peierls model on a 32X16
square lattice as a function of U, as predicted by the SIC-LSD
method. The relative change in the hopping matrix element is
6=0.3.
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a negative-U behavior. Whereas there is a finite energy
gap for nonzero U, the phonon distortions always dimin-
ish it.

The physical origin of this difference lies in the
different effect of a phonon distortion in 1D and in 2D.
Irrespective of the dimension, the electron-ion interaction
favors double occupancy, whereas the Coulomb repulsion
U favors single occupancy of the orbitals (antiferromag-
netic state). Thus, a lattice distortion always leads to a
higher double occupancy in the short bonds. This bond
order diminishes the spin order and corresponds to an
effective reduction of U. Consequently one finds that the
derivative BE,„/BU decreases with increasing distortion
amplitude both in 1D and in 2D Hubbard-Peierls sys-
tems.

In a 1D half-filled Hubbard-Peierls chain, there is an
energy gap already for U =0 which is proportional to the
distortion amplitude 5, as shown in Fig. 14. For U~ Oo,
on the other hand, 5 will have a smaller and smaller
influence since the ground state approaches that of com-
pletely decoupled atoms. Thus, for U= Co, the energy
gap as well as all other observables become independent
of 5. For finite values of U, the energy gap lies smoothly
in between these limiting cases, as can be seen from Fig.

5.0

4.0-
112-atom linear chain .

- 3.0

P 2.0Ic
LQ

1.0

0.0
0.0 0.2 0.4 0.6 0.8

Phonon amplitude 5

FICs. 14. Calculated energy gap for the half-6lled one-
dimensional Hubbard model, as predicted by the present SIC-
LSD method, as a function of the phonon displacement 5 and
for various values of the Coulomb repulsion U.

Q.Q

0.0 0.2 0.4 0.6 0.8 1.0
Phonon amplitude 5

FIG. 13. Calculated energy gap for the half-ulled two-
dimensional Hubbard model, as predicted by the present SIC-
LSD method, as a function of the (m. /a, m. /a) phonon displace-
ment 5 indicated in the inset and for two values of the Coulomb
repulsion U.

14. This figure also shows clearly that BEg p/BU de-
creases with 5.

In a 2D system, on the other hand, the phonon distor-
tions alone do not produce a charge gap, i.e., for U =0
there is no energy gap. The reason is simply that ionic
displacements along any one-dimensional direction can-
not open a gap everywhere on the two-dimensional Fermi
surface simultaneously. For finite U, the phonon distor-
tions do contribute to a charge gap but the decrease of
asg p/BU as a function of 5 now ensures not only a rela-
tive decrease (as in 1D) but also an absolute decrease of
the energy gap. Thus, in two dimensions, phonons desta-
bilize an antiferrornagnetic ground state For .very large
U, however, in both 1D and 2D systems the influence of
the phonons on the energy gap becomes negligible.

D. Dimerization in the 1D Peierls-Hubbard model

In the infinite 1D Hubbard-Peierls chain, the bond
alternation —called Peierls distortion —in the ground
state results from a competition between the gain in elec-
tronic energy and the loss of elastic energy. Both Monte
Carlo results and studies based on the Gutzwiller an-
satz have shown that the bond alternation amplitude 5
changes nonmonotonically as a function of U (see Fig.
15). In contrast, Hartree Fock studies have not been able
to reproduce the initial increase in 5 for small U. This
phenomenon therefore gives another stringent test for the
SIC-LSD method.

First, we augment the Hamiltonian Eq. (3.1) by an elas-
tic energy,

elastic p+ X (un un+1) (3.26)

where u, is the displacement of the ith atom from its lat-
tice site, and E is the elastic force constant. For U =0,
this Hamiltonian is the Su-Schrieffer-Heeger (SSH)
Hamiltonian which can be solved exactly. The one-
electron energy gap in the electronic spectrum is given by
Es,~=4au„where u, =tu; —u;+, t. The dimerization

0.4
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FIG. 15. Calculated equilibrium dimerization amplitude 50
vs the on-site repulsion U for a half-611ed 24-atom chain. The
dimensionless elastic energy constant is A, =0.29. The dashed
line indicates unrestricted Hartree-Fock results of Ref. 35, the
dash-dotted line shows the present SIC-LSD results, and the
squares are the results of Ref. 35 from quantum Monte Carlo
simulations.
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amplitude 5=cxu, equals the relative change in the hop-
ping matrix element with the lattice distortion u, . In ad-
dition, the elastic energy is determined by the parameter

=,2a /(vrK) T. he amplitude 50 in the dimerized ground
state follows from the minimization of the energy

Eo =NKu, +E„,,1, (3.27)

where E„,,1
is the total electronic energy. In Fig. 15, we

show the dimerization 50 versus U for a 24-atom chain, as
obtained by Monte Carlo, unrestricted Hartree-Fock
(UHF) and the present SIC-LSD method. The elastic en-

ergy parameter k was chosen to be X=0.29. We note
that the SIC-LSD results are already converged with
respect to the lattice size.

Both the UHF and the standard LSD method (without
SIC correction) predict a dimerization 5O which is in
dependent of U up to a threshold value of U, and zero
beyond. For UHF, this threshold value is U =2.32 (Fig.
15), whereas it is U =9.45 for plane LSD.

The present SIC results correctly mimic the exact re-
sults for small U and predict the initial increase of 5
quantitatively. The small difference in 5 for U =0 stems
from the different treatment of the phonons in this work
and in Ref. 35. For larger U, however, the SIC-LSD ap-
proach predicts the dimerization to vanish at U=2. 5,
where a 6nite antiferromagnetic spin-polarization devel-
ops.

The exact ground state of the Hamiltonian Eq. (3.1)
has zero spin polarization g, . In LSD as well as SIC-
LSD, on the other hand, the ground state is antiferro-
magnetic and develops a finite polarization g, , which is

related to the local moment by

tral atoms, whereas in the LSD method the electron
eigenstates are Bloch states with different amplitudes on
both spin sublattices.

In this section we show that the physical mechanisms
which produce an antiferromagnetic (AF} ground state
differ considerably in the conventional LSD theory and in
the present SIC-LSD method. We will demonstrate this
explicitly for the Hubbard model, but we believe the con-
clusions of this section to be more generally valid. Basi-
cally, in LSD the driving mechanism for an AF ground
state is the exchange-correlation energy [see Eq. (3.9)],
whereas it is the Hartree contribution to the self-
interaction correction, g U[n'] in Eq. (3.5), in the SIC-
LSD method.

In order to understand this difference, it is illuminating
to consider the limiting case of an Hz molecule in the
present tight-binding scheme. In this case, there are four
basis states which we label by (io ). Here, i =1,2 denote
the atoms and o = 1, 1 the spin. The Hamiltonian reads

+ U(&, t 6', )+62' h~) ) . (4.1)

x =
—,'[1+z g (x)+zg(x)+1+z g (x)] (4.2)

We will again measure all energies in units of to. There is

only one independent occupancy which we choose to be
x —= ( 0» ) . Symmetry and normalization then give

(e,„)=1—(e„),(e„&=(fi„&; (e„&=i—(e„).
In addition to x, it is convenient to define e=x —1/2.
Both in the LSD and SIC-LSD method, the site occupan-
cy x is then determined by the equation

(S') =-,'( I+g') . (3.28}
where z = U/2 and g (x) is given by [see Eqs. (3.13}and
(3.14)]

The exact ground state does possess a local moment, but
the quantum fluctuations in 1D suppress the formation of
a magnetization for any U. This is the origin of the slow
decrease of the dimerization for larger U. Since these
fluctuations are not accounted for accurately in the SIC-
LSD method, this method also fails to reproduce the di-
merization in the limit of large U.

IV. DISCUSSION OF THE SIC METHOD

4= —2m+ —a —b
3

21/3 —12'"—1

LSD( )
VLSD, t @LSD, t

xc, 1 xc, 1

21/3
[( + i )1/3 (

) ~)I/O]
3 21/3

SIc(~ )
VSIc, 1'l I/stc, 1 L

1 1

(4.3)

(4.4)

A. Driving mechanisms for the antiferromagnetism
in SIC-LSD and LSD

Both in the LSD and the SIC-LSD method, the ground
state of the Hubbard Hamiltonian in 1D and 2D is anti-
ferromagnetic for sufficiently large U. In spite of this
similarity, the single-electron solutions of the LSD and
SIC-LSD Hamiltonians are radically different from each
other. In the LSD approach, the electron potential for a
given spin polarization is periodic, which leads to eigen-
states in the form of extended Bloch states. In contrast,
the SIC potential for electron vo. is attractive on site x;
correspondingly, the one-electron solutions of the SIC-
LSD equations can be localized states corresponding to a
Mott insulator. In the atomic limit (U~ ~ ) the ground
state in the SIC-LSD method is a product of isolated neu-

2+zg'(0)
—

—',z (g'(0)}
(4.5)

where g'(0)=(dg/de)~, o. This equation only gives a

respectively. There is an important difference between
these equations. g

' (e) contains a term —2e which orig-
inates in the Hartree term of the self-energy correction
and is independent of the exchange-correlation parame-
ters a and b On the other .hand, g (e} is proportional
to the small parameter b.

One set of solutions of Eq. (4.2} is the spin-unpolarized
solution a=0 which corresponds to g (0)=g (0)=0.
We can obtain another solution for x or e from Eq. (4.2)
by expanding its right-hand side up to second order in e,
assuming e is small. This procedure leads to the solution
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positive solution for e provided

zg'(0) (—2 . (4.6)

B. Paramagnetic solutions of the SIC
Hamiltonian —comparison of the SIC-LSD and LDA method

So far, we have focused on the antiferromagnetic solu-
tion of the Hubbard Hamiltonian in 1D and 2D, which
forms the ground state for sufficiently large U in the
SIC-LSD method. In principle, this method should yield
the lowest energy solution automatically which may be
antiferromagnetic (AF) or paramagnetic (PM), depending
on the strength of the Coulomb interaction. Unfor-
tunately, however, the PM solution of the SIC-LSD
Hamiltonian is much more difficult to obtain than the AF
solution for an extended system because of its extremely
slow convergence towards a bulk limit.

As a concrete example, we consider the Hubbard Ham-
iltonian in the SIC-LSD approximation at half-filling for

aconite

linear chain with N, sites. There is a delocalized
paramagnetic solution with one-electron eigenstates given
by

N —1

e )kna

n=0
(4.7)

where the wave vector k now labels the occupied electron
states v=k. This solution is spin unpolarized and the lo-
cal charge density associated with Eq. (4.7) is indepen-
dent of the site index, n,- =1/N, . Correspondingly, the
SIC correction to the electron potential, Eq. (3.14), only
gives a uniform shift of the single-electron energies. The
SIC correction to the total energy, Eq. (3.11),becomes

E ' ' /N, =U
—1 + (a+b)

(4.8)

From Eqs. (4.3) and (4.4) we see that (dg ' /de)~, =0
contains a constant term ( —2) which is independent of
the parameters of the exchange-correlation functional.
For the parameters a, b given in Sec. IIIA, one obtains
g'(0)= —2+0. 16=—1.84 for SIC-LSD and
g'(0) = —0.4833 for LSD implying a spin-polarized solu-
tion to exist for U/2) 2. 17 and U/2) 8.28 in the SIC-
LSD and the LSD method, respectively.

It is now evident that the early onset of antifer-
romagnetism (AF) in SIC-LSD, which can also be seen in
Figs. 5-8, is caused by the Hartree self-energy. These
threshold values for U agree well with the numerical
solutions of Eq. (4.2). This analysis also explains why the
SIC-LDA functional [i.e., Eq. (3.9) with b =0] gives re-
su1ts very similar to the SIC-LSD functional.

As noted already in Sec. IIIB3, the threshold values
for U, U,h, depend on the system's size. By considering
increasingly larger lattices, we have found that U,h, tends
to zero within numerical accuracy, in excellent agree-
ment with the exact many-body results.

The general conclusion of this section is that the transi-
tion to the AF ground state in the SIC-LSD method does
not depend sensitively on the local exchange-correlation
functional, in contrast to the LSD approach.

which tends to zero extremely slowly with the power
N, ' as N, ~~ and is positive for all N, )2. We note
that the total energy of the SIC-PM solution equals the
LDA total energy plus the contribution given in Eq. (4.8).
Thus, the LDA solution is simultaneously a paramagnet-
ic solution of the SIC Hamiltonian only for truly infinite
systems.

Both the SIC-AF and the LDA total energies converge
very rapidly as a function of the system size. On physical
grounds, one therefore expects the SIC-PM solution to
approach the LDA solution also for reasonable system
sizes. Actually, however, this is not the case due to the
dependence of the SIC energy on the individual electron
densities, as follows from Eq. (4.8). In Figs. 16(a) and
16(b), the total energies for the LDA, the localized anti-
ferromagnetic SIC-AF, and the delocalized paramagnetic
SIC-PM solutions of the SIC-LSD Hamiltonian are de-
picted as a function of the number of atoms N, =2" in the
lattice. One can see that even for long chains with more
than 2000 atoms the relatioe ordering of the SIC-PM
versus SIC-AF total energy still differs from the ordering
of the (paramagnetic) LDA versus SIC-AF energy.

These strong finite-size effects make it clear that the
paramagnetic solution of the SIC-LSD Hamiltonian is
unpractica1 to predict AF to PM transitions in solids.

C. Antiferromagnetic solutions —comparison
of the SIC-LSD and LSD method

An alternative procedure to determine AF to PM tran-
sitions in extended systems is to compare the SIC-LSD
with the LSD solutions. The LSD equations possess
Bloch-type extended AF or PM solutions. For
sufficiently large U, the LSD ground state is spin polar-
ized whereas it converges towards the PM LDA solution
for small U. For truly infinite systems, the LSD solution
is also a solution of the SIC-LSD Hamiltonian since the
SIC correction is zero for translational invariant one-
electron states. Consequently, for infinite chains, the true
ground state of the SIC-LSD Hamiltonian is the lower of
the AF SIC-LSD solution and the LSD solution.

In Fig. 17 we show the results for the total energy per
atom for an infinite linear Hubbard chain at half-filling as
predicted by the LDA, the LSD, and the SIC-LSD
method, and compare it to the exact ground-state energy

~ - v - ~ - r i - ~

(a)

~ 0.4-

CS

~,SIC (PM)

SIC(AF) ~
e ~ e ~ a ~ beg a m e g
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n

~ ~

sIG (PM) (b)

~ U =8-
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FIG. 16. Calculated total energy in the one-dimensional
half-filled Hubbard model as a function of the lattice size 2" for
the antiferromagnetic (AF) and paramagnetic (PM) solutions of
the SIC-LSD Hamiltonian for U=5 and 8. For comparison,
the results of the LDA method are also depicted.
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of the Hubbard Hamiltonian obtained by Lieb and Wu.
This figure suggests a phase transition from the extended
LSD ground state to the AF SIC-LSD state for U=9. In
contrast, the exact total energy exhibits no transition and
is much closer to the AF SIC-LSD energy than to the
LSD energy even for small values of U. The same con-
clusion holds for the energy gap and the previously dis-
cussed correlation functions. For all of these properties,
the AF SIC-LSD solutions are in excellent agreement
with the exact solutions even though the former is higher
in total energy than the LSD solution.

This forces one to conclude that the energy crossing
between the paramagnetic LDA (or LSD) and the antifer-
romagnetic SIC-LSD solution for infinite systems has no
physical significance, at least in the case of Hubbard-like
models. Another conclusion is that the AF SIC state ap-
pears to be meaningful even in the regime of U values
where the SIC correction to the total energy is positive.

One may ask why the SIC-LSD Hamiltonian yields lo-
calized Heitler-London-type AF solutions even for such
small values of U. The reason lies in the one-electron SIC
potential V,.

' ', Eq. (3.14), which is always attractive on
the site x; =x at which the electron v is centered. Actu-
ally, the exchange-correlation functional parameters used
in this work give V,

' ' (0 provided n; )Q. 47. Any lo-
calized SIC solution is characterized by a local occupan-
cy n, , which is larger than this value. In particular, al-

ready for U=0, we find the squared amplitude of the
Wannier state w (x —x ) for the valence band of the
one-dimensional half-filled Hubbard model at x =x to
be 0.5. Whereas a local occupancy exceeding n, =0.47
suffices to obtain an attractive on-site SIC potential, Eq.
(3.11) shows that a much larger occupancy, namely
n,- =0.87, is necessary to obtain a negative contribution
to the total SIC energy. Such highly localized states form
only for U~5.

D. Charge-density-wave solutions

For the one-dimensional Hubbard chain at half-filling,
we have also found commensurate charge-density-wave

5 ~ I ~ I ~ $ [ ~

0 5 10 $5 20 25
U

FIG. 17. Comparison of the calculated total energies in the
one-dimensional half-filled Hubbard model for an infinite chain
of atoms, calculated exactly by the SIC-LSD (AF-type solution),
the LSD (AF-type solution), and the LDA (paramagnetic)
method, respectively.

(CDW) solutions of the SIC Hamiltonian with a wave-
length equal to twice the lattice constant. The CDW
solution is paramagnetic and characterized by a modula-
tion in the site occupancy. The one-electron states are lo-
calized. The total energy of this CDW solution lies in be-
tween the total energy of the localized and the delocal-
ized SIC-LSD solutions.

E. Initial conditions and parametrizations

We have performed detailed checks to ensure that the
results presented in this paper do not depend sensitively
on the chosen pararnetrization of the exchange-
correlation functional E„, in Eq. (3.9). There is no
qualitative change in the results by changing the parame-
ters a and b or the power dependence of E„, on the lo-
cal density by as much as 50%. Also, we point out that it
is not possible to obtain overall better agreement between
LSD and exact results by altering one of these parame-
ters. Let us consider, for example, the energy gap in the
LSD method. For U~ac, one has Egzp 3bU, whereas

the exact energy gap E'",'„"—U. The requirement
would imply b =—'=a, giving a functiona

E„, which leads to unphysical results.

F. Summary

Let us summarize the main results of this paper. We
have studied in detail the self-interaction-corrected
local-spin-density method (SIC-LSD) and applied it to a
highly correlated many-electron system including pho-
nons, namely the Hubbard-Peierls model. An efticient
numerical algorithm was developed which allows one to
find fully self-consistent solutions of the SIC-LSD equa-
tions. They are free of any symmetry constraints. Thus,
this method yields spin-density-wave or charge-density-
wave solutions for any band filling and for frozen phonon
configurations where the symmetry of the one-electron
states is not known a priori.

In the case of the 1D and 2D Hubbard-Peierls model,
the antiferromagnetic solution of the SIC-LSD equations
yields total energies, energy gaps, and charge/spin corre-
lation functions which are generally in excellent agree-
ment with the exact properties of the many-body Hamil-
tonian (which have been calculated for small system
sizes). Only those electronic properties of low-
dimensional systems which depend critically on spin
quantum Auctuations are not accurately predicted by the
SIC-LSD method. However, the method always provides
a substantial improvement on the standard local-density
theory in the whole range of the Hubbard repulsion pa-
rameter U. For infinite systems and small U, however,
the antiferromagnetic solution of the SIC Hamiltonian, is
not the global minimum of the total-energy functional.
This may well be an artifact associated with the Hubbard
model since realistic SIC calculations of transition-metal
oxides predict the correct metallic or insulating ground
state.

Most importantly, the self-interaction-corrected local-
spin-density method provides a physically correct
description of localized states in solids or molecules in-
teracting with extended states.
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APPENDIX: DETERMINATION
OF LAGRANGE MULTIPLIERS

In this appendix we discuss our choice of the Lagrange
multipliers in Eq. (2.23). We require E„, to be stationary
with respect to 11|,and with respect to f„'. The projection
of the corresponding derivatives of E«, onto lg„-& yields
2XNXN equations for the same number of unknown
Lagrange multipliers:

Since ( & 2
I V2

—V, I2 &
—

& 1
I V2

—Vt I
1 & ) is nonzero, p, ,2

must be equal to zero. Generally, the Lagrange multi-
pliers at the extremum are given by

I vv' ~vv'~ I vv' vv'=1, . . . , N . (A5)

The Lagrange multipliers at the extremum are not
necessarily the optimum choice far away from this limit,
however. In particular, a preferable choice is given by
the following expression:

= —
—,
'

I & v'IH, lv&'+ & vlH. Iv'&) (A6)

since it guarantees that the matrix A, is automatically
Hermitian at the extremum. This can be shown by set-
ting the gradient of the total energy, Eq. (2.22) with p =0,
equal to zero, i.e.,

(Al) 5E„,' =a, lv&+g p„„.lv'& =0 .
V v

(A7)

p,„=—
& via„lv&, (A3)

where lv&=lg„&. Subtracting Eq. (A2) from Eq. (Al),
one obtains a linear system of equations for p, This
system has the trivial solution p„, =0. Noticeably, this is
the only solution in general, as one can show by induc-
tion. The N =2 case reads, for example,

(A2)

For v=v", these equations leave p„undetermined but
give

I vv' v'v ~vv' (A8)

This adds a term to the total-energy functional E„,
which is quadratic in the matrix A, and thus steepens the
iteratively computed gradients.

Indeed, multiplying this equation by &
v"

I
and using the

orthonormality of the orbital set {lv& I, one obtains the
Hermiticity of the matrix A, , provided Eq. (A6) is used for
p. In addition to the choice of Eq. (A6), the convergence
can be considerably accelerated by including the
Lagrange parameter p „ in the form
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