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We present an efficient scheme for including full-potential terms in the linear-muffin-tin-orbital
method. It is based on direct evaluation of the integrals in the intersitial region by partitioning crystal-
line space into atomic-cell envelopes and using one-center spherical harmonics expansions. This leads to
a fast and accurate method for ab initio total-energy frozen-phonon calculations. The formulation for
atomic forces is also given in this framework. Test results for phonon frequencies in a semiconductor, a
transition metal, and a simple metal obtained from both the total-energy and force calculations are
presented and found to be in good agreement with experiments.

I. INTRODUCTION

During the last decade a number of methods have been
elaborated for performing self-consistent total-energy cal-
culations which do not use any shape approximation of
either potential or charge density inside the elementary
cell. Based on density-functional theory (DFT) in its
local-density approximation' (LDA) these full-potential
methods have made it possible to compute from first
principles a great number of physical properties such as,
for example, lattice dynamical properties, static response
functions, and relaxation effects around impurities.
One of the basic applications is the prediction of equilib-
rium structure and phonon frequencies of a solid. Usual-
ly, this is done in terms of the frozen-phonon approach,
i.e., by calculating the total energy or the atomic forces
for different positions of the atoms and then obtaining the
dynamical matrix by fitting the total-energy (force) versus
the displacements. The energies or forces are only
sufficiently accurate if all the nonspherical terms in the
potential (so-called non-muffin-tin corrections) are taken
into account properly.

The standard technique for solving the Schrodinger
equation with a potential of arbitrary shape is to use the
variational principle. The important question which
arises in this connection is the construction of appropri-
ate trial functions representing a Bloch state of a valence
electron. Usually, space is partitioned into nonoverlap-
ping muffin-tin (MT) spheres centered on each atom and
the remaining interstitial region. Within the spheres the
basis functions are represented in terms of numerical
solutions of the radial Schrodinger equation for the
spherical part of the potential multiplied by spherical
harmonics. In the interstitial region where the potential
is essentially flat they are taken from the solutions of
Helmholtz's equation: ( —7 —c, )f(r)=0. In the popu-
lar LAPW (linear augmented plane-wave) method ' the
basis functions are plane waves which are joined smooth-
ly to spherical Schrodinger-equation solutions at the
sphere boundaries. While this complete set can, in prin-

ciple, reproduce the correct behavior of Bloch states in
the interstitial region the slow convergence of plane
waves in the case of materials with open structures or su-
percells imposes severe restrictions on the speed of the
method.

The localized orbital representation and, especially, the
representation of linear-muffin-tin orbitals (LMTO's), on
the other hand, is well known for its fast basis conver-
gence. The LMTO's in the interstitial region are the
linear combinations of Bessel and Hankel functions
which are taken with some fixed energy c, =~ . In partic-
ular, in the LMTO method using atomic-sphere approxi-
mation (ASA) with tc =0, only nine orbitals per atom are
typically needed to reproduce energy bands with an accu-
racy better than 1 mRy. Much effort has been made to
account for non-MT corrections carefully in this frame-
work. Weyrich suggested the use of a Fourier transfor-
mation for LMTO's in the interstitial region. This does
not increase the size of the Hamiltonian and overlap ma-
trices but makes the construction of charge density a
tedious problem. The direct calculation of the charge
density via the real space tight-binding representation
was used by Blochl. ' A technique for handling with full
density in all space has been recently proposed by Meth-
fessel. "' Using the values and gradients at the spheres
the product of two LMTO's is fitted by linear combina-
tion of two Hankel functions and thus the density can be
found by an extrapolational procedure.

In this paper we shall use the angular momentum rep-
resentation for all the relevant quantities within MT
spheres as well as in the interstitial region. We partition
the crystalline space into atom-centered polyhedral cell
envelopes and expand LMTO's in spherical harmonics in-
side spheres surrounding them. These one-center expan-
sions will correctly define the charge density only within
polyhedra. Consequently, the problems of solving
Poisson's equation and evaluating matrix elements of the
full potential are reduced to finding an e%cient way of in-
tegrating the function over the region between the MT
sphere and polyhedron boundary. The latter can be car-
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ried out either by applying the 8-function-expansion tech-
nique or, as we show below, by reducing the volume in-
tegrals to surface ones in terms of the Gauss theorem.
The advantage of the present approach is that only the
spherical harmonics representation is used, which leads
to a method whose computational speed is only a few
times slower compared with the LMTO-ASA calcula-
tions. It keeps the physical transparency of the standard
LMTO method and can be inserted rapidly into existing
programs. Below, a specific implementation for the prob-
lem of lattice dynamics is considered. An all-electron
formulation for atomic forces is given which represents
the force as a Hellman-Feynman contribution plus the
so-called incomplete-basis set correction (Pulay force}.'

The method is applied for calculating optical I phonons
in Si, boundary H phonons in Nb, and X phonons in Al.
The results are found to be in good agreement with the
total-energy calculations and experiment.

The rest of the paper is organized as follows. In Sec. II
the generalized multiple-~ LMTO basis set is reviewed
and the expressions for the Hamiltonian and overlap ma-
trices are given in Sec. III. Section IV deals with the
technique of computing the integrals over the interstitial
region and the construction of polyhedra. In Sec. V we
derive the formulas for atomic forces while the results of
the frozen-phonon calculations are presented in Sec. VI.
Section VII concludes the paper.

II. LINEAR MUFFIN-TIN ORBITALS

%e shall first review the construction of linear muffin-
tin orbitals. Space is partitioned into some polyhedral
cell envelopes attributed to every atom. For these po-
lyhedra we introduce inscribed muffin-tin spheres and
also circumscribed spheres centered at the nuclei. Con-
sider the so-called envelope function which is a singular
Hankel function, E„I(rz —t), centered at site R+t, as
shown in Fig. 1(a), and has an energy e =a . (Here and in
the following we assume that all radial functions with
vector notations in brackets are multiplied by spherical
harmonics where L denotes the combined index for Im;
the lower subscript R for r denotes the difference r —R,
where [R] are the positions of atoms in the unit cell
while It] are the primitive translations. ) Inside its own
sphere centered at R+t we substitute the divergent part
of the envelope function by a linear combination of nu-
merical radial functions with the condition of smooth
augmentation at the sphere boundary. The radial func-
tions here are the solutions of the Schrodinger equation,
P„L (rii —t, s „ill }, with the spherically symmetric part of
the potential as well as their energy derivatives,
Pal(rz —t, e„„iil), taken for the energies s ~& at the
centers of interest. Inside any other polyhedron centered
at R'+t' we substitute the tail of the envelope function
by its expansion in terms of Bessel functions, i.e.,

E„l (re —t) =g J„l.(r„t')S„L„L,(t' —t, ~)—,
L'

where J„L(r„—t} is a Bessel function and Sz L..zr. (t, tc)

stands for the usual structure constants in direct space.
[This is illustrated in Fig. 1(b).] The following definitions
are accepted for Hankel and Bessel functions:

&,I(r)= — h, (~r),I (Kw)

(21 —1 )!!
1 (21 —1)!! .J„,(r)=—,-j,(~r),
2 (aw)

(2)

XX„,(~t —R +R~ }(—i)'"

X Fg-(t —R'+R), (4)

where w is the average signer-Seitz radius and CLL are
the Gaunt coefficients. The LMTO's are now arrived at
by augmenting the Bessel functions in all MT spheres
with linear combinations of Pzz and PaL [Fig. 1(c)]
chosen such that the LMTO is everywhere continuous
and differentiable.

The last step is to perform lattice summation of
LMTO's centered at different sites with phase shifts e'"'
in order to guarantee that our basis functions would satis-
fy the Bloch theorem. This can be done trivially by pro-
ducing the lattice Fourier transformation for structure
constants (5) because the constructed orbitals are already
represented everywhere as one-center expansions. Final-
ly, we obtain our basis functions in the form
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FIG. 1. Construction of the muffin-tin orbital: (a) the origi-
nal envelope function, (b) substitution of the divergent part in
the MT sphere at the origin by the linear combination of nu-

merical radial functions and regular Bessel's function as well as
substitution in all other (except the origin) polyhedra of the tail
by its one-center expansion in Bessel*s functions (i11ustrated by
arrows), (c) substitution of Bessel's functions in all MT spheres
by numerical radial functions. Vertical lines show the boun-
daries s of the MT spheres and the polyhedra.

where hl =ji —
in& are the spherical Hankel functions and

ji, n& are the spherical Bessel and Neuman functions.
The expression for structure constants, then, is given by

877(2l" 1 )!!
R'L'RL g (2I 1)ff(21 1)ff LL'
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N„+L(r~ )5ii„.+g 4 ii I. (re. )SPt'L, 'ill (x) for r„,(s
L'

X"xi(rx)= '

& )4R'+X JrL'(rR')~R'L'RL(+) for rR'++R'k int

L'

(5)

where sii are the MT-sphere radii and S~ L.ill (a.) stands
for the Fourier transformed structure constants (4):

~ii'L'RL(+) y e ~R'L'RL(t +)k ikt k

The radial functions @„zl(r„), 4„&L(re ) here are such
linear combinations of the solutions PitL and /xi which
match smoothly to the Hankel and Bessel functions at
the sphere boundary. We note that subscript ~ in all po-
tential dependent quantities follows merely from the fact
that we can choose different centers of linearization c„„RI
depending on the tail energies.

Some comments should be made on the expansions (5).
Inside nonoverlapping MT spheres they are rapidly con-
vergent and not too complicated to evaluate. On the oth-
er hand, in the interstitial region O'R ', belonging to a
given atom, these expansions are badly convergent and
valid only for rR being less than the distance between
nearest sites. This, in particular, means that our parti-
tion of space should generate polyhedra close to the com-
pact Wigner-Seitz cells of close-packed structures in
which the ratio between rR EQ'"' and nearest-site dis-
tances is only about —,'. In the case of open structures the
empty-sphere technique' should be used, first, in order
to remove the areas where the one-center expansion
diverges and, second, to diminish the number of terms in
sums over L appearing in (5). In applications to frozen-
phonon calculations we found that reducing the summa-
tion up to l,„=8 always gives the convergence of pho-
non frequencies better than 1%. Specifically, for A1 and
Si with two empty spheres this accuracy is reached withl,„=6 and for Nb having an essential d character of
valence states, lm, „=8should be used.

Let us discuss the choice of fixed tail energies s =x . In
the original paper on the LMTO method a ~ =0 ap-
proximation is used and all formulas become particularly
simple. This is possible because for close-packed struc-
tures the average kinetic energy for valence and conduc-
tion electrons is approximately zero within the window of
=1 Ry. The systems we are interested in are distorted
lattices in which the interstitial region must be accounted
for more accurately. Many approaches are known for
improving the LMTO basis set. ' We should mention
one' which became popular' where the size of the basis

is increased by using more than one sc. While the first ~
is usually placed near the average potential in the intersti-
tial region (so-called MT zero) the second and, possibly,
third ones are taken to be large and negative (about —1

to —2 Ry). This has the advantage of improving the
variation al freedom of the basis by including some
linear-combination-of-atoinic-orbitals- (LCAO) type or-
bitals but has the disadvantage that increasing the LMTO
set by threefold makes computer programs running 27
times slower.

The procedure we will follow is to use one (possibly
two) a. value placed somewhere in the occupied part of
the band and this choice follows from the energy-
dependent KKR scattering theory. It is implemented for
materials with the width of valence band &0.6-0.8 Ry
where we expect that BK/Ba and 8 K/Ba terms in the
expansion would be small. In case of materials with wide
valence bands or if MT spheres are very small, two-z
basis sets should be used and corresponding tail energies
can be placed near the bottom and top of the band at a
distance & 0. 8 —1.0 Ry. (Smaller distances can lead to al-
most linearly dependent mufBn-tin orbitals and a singular
overlap matrix. )

In any case we come to the positive ~ choice instead of
the negative one and this can create some numerical
problems. The problem is that using tail energies &0
makes structure constants singular when ~ is equal to
free-electron energies. This singularity also occurs for
k=0 in the standard LMTO method which may be
avoided by stepping out from the I point by a small vec-
tor. Here, we can, formally, consider c.=~ a complex
number, and adding some small imaginary part (usually a
few hundredths of a Rydberg) removes this technical
diSculty from the calculation.

III. HAMILTONIAN AND OVERLAP MATRIX

With the LMTO basis set defined in (5) the wave func-
tions gl,i(r) for valence electrons (the subscript
enumerates the bands) are represented as linear combina-
tions of X„"zL(r) with the coefficients A „"ill obtained from
the variational principle. For the one-electron Hamil-
tonian given by local density-functional theory they are
found from the eigenvalue problem

X I&X."'R'L'I &'+V '(r)+V "'(r)IX+—g~ egg(X."g'g'IX gQ)]~ gg=g (H 'g'g' gg sggo 'g'g'. gL)~ gg
a.RL KRL

where V (r) stands for the spherical and V (r) for nonspherical parts of the potential. We now separate the con-
tributions going from different space regions and write down the Hamiltonian matrix in the form

K R L KRL K'R'L'KRL ' K'R'L'KRL ' ~K'R'L'KRL " K R'L'KRL (8)
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and the overlap matrix in the form

~k ~k, MT ~~k, int
x'R'L'xRL ~ x'R'L'xRL ' ~ a''R'L'xRL (9)

where the first and second terms in (8) and the first term in (9) denote the integrals over muffin-tin spheres and the oth-
ers integrals over the interstitial, namely, H"„'R.L „Rr is the matrix element of the operator —V' + V (r) and H"„'R,r.„Rr
is the nonspherical-potential matrix element. The third term in (8) is the matrix element of kinetic energy in the inter-
stitial region. Since our basis functions here are the solutions of Helmholtz's equation it is trivially expressed through
the interstitial overlap integral [second term in (9)]. The last term in (8) is the interstitial-potential matrix element.

All these contributions are represented as sum of one-, two-, and three-center integrals and we now give the expres-
sions for them. The MT part of the Hamiltonian is

H«'R r. «Rr. 4 RfiL r, &C'«RL I ~ +1 I~'«RL &s„+~RLR L (K )&@«'RL I ~ +1 IC'«RL &.„
+ & @«'R'L'I ~ + V I@~R«' 'L&s,~R'L'RL(K}

+ r ~R "L"R'L'(K }&@«'R "L"I ~ + ~ I@«R"L"&SR„~R"L"RL(K}
tsL ss

and the MT part of the overlap matrix is

«'R'L'«RL fiR'R8L'L & @«'RL I@«RL &sR +~RLR'L'( }&@«'RL I@«RL &sR + & @«'R'L'I@ R«'L' &s, R'L'RL(

ke+ g SR L R L (K )y4«'R" L" l@«R"L"/s SR r RL(K)
R ssL Is

These formulas are simple generalizations of those used in the standard LMTO method. All potential parameters may
now be complex because a general, complex ~ is assumed and the structure constants are no longer Hermitian. The ra-
dial matrix elements are calculated using the properties of the radial Schrodinger equation and its energy derivative.
For K'=K they are given by formulas (2.4} and (2.6) in Ref. 6. For K'AK they are expressed through the values and
slopes of radial functions at the sphere which is trivially derived from the Green second identity. '

The interstitial overlap matrix element is a two-center-type integral expressed via the product of two Hankel func-
tions centered at sites R and R'. Being eigenfunctions of V they may be reexpanded in Bessel functions. This gives rise
to the expansions (5) which are forinally infinite. While these one-center expansions can be used to evaluate the integral
with the technique described below in this paper, it complicates the determination of the overlap matrix. A better way
is to use multicenter expansions and calculate the interstitial overlap matrix analytically in terms of the Green second
theorem. ' The final result in case (K' }'=s"AK =s is

«'R'L'«RL(E E } fiR'RfiL'L ~R {+«'I+«I ] + RLR'L'(K )~R {I«'I+«I ] + ~R'{+«'I' «I'] R'L'RL(

+ g ~R "r,"R'r, '(K )~R"{I 'I"I I" l{~R "r."RL(K} .
R ssLss

In case c'*= c. the result is

(12)

«R'L'«RL oR RfiL'L ~'R {+I+ I ] RLR'L'( }+ RLR'L'( )~R {+«! «I ] R'{ «I' I'] «R'L'RL(K}
2

+ Q ~R "L"R'L'(K }~R{ «I"~«l"} R "L"RL(K}
R "L"

(13)

where dots in all the quantities stand for the energy derivative. We have also used the compact Wronskian notations,
WR {f,g ]—:sR [f (sR }g'(sR ) —g (sR )f '(sR ) ], which are defined at the sphere boundary.

The last step is to calculate the non-muffin-tin corrections to the Harniltonian given by matrices H"'R L „RL and
V„'R"'I ~ RL. The first matrix is the NMT contribution within MT space, i.e.,

HdR~ RL
—4 & @ RL I

V I@ RL &.„+g ~RL-R'L ( )& @ RL-I ~ I@ RL &.,
+g & @«R rll I @«R'.L" &s ~R'L'RL" (K}+ g +R "L"R'L'(K ) & @«'R "L"

I
1 l@«R"L"'&s „+R IRL(K}"."'

L I I L "L"'R"

The matrix elements here are reduced to the numerical radial integrals combined with the Gaunt coefficients as follows
from the addition theorem for spherical harmonics and can be calculated explicitly. The second matrix is the intersti-
tial potential contribution to the Hamiltonian calculated in terms of one-center expansions for LMTO's in the intersti-
tial region. It is given by
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V'~g'I. .gg
= fig g & &.g I Vl&.~ &„;.+g ~~g-g g (~') & ~.~- I VI &.g &n;. t+ & & &.g I Vl~ ~- &n;. ~~ ~ ~~-(~)

R Q lt

X ~*I. ~ I. ')& 'I.- l Vl~.l."&„.~~~-I. -al. «»
I Itl Ills tt

(15)

where all the matrix elements are taken over the region
between the MT sphere and the polyhedron boundary.
In the following section we shall describe the method for
calculating these integrals but now we discuss the expres-
sions obtained. First, we see that non-muffin-tin correc-
tions from inside the spheres and from the interstitial
have the same form and can be treated together. They
both are divided into k-dependent structure constants
and a potential-dependent part. The latter can be calcu-
lated once before the cycle over a mesh in k space and,
consequently, the effort in producing the Hamiltonian lies
only in performing the convolutions of radial matrix ele-
ments with the S matrix. The one-center expansions (5)
converge inside MT spheres with l,„4and in the in-
terstitial region with l,„8.This means that single and
double sums in the two- and three-center integrals must
include higher angular momenta. The execution time we
estimated in this case is approximately equal to solving
the eigenvalue problem and thus for single-~ basis sets the
total computing time taken on the preparation of H and
0 matrices with the subsequent diagonalization pro-
cedure is only 2 —2.5 times slower compared to the stan-
dard LMTO-ASA calculations.

The potential V(r) = V (r)+ V (r) in (15) is as-
sumed to be expanded in spherical harmonics both inside
the MT spheres and in the interstitial region. Its
exchange-correlation part is found by supposing that
nonspherical terms of the charge density are small.
Then, we are able to use Taylor series for exchange-
correlation formulas given by the LDA and find its spher-
ical harmonics expansion within a sphere circumscribing
the polyhedron. The Coulomb contribution is calculated
by solving the Poisson equation inside the circumscribed
spheres. The outer space can be accounted for if we
know the multipole charges in each polyhedron. They
are defined as integrals with the charge density multiplied
by r'Yz (r) and can be calculated using the technique de-
scribed below.

IV. INTERSTITIAL INTEGRALS

The preceding section gives a generalization of the
LMTO method for a potential of arbitrary shape. Via
the use of one-center expansions for LMTO's in the inter-
stitial region we come to the problem of integrating the
interstitial-potential matrix elements over the region be-
tween MT spheres and the plane boundaries of an atomic
polyhedron. A related problem is to solve Poisson's
equation in all space where it is necessary to integrate the
charge density with a factor given by solutions of the La-
place equation.

A scheme performing these integrals has been pro-
posed in Ref. 7 and then implemented in Ref. 4 concern-
ing the full-potential KKR multiple scattering theory. It
includes the expansion in spherical harmonics of the in-

f f (r)YI(r)dr= f rF(r)YI (r)/r dS
int pol

v'4m F(s)5qo (17)

where the last term is important only for the s harmonic
because the integrals over any inner sphere for other har-
monics are obviously equal to zero.

This approach is still too complicated for practical ap-
plications because we have to perform a complicated sur-
face integration (17) for each function f (r) of interest.
However, most of these quantities have weak radial
dependence in the interstitial region, first, because of the
smallness of the latter (a few tenths of an A in linear
scale) and, second, because the wave functions of valence
electrons here are plane waves with a characteristic wave-

0
length of the order of a few A. Consequently, we can use
any interpolation in the interstitial region given between s
and s„where s, is the circumscribed sphere radius, by
polynomial series. (Chebyshev's series used in this work
usually produce an accuracy better than 10 '

by using
the first ten terms. ) We write

f(r)=g T„(x)Af,

where T„(x) is a Chebyshev polynomial of n order with
an argument x = (2r —s —s, ) /(s —s, ) and A„are the ex-
pansion coefficients found from the well-known ortho-
gonality properties of Chebyshev's polynomials. The
next step is obvious. We introduce for convenience the
following surface constants:

I

terstitial step function e(r) which is unity in the intersti-
tial region and zero elsewhere. Integrals may therefore
be treated merely as numerical radial integrals taken over
a sphere circumscribing the polyhedron. While this 8-
function-expansion technique makes this scheme efficient
and accurate, calculation of radial L components for 8(r)
including the integration of a spherical harmonic over the
complex region (part of a sphere of radius r lying inside
the atomic polyhedron) complicates it. A better way is to
reduce the volume integrals to surface ones in which
plane boundaries of the polyhedron are very suitable for
triangulation and which can be performed in terms of the
standard two-dimensional quadrature formulas. '

We start from a formal rewriting of the integrand,
which we generally denote as f (r)Yz (r) in terms of the
divergency of a vector field rF(r)YI (r)/r where F(r)
stands for the first image of the radial function f (r), i.e.,

F(r) =f f (r')r'2dr', (16)
a

where a is some lower limit. Applying the Gauss
theorem we reduce the integral over the volume 0;„, to
the surface S,&

of the polyhedron and sphere s:
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T„I =f T„(x)YL(r)dr,
int

(20)

related to the Chebyshev series, as well as surface con-
stants determined for different products of Chebyshev's
polynomial with spherical harmonic, i.e.,

T„z „L= f„T„(x)YI'.(r)T„(x)YL (r)dr, (21)
int

T„".I,„L
=f T„(x)YI*(r)T„-(x)YI~ (r)T„(x)YL(r)dr

int

(22}

can be readily expressed through R„L because any poly-
nornial product is again a polynomial and any product of
spherical harmonics is again a spherical harmonic.

With the above definitions we can write down the ex-
pressions for the interstitial integrals with one, two, and
three functions having one-center spherical harmonics
expansions in the form

g r dr= ALTL (23)
int nL

g*(r)h (r)dr= g A„.L T„.I.„I A„"I
int IL I

nL

f g'(r)u(r)h(r)dr=+ AgL,
int n'L'

nL

nL" VhX g Tn''L''nL A n L" Ani"
n "L"

(24)

(25)

where AgL, A„"L, and A„L are the Chebyshev expansion
coefficients found for L-radial components of functions

g (r), h (r),and u(r), respectively. By identifying function

g (r) with the charge density in expression (23) we obtain
the formula for interstitial charge. By identifying the
function g (r) with the charge density and function h (r)
with regular solutions of the Laplace equation in expres-
sion (24) we obtain the formula for calculating multipole
charges. At last, by identifying functions g (r), h (r) with
Bessel and (or) Hankel functions and u(r) with the full
potential in expression (25) we obtain the formula for cal-
culating the interstitial-potential matrix elements.

In order to obtain the complete scheme for the integra-
tion we, finally, give an algorithm for the construction of
polyhedra. We want to describe crystalline space as a
sum of some polyhedral areas attributed to every atom.
Let us discuss carrying out this tesselation by the well-
known Wigner-Seitz (WS) procedure. We plot the planes
that lie perpendicular to the lines connecting a site at the
origin with its different neighbors and divide these lines
in the ratio 1:1. Thus we surround each atom with an ar-

R„L =f r"Yl(r)dr
int

n n+3

f YL (r)r dS V4n 610S
Ol n +3 n +3

related to the power series r". Since R„L depend only on
the type of crystalline structure and, in particular, on our
polyhedron partition they can be calculated once and
saved on disk. Moreover, the surface constants

A;(r) ~ A, (r) for all j Ai (26)

determines nonoverlapping areas 0; which fill up the
space without holes. The proof that the areas do not
overlap can be obtained if we consider point ro which be-
longs to regions Q; and 0 spontaneously. Then, from
the conditions

A;(ro) A~(ro},

AJ(ro) ~ A;(ro),
(27)

it follows that A;(ro)= A~(ro) or ro is a boundary point.
The absence of holes is also obvious because there always

FIG. 2. {a) The illustrated Wigner-Seitz procedure and {b) an
algorithm proposed for partitioning the space.

bitrary cell envelope called the Wigner-Seitz cell (for
Bravae's lattice) or the Voronoi polyhedron (for disor-
dered systems).

While valid in principle such a partition does not take
into account the following circumstance. In the muffin-
tin tesselation we introduce nonoverlapping spheres
which surround every atom in the lattice. Formally, rela-
tions between their radii may be arbitrary. Indeed it is
clear that the spheres must contain regions where the
one-electron potential sharply changes and where, on the
other hand, Schrodinger's equation can be solved most
accurately. The WS procedure produces MT spheres in-
scribed in the polyhedra of fixed radii (which depend only
on the distances between nearest sites) and, consequently,
does not take into account the nature of the constituents
involved.

The algorithm we want to find can be illustrated in the
following manner. Consider three different atoms placed
at the corners of an arbitrary triangle. If we apply the
WS procedure we divide this triangle in three different
areas and determine MT-sphere radii [Fig. 2(a)j. On the
other hand, if we fix the MT-sphere radii we can perform
the partition illustrated in Fig. 2(b) which may be more
preferable for our purposes. From Fig. 2(b), we also real-
ize that the WS algorithm is generalized by the division
of lines connecting different neighbors in the ratio
chosen, say, from physical arguments.

Mathematically, any partition of crystalline space on
the atom surrounded by arbitrary envelopes can be yield-
ed by introducing a set of functions A, (r) associated with
each site i. Then, the condition
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exists a minimum value

Ak(r)= min [A (r)]j=1,2, . . .
(28)

for any r.
In the Wigner-Seitz case functions A, (r) are given by

A,.(r)= ~r
—R, ~

and (26) is written in the form

(29)

2r(R, —R, )+R, —R &0. (30)

A;(r) = —2R, r+R,2+P, . (31)

We may conclude that the boundaries of such defined
areas are the planes which lie perpendicular to the lines
connecting neighbors. These lines are divided in the ratio

p;—
2iR, —R, i' (32)

that is determined by some numbers p;. By surrounding
every atom with nonoverlapping spheres of radii s; we
also introduce the preferable ratio

si
a~. =

Si +Sj
(33)

and it is our purpose to find the connection between s;
and p;. Of course, the relation (33} can, in principle, be
only satisfied for sites with touching spheres [sites 1,2 and
1,3 in Fig. 2(b)] and, consequently, we cannot find this
connection by direct comparison to the expressions (32)
and (33). The number of free parameters p; in this case
will be less than the number of conditions. (The latter is
estimated as the number of nearest sites. ) Let us consid-
er, on the other hand, the following relation:

This is the equation on boundaries and the solution of
that is the WS cell or the Voronoi polyhedron. In the
more general case in which we are interested, the equa-
tion on boundaries, A;(r) —A (r)=0, should also [see
Eq. (30)] have a form linear to r. This guarantees that
our envelopes would be polyhedral ones. Let us intro-
duce the following functions:

with the LAPW, a pseudopotential, and another full-
potential (FP) LMTO calculation as well as with the ex-
periment. While this total-energy approach usually gives
the percentage accuracy in the prediction of the phonon
frequencies, it has great computational disadvantage in
dealing with the difference of —1 mRy between total en-
ergies which are themselves of the order of thousandths
of Rydbergs. A better approach is to perform an analyti-
cal differentiation of the total energy with respect to the
displacements of nuclei, and calculate the atomic forces,
which have to be much more accurate.

According to the Hellman-Feynman (HF) theorem the
force on an atom is the electrostatic force on its nucleus
and, consequently, uniquely determined by the electronic
charge distribution in crystal. Unfortunately, the latter
quantity is usually constructed from the one-electron
wave functions, being approximate solutions of
Schrodinger's equation, and Hellman-Feynman forces
may be highly inaccurate. Since, on the other hand, the
atomic forces obtained numerically from the total-energy
differentiation provide good results, an additional contri-
bution to the HF force appears which is connected with
using the incomplete basis-function set for representing
wave functions. This is the so-called Pulay force' which
vanishes in the full-potential KKR theory' or in the
plane-wave pseudopotential calculations for materials
with s,p electrons but must be taken into account in the
all-electron LAP W- and LMTO-based methods.

We shall now give the derivation for atomic forces
within our formalism. We first write the total energy for
a solid in the DFT framework by representing this quan-
tity as the following sum:

(35)

where T„,1, T„, are the kinetic energies for valence and
core electrons, E,~

is the electrostatic (Hartree) energy in-
cluding electron-electron, electron-nucleus, nucleus-
nucleus interactions and E„, is the exchange-correlation
energy as given by LDA. The kinetic energy is usually
expressed through the sum of one-electron energies
minus the effective potential energy and for valence elec-
trons is given by

~
= s 2 (34)

Since s;+s~=~R; —
R~~ for sites with touching spheres

we conclude for them that a,"=a~ . Moreover, the equal-
ity (34) produces only "proper" polyhedral envelopes
which means that the situation shown in Fig. 2(b) by
dashed lines is never realized. This proves that the de-
scribed algorithm can be used for polyhedron construc-
tion.

V. ATOMIC FORCES

Within density-functional theory the change in total
energy due to displacements of atoms can now be com-
puted using the full-potential LMTO method described
above. This is the necessary step in the testing of the
full-potential scheme and in the following section we give
the results of such frozen-phonon calculations comparing

where f&z are the occupation numbers, pa", Va are the
valence charge density and the effective potential
represented in our LMTO method as one-center expan-
sions in every atomic polyhedron 0&, and the sum over
R means the integration over the unit cell. For deep-
lying core states their kinetic energy is

T„,=P f,„&,~ —g f pg'( ) V1„(r„)dr„, (37}
iR R

where f;z is the occupation number for ith core level e,„;
pz" is the spherically symmetric core charge distribution
in the Rth atom which vanishes outside its own MT
sphere. [We assume that the core eigenstates are the ex-
act solutions of Schrodinger's (Dirac's) equation with the
spherical part V of the potential. We also assume that
higher-lying semicore states are treated as valencelike
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where VR is the Coulomb potential in the Rth atomic po-
lyhedron which can be written as follows:

rR n& IrR —rR I

2 g
W

l

I 7TW

(21+1)

R'L'RL (2l'+ 1)
(39)

The first and second terms here are nuclear and electron-
ic contributions from within a polyhedron and the last
term is the Madelung potential. It is expressed via the
standard structure constants for k and ~ equal to zero
and total rnultipole charges MRI defined as

MRL 5LP R

+V4~f p„(rR ) [i'FL(rR )]'drR . (40)
AR W

We have also subtracted from the definition E„ the
Coulomb energy of the nucleus by denoting this divergent
quantity as Eo. The exchange-correlation energy in the
LDA is given by

E„.=g f PR(rR)s„,(rR)«R, (41)
R Q~

where c„, is the density of the exchange-correlation ener-

gy for homogeneous electron system with density p.
We will proceed with the derivation by performing the

variation of every contribution to the total energy. We
suppose that the initial atomic configuration inside the
unit cell is given by positions [R]. By allowing atoms to
move slightly we come to the final geometry [R+5R}
where 5R denotes the nuclear displacements. The
change in charge density, 5pR(r„), due to the presence of
such frozen phonon (so-called electronic response)
is the difference between self-consistent densities

pR +sR (rR +sR ) and pR (rR ) for the final and initial
configurations, respectively. Referring to the coordinate
system of the initial state [RI we write 5pR(r„) in the
form (linear with respect to displacements)

5PR(rR ) =5'PR(rR ) 5RVPR(rR ), — (42)

states and have already been accounted for in (36).] The
electrostatic energy connected with the full electronic
densities pR =pR"+pR" and nuclear charges ZR is given
by

E,~= —,
' g f f [pR(rR)+ZR5(rR)]VR(rR)drR Ep-,

R Qg

(38)

—g f 5'p'„"(r ) V (r„)dr„
R

+&5&f VPR"(rR)VR (&R)«R
R

(44)

Since the one-electron core levels c,;R are the exact eigen-
values of Schrodinger's (Dirac's) equation with the spher-
ically symmetric part of the potential we simply get
5s;R = (iR I5VR IiR ) as follows from the Hellman-
Feynman theorem, where IiR ) are the exact eigenfunc-
tions for the core problem in the atom R, decaying out-
side its own MT sphere. Consequently, performing the
summation over occupied states we see that the first and
second contributions to 5T„, are ideally canceled out.
Moreover, we are able to use the following property:
(iRI V VR IiR ) =0, valid for exact eigenfunctions, which
after summing over occupied states makes the last contri-
bution to 5T„,also equal to zero. Thus we arrive at

5T-.= —X f 5'PR"(&R)VR'(&R)«R (4»
R

expressing the change in T„, through the soft electronic
response only.

The change in electrostatic and exchange-correlation
energies is obtained directly by performing the variations
of formulas (38) and (41). We also separate, for conveni-
ence, soft and rigid parts in the screening of nuclear dis-
placements and after some tedious reorganizations come
to the result

5&ei= X f„5'PR(rR)VR(rR)«R
R

V [pR (rR ) VR ( rR ) ]drR

(46)

where all the integrals are taken over the surface of the
polyhedron and where

M*—I.e w RL d g=p~, (2l+1) da "'R" '
LL'R'

MR'L'
X (21'+ 1)

(47)

is the Madelung force expressed via the change in the
structure constants calculated explicitly. The exchange-
correlation energy variation is given by

5 -=X f 5'pR(rR)VR(rR)d R
R Q~

system is position dependent.
With these definitions the change in kinetic energy for

the core electrons is written as follows:

XfR5s,R
—X f PR"(rR)5VR"'(rR)dr

iR R R

where the first term is the "soft" contribution to the
response which is the difference:

X5+f V[pR(rR )s (rR ))drR
R Q~

(48)

5PR(rR ) PR+sR(rR ) PR(rR ) (43)

determined for the same origin while the second "rigid"
term in (42) goes merely from the fact that our coordinate

where V"'=d [PE„,]/dp stands for the exchange-
correlation potential.

We now must evaluate the change in kinetic energy for
valence electrons. This is, in general, the most difficult
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problem because our one-electron wave functions are
necessarily approximate. We first produce the formal
variation of (36) expressing 5T„,~ via the change in

valence density, effective potential, and one-electron ener-

gies, 5ek~, i.e.,

5T„„=g f„5„g—f p"„"( „)5V„(„)d
kA. R R

—g fn 5'pg'(rq ) Vq (r~ )d r~

+X5R J„~~7'(r~ ) VR(r~ )«~ .
R

(The term containing the variation in occupation num-

bers vanishes as a result of the electron-number conserva-
tion condition. ) One sees that supposing our valence
eigenstates to be the exact solutions of Schrodinger's
equation we will have 5s&z=&kk, l5VlkA, ) as a result of
the Hellman-Feynman theorem and after summing over
all occupied states the first and second terms in 5T„& are
canceled out. At this point we look at the change in total
energy represented by the sum of contributions (45), (46),
(48), and (49) and conclude that all the terms containing
the soft density variation 5'p simply give

Vo+5R J„Vp„(rg )drR, (50)
R R

where Vo is just the zero of the energy scale (MT zero).
This result is obtained if the charge density and the po-
tential are self-consistent and since the total induced
charge inside the unit cell is equal to zero because of the
electroneutrality condition. We now add to and subtract
from the total-energy variation the so-called core correc-
tion:

5&, = —g 5Rf &pg'(rg }Vg (rg )dr+,
g R

defined with the full potential [instead of its MT part en-
tered in (44)] and after combining all the terms with Vp
we also cancel out the contribution containing the rigid
change in charge density. The final result reads as

—&5R F„+f„u„(r„)VV~(r~)dr
R R

(52)

where the expression in brackets is the so-called
Hellman-Feynman force on an atom which is the electro-
static force on its nucleus. Together with the core
corrected force the HF force is very sensitive to the be-
havior of the charge density near the nucleus and must be
treated with care.

The result (52) for the total-energy variation following
from the Hellman-Feynman theorem (we marked this
fact by labeling 5E«, with abbreviation HF) assumes that
our one-electron wave functions are the exact ones, i.e.,
(
—V + V —sz~)lkA, ) =—0. On the other hand, these func-

tions are found in terms of the variational principle and it
is our purpose to obtain the expressions for the one-
electron energy variation in this framework. We now
perform the variation of the LMTO-eigenvalue problem
(7) and get the relation for 5s&z in the form

5ekk, X ~ v'R'L'(5~re'R'L'aRL Ekk5 r'R'L'rRL }~~RL,
kate k k ki,

v'R 'L'
scRL

(53)

expressing it via the change in the Hamiltonian and over-
lap matrix only. Examining the expressions (10)—(15) for
them we see that H and 0 matrices are functions of com-
binations of potential parameters and structure constants.
The potential parameters depend on the numerical radial
functions P„+I, P„aL and the change 5g„aL, 5$„RL in
these is due to the rigid shift —5RVVz of the potential
moved with the nucleus as well as the soft potential varia-
tion 5'Vz being the difference between exact 5' and
—5RVVz. While the rigid part in the screening poten-
tial will lead us to the following form: —5RVQ„&L.,—5RVP„+L for the change in radial functions, the solu-
tions 5'P„+L, 5'$„+L connected with 5'Vz are hard to cal-
culate quickly. The main diSculty is in finding the soft
potential variation which is expressed via 5 pa and, con-
sequently, again via 5'P„ar, 5'P„aL. One should use the
linear response theory to find these quantities but this is
impractical to do for the frozen-phonon calculations de-
scribed here. We now neglect 5'P and 5'P contributions
(discussed below) in the variations 5H „".a I „+L and
50„"zL „zL while the rest can be performed analytically
(see the Appendix). Finally we obtain

5sgg= &k~1 Vlk~) —+5R f Vz(r„)V[gzq(rz }gzz(rx }]dr+
Qg

A kate d d
X &'&'I '

d R &'R'L'~RL eke, ~~ 0a'R'L'aRL
Ro a'R'L' 0 C4 ~p

xRL

(54)

where d/dR means here that the differentiation in the
structure constants needs only to be performed in the
Hamiltonian and overlap matrix. This formula is the
generalization of the Hellman-Feynman result (first term

here) and the second and third contributions are the so-
called incomplete basis-set corrections including a surface
contribution found recently in connection with the
LAP W formalism. Using this relationship for the



12 190 S. YU. SAVRASOV AND D. YU. SAVRASOV 46

fn fi pR (rg )Vg(rg )dr+ (55)

where F„" stands for the change in the eigenvalues con-
nected with the change in the structure constants per unit
displacement [the expression in [ ] in the last term of
(54)].

The change in the total energy is now given by the sum
of expressions (45), (46), (48), and (55) and we again see
that all the terms with the soft density variation simply
give (50) if the self-consistency is reached. The total force
is thus given by

+",+ fn [p, (ra)I„(rz)]dr„
kA, R

+ V[pz(r„)s„,(rz )]drR
Q~

I 0 f Vpa(rR )drR
Q~

(56)

where the last three contributions are indeed the integrals
over the surface of the polyhedron. The present result
agrees with that given by the well-known Andersen force
theorem ' and expressed the force in terms of the change
in the sum of the one-electron energies upon virtual dis-
placernents of frozen potentials plus the electrostatic and
surface terms. Since all the surface integrals and Fz are
calculated explicitly the only difficulty is to produce the
change in the eigenvalues Fz for every k point and band

We estimated that for this case the time is increased
by 50% of that used for the solution of the eigenvalue
problem and, consequently, the force calculations de-
scribed here are fairly efficient.

We now take a closer look at the validity of approxi-
mations used in this derivation. The main assumption is
neglect of 5'P, 5'P contributions at the calculation of the
band energy variation 5@k&. What we actually do is the
estimation of the matrix element:

(fiyk„~ —V'+ V —s„„~kX& (57)

which is obviously not zero if ikA, & are found variational-
ly. The change 5g"&L in the muffin-tin orbital is the
difference between the MT orbitals y"„~+&+L and y«I

definition 5sz& in formula (49) we conclude that the
second and last terms in the change 5T„i are combined
with the first and second terms in (54) after summing over
all occupied states and ideally canceled out. Thus the
very impractical last contribution in 5T„,

&
disappeared

and the resulting expression reads as

5T„a= g fez +5RF
kA, R

defined for the final and initial atomic configurations, re-
spectively. The approximation is essentially that of sub-
stituting the exact orbital g ~ +&zL by the orbital

y„"z+s&L constructed in terms of the solutions P„zi and

P,zi for the original crystal. This leads us to the rigid
part in the change 5g zL which is —6R'Vfiy,"zL(rz. ) in

each (R')th polyhedron plus the contribution connected
with the change in the structure constants only. This rig-
id part is used to estimate (57). The contribution which is
not taken into account is the soft part 5'g",~L connected
with the change 5'$, 5'P. Since our trial functions in the
interstitial region do not depend on the potential parame-
ters the soft part is not equal to zero only inside the MT
spheres. Consequently the error in the determination of
forces is proportional to the following matrix element:

& fi'x."gi. l

—V'+ I' —&l,gI~~ &n (58)

where the volume of integration is the MT region and
where the induced orbital 5'y"+L is zero and has zero
derivative at the sphere boundary. We thus see that the
errors are mainly connected with the linearized character
of our MT orbitals and can be sufficiently small if the en-
ergy parameters are appropriately chosen.

VI. FROZEN-PHONON CALCULATIONS

In this section test results for the total-energy and
force calculations of frozen phonons in Si, Nb, and Al are
presented and compared with existing LAPW, pseudopo-
tential, and another FP-LMTO calculations as well as
with experiment. A few comments should be made on
the calculation. First, for all the materials we use one-~
s-, p-, and d-muffin-tin orbitals for representing one-
electron wave functions which makes the LMTO Hamil-
tonian and overlap matrices low dimensional. Second,
since our method uses a one-center spherical harmonics
expansion for the wave functions, charge density, and po-
tential in the interstitial region we must include in the
summation over l higher angular momenta. We useI,„=6—8 (specified below) for the expansion of the tails
of s, p, and d orbitals which implies the procedure of
internal summation in two- and three-center integrals of
the Hamiltonian as discussed in Sec. III. (The overlap
matrix converges much more rapidly as a result of using
multicenter expansions for LMTO s in the interstitial re-
gion. ) Although, to reach the convergency of the total
energy of —1 mRy per atom one should use

l,„=10—12, the convergency of the energy difference
between distorted and undistorted lattices or atomic
forces calculated at a given atomic geometry is achieved
at l „=6—8 which seems to be fairly sufficient for our
purposes. The wave functions themselves are expanded

TABLE I. Calculated energy differences (mRy per cell) associated with the I"-point phonon in Si for
two distorted configurations +(

8
—0.005+y)a (1,1, 1) with respect to the configuration with y =0. For

notations see text.

+0.001 25
—0.001 25

&Et.t
—2.445

3.203

—5.276
8.730

0.008
—0.014

5E„

2.532
—4.851

5E„,

0.021
—0.054



46 FULL-POTENTIAL LINEAR-MUFFIN-TIN-ORBITAL METHOD. . . 12 191

TABLE II. Calculated soft contributions to the energy variations associated with the I -point pho-
non in Si for two distorted configurations +(

8
—0.005+y)a(1, 1, 1) with respect to the configuration

with y =0. Notations are explained in text. Units are mRy per cell.

+0.001 25
—0.001 25

5'p'V

6.156
—9.195

6'p'V

—0.008
0.014

&'p Vc

5.878
—8.971

5'p V„,

2.586
—4.149

5'p Vp

2.396
—4.065

up to l,„=4 in all calculations while the charge density
and potential are both expanded up to 1,„=8. The last
comment concerns the treatment of semicore states.
Since MT spheres have to be kept the same for all distort-
ed configurations of a given lattice and do not overlap
they become suf6ciently small. This requires the ampli-
tudes of low-lying ( ——5 to —8 Ry) core states to have
finite values at the sphere boundary. These states are all
treated as the band states in the full potential and calcu-
lated in separate energy windows in the approximation of
neglecting hybridization with valence states. The deep-
lying core states, on the other hand, are found from the
atomic calculations as the eigenvalues of Dirac's equation
with the MT part of the potential and recalculated at
each self-consistent iteration.

We now present the results of our calculations for the
I -point optical phonon in Si. This mode is investigated
by moving two silicon atoms along the (1,1,1) direction.
The atomic geometries are given by the positions
+(—,'+x)a(1, 1, 1) where a =10.26 a.u. is the experimen-
tal lattice constant. As is standard practice when using
the LMTO method an equal number of empty spheres is
included along with the Si atoms. Their positions are
also changed to keep a total number of symmetry opera-
tions (12) for all distorted configurations. The basis set
for representing the wave functions has a one-center
spherical harmonics expansion up to 1,„=6. The fixed
tail energy is chosen to be 0.1 Ry and has a small imagi-
nary part equal to 0.03 Ry. 2s- and 2p-core states are also
treated as the band states with tail energies of —9.4 and
—6.4 Ry, respectively. All MT-sphere radii are taken as
2.10 a.u. The exchange-correlation potential of Ref. 23 is
used and the tetrahedron method is applied for
Brillouin-zone (BZ) integration.

We first make a numerical analysis of different contri-
butions to the atomic force at the configuration given by
the positions +( —,'+x)a (1, 1, 1) with x =0.005 in order to

compare them with calculated forces after formula (56).
For this purpose we use a small number (18) of k points
for the BZ integration and calculate kinetic, electrostatic,
and exchange-correlation energies for a number of atomic
geometries k( —,'+x +y)a (1,1, 1) as functions of value y.
Referencing to the initial configuration with y =0 we
then compute the energy differences 5E„„5T„,|, 5T„„
5E,i, and 5E„, and the results of such calculations for
two atomic geometries are given in Table I. From these
data we may, in particular, conclude that the change in
total energy is obtained as a result of delicate compensa-
tion of different contributions and no one term here can
be neglected except maybe the change in kinetic energy
for deep-lying core states. To derive numerically the
atomic forces it is also necessary to compute the contri-
butions to the energy variations (45), (46), (48), and (55)
going from the soft change 5'p in the charge density.
This can be done trivially if the self-consistent densities
are known for all y configurations by calculating 5'p
directly as the difference between p„and p„o. Let us
symbolically denote the integrals over the unit cell with
the soft valence density variation and the potential as
5'p" V, with the soft core density variation and the poten-
tial as 5'p'V, with the soft total density variation and
Coulomb part of the potential as 5'p Vc, exchange-
correlation part of the potential as 5'p V„„and MT-zero
constant potential as 5'p Vo. All these integrals are calcu-
lated for different y geometries relative to the
configuration with y =0. Two of these calculations are
presented in Table II. Using this analysis we are able to
estimate numerically different contributions to the atomic
force. Namely, we find the derivative with respect to the
distortion given by value y of 5T„,&+5'p" V to obtain [see
formula (55)] the contribution connected with the change
in the Hamiltonian and overlap matrices [the first term in
(56) which is referred to hereafter as the band contribu-
tion to the atomic force, Fb„z]. The sum 5T„,+5'p'Vis

TABLE III. Comparison between calculated and numerical forces (notations are in text) for the
atomic geometry ( —,

—0.005)a (1,1, 1) associated with the I -point phonon in Si. Units are Ry/az.

Numerical
forces

Cal. forces
at Si atom

Calc. forces
at empty site

Total calc.
forces

Fbnd

—0.015 89

—0.014 14

—0.001 39

—0.01633

F I

0.084 11

0.082 63

0.001 50

0.084 13

F„,

0.064 87

0.062 31

0.002 53

0.064 85

Fp

—0.072 68

—0.070 80

—0.001 84

—0.072 69

Ftot

0.06041

0.059 15

0.000 81

0.059 96
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TABLE IV. Comparison of the frequency of the I -point op-
tical phonon and third-order force constant k ~, in Si calculated
from total-energy and atomic forces, results of LAPW, pseudo-
potential, and FP-LMTO calculations as well as the experiment.

Present work:
Total energy
Atomic force

LAPW
Total energy
Atomic force

Pseudopotential:
Total energy
Atomic force

FP-LMTO'
Total energy

co (THz)

15.43
15.51

15.37
15.40

15.16
15.14

15.47

k.„(Ryra,')

0.4304
0.4338

0.4026
0.4030

0.357
0.355

0.4212

Experiment

'Reference 22.
Reference 25.

'Reference 16.
Reference 28.

'Reference 29.

15 53 0.3820'

exactly equal to zero [see formula (45)] as a result of the
application of the Hellman-Feynman theorem to the deep
core states. This can be also seen from Tables I and II.
The derivative of 5E,

&

—5'pV& gives the contribution
connected with the change in electrostatic energy [the
second and third terms in (56) which are both referred to
hereafter as the electrostatic contribution to the atomic
force, F,~] and the derivative of 5E„,—5'pV„, gives the
exchange-correlation contribution to the atomic force,
F„„which is the fourth term in (56). [We also call the
last term in (56) a MT-zero contribution to the force,
Fo. ] The numerically derived forces are presented in
Table III where they are compared with the forces calcu-
lated after formula (56) using charge densities, potentials,
and wave functions obtained for the y =0 atomic
geometry. Calculated forces in the table are given at the
Si atom and at the empty site while the total calculated
force is taken as their superposition. We see that the
agreement between calculated and numerical values for
F,~, F„„and Fo is excellent and the discrepancy in the to-
tal atomic force is connected with the approximate evalu-
ation of the band contribution Fb„~. The calculated value
of Fb„~ is 2.7%%uo smaller than estimated numerically which
is explained by neglecting the variations 5'P, 5'(t in the
derivation of formula (54). Since, on the other hand, the
band contribution consists of only 26%%uo from F„, the

disagreement between total calculated and numerical
forces is only 0.8'Fo. From Table III we also see that the
artificial forces at the empty sites are one to two orders of
magnitude smaller than the corresponding Si forces and
are comparable with the error in determination of Fb„~.
The total force at the empty site is only 1.4%%uo from the
total Si force which can obviously be neglected.

After numerical testing of the formulas for atomic
forces we compute the frequency of a zone-center optical
phonon in Si. We use a dense mesh for BZ integration
(150 k points) and the results of our calculations are
presented in Table IV. There we give the values of the
frequency for this mode and third-order force constant
k, obtained both from total-energy and force calcula-
tions. The results are also compared with the LAPW cal-
culations of Yu, Singh, and Krakauer, pseudopotential
calculations of Yin and Cohen, another full-potential
LMTO calculation of Methfessel, Rodriguez, and Ander-
sen' as well as with the experiment. We again see that
the agreement between total-energy and force calcula-
tions is excellent. The discrepancy is comparable with
that of LAPW and pseudopotential calculations and is
about 0.5/o. All the results are in good agreement with
experiment and the accuracy of the present calculation is
close to that of another FP-LMTO calculation as well as
the results of Yu, Singh, and Krakauer and Yin and
Cohen.

Total energies and forces are computed for a zone-
boundary H phonon in Nb. The longitudinal and trans-
verse modes of the bcc structure at the 8 point (001)2'/a
are degenerate. (a =6.22 a.u. is the experimental lattice
parameter. ) The details of the calculations are as follows.
We use 1K-s,p, d-basis set having the one-center spherical
harmonics expansion truncated at I „=8. The fixed tail
energy is chosen to be 0.5 Ry approximately at the center
of the occupied part of the band with a small imaginary
part 0.03 Ry. 4s and 4p states are also treated as valence
states with the tail energies —3 and —1.5 Ry, respective-
ly. The MT radius of Nb is chosen to be 2.568 a.u. and
60 k points are used for BZ integration by means of the
tetrahedron method. Table V presents calculated total
energy for four distorted configurations with respect to
the equilibrium geometry. The displacements 5 are given
for a single atom in units of lattice parameter. To derive
numerically the atomic forces we use a sixth-order even-
powered (due to symmetry) polynomial interpolation and
determine the force at each value 6. The numerical
forces are given in Table V where they are compared with

those calculated after formula (56). We see that the
discrepancy between them is less than 1.8'7o which is
close to the discrepancy 0.8% found ear1ier for Si. Using
this data analysis we estimate the frequency of the H pho-

TABLE V. Calculated total energy with respect to the equilibrium configuration as a function of dis-
tortion (in units of a) for the H-point phonon in Nb. Comparison between numerically derived (F„„)
and calculated (F„k) forces.

0.005 0.010 0.015 0.020

hE„, (mRy)
F„„(Ry/a, )

F,.„(Ryia, )

0.166 8

0.01073
0.01070

0.678 1

0.022 41
0.022 33

1.569 6
0.034 94
0.034 53

2.840 3
0.046 23
0.047 06
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Longitudinal
Transverse

9.38
5.62

10.05
6.07

9.69
5.79

'Reference 27.

non which is found from the total-energy calculations to
be 6.56 THz. The results of force calculations give the
value 6.60 THz which is only 0.7% larger than the previ-
ous one and is 1.7% larger than the experimental fre-
quency of 6.49 THz. We thus conclude that the agree-
ment with experiment is good.

As a final example let us consider the calculation con-
cerning a zone-boundary I phonon in fcc Al. We use 3s,
3p, and 3d muffin-tin orbitals for representing valence
states with the tail energy v =0.3 Ry. (Ima. is set to
0.03 Ry just as in the previous calculations. ) 2s and 2p
MT orbitals are used for higher-lying core states with K

equal to —6.5 and —4 Ry, respectively. All the basis has
the one-center spherical harmonics expansion up tol,„=6. The lattice constant a is taken as 7.64 a.u. and
the MT radius of Al is chosen to be 2.623 a.u. Since in
the fcc structure at the point X =(001)2n la longitudinal
and transverse modes are nondegenerate we perform two
separate calculations. For the longitudinal mode 75 k
points are used for taking BZ integrals while for the
lower symmetry transverse mode 150 k points are em-
ployed. The results are presented in Table VI where they
are compared with the measured phonon frequencies.
The agreement between total-energy and force calcula-
tions is good but the discrepancy is larger than found for
Si and Nb and is about 7%. All theoretical values are
very close to the experiment with the accuracy better
than 4.5%.

TABLE VI. Comparison of calculations from the total ener-

gy and atomic forces as mell as measured frequencies for the X-
point phonon in Al. The values are given in THz.

Total energy Atomic force Experiment'

VII. CONCLUSION

In conclusion, we have presented an efficient approach
for inclusion of full-potential terms in the LMTO
method. By using the partition of crystalline space on
the atom-centered cell envelopes and one-center spherical
harmonics expansions all the integrals over the intersti-
tial region are evaluated accurately. It was shown how
they can be expressed through the constants depending
only on the crystalline structure and calculated explicitly.
This led to a fast and uncomplicated full-potential
scheme which can be inserted rapidly into existing com-
puter programs. The method was applied to the frozen-
phonon calculations and the formulation for atomic
forces has been given. The force is represented as a direct
variation of every contribution to the total energy in the
LMTO framework which can be tested easily in terms of
the usual total-energy analysis. The total-energy and
force calculations for phonon frequencies in various sys-
tems have been presented which are found to be in good
agreement with the results of previous calculations as
well as with the experiment.

ACKNOWLEDGMENTS

The authors are indebted to Professor O. K. Anderson
for many helpful discussions. One of us (S.Y.S.) would
like to acknowledge the support of the Max-Planck-
Gesellschaft.

APPENDIX: DETAILS ON VARIATION
IN EIGENUALUES

The task is to calculate the change in the eigenvalue

ei,i as given by formula (53). We first derive the change
in the Hamiltonian matrix by assuming that MT orbitals

y„R+&&L in the final atomic configuration are constructed
in terms of P„aL and P„aL found for the original crystal.
We write

zykL~ tt'R'I. 'ttiiL ~~ tt'R'+sR'L'ttR +sRL ~~ tt'R'L'ttRL

g &XeR +w L I ~ + 1 R, +sR IX~x+sm, &n„g &Xea'I. 'I & + 1 a, lX~xL. &n„
RD 0

(Al)

where the potential Vz+&z is the exact potential for the final configuration centered at sites R +5R while the polyhe-
dron partition Qz for both geometries is supposed to be the same. We now divide the integration into the MT and in-

terstitial regions, introduce the potential V++5& of the original lattice centered at sites R +5R and continue:

ii'1. «zl. X'&X~'z'+sz'L. '~ ~ + Vz~+sa ~X~a+szL, &~„g&X~'z'L, I
~ + ~g IX&gL, &&

Ro 0

4 Xtt'ii'+sii'I, 'IXttg +siiL, &nint it & Xtt'a'I. 'IXttiil. &nint ~ & Xtt'g'+sg'r, 'I t' g +sg IXttii +spy. &nint

R0 0

g &x R'Ltt'~ ~R ~xttRL &ntttt +X &xtt'R'1. '~~ ~R ~xttRL &n„
RD 0 R0

(A2)

where the kinetic energy matrix elements are taken over interstitial regions O'"', 0'"' without partition on the polyhedra
(see text), where Qii'"' stands for the interstitial region: Qz —sz+sii defined with shifted MT sphere while Qg' is
Qz —sz and where 6 Vz = Vz —Vz is the soft variation in the effective potential. We see that the difference between
first and second terms and between the third and fourth terms in (A2) is expressed via the change in the structure con-
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stants. This is because all radial matrix elements in the MT part of the Hamiltonian are defined with the same poten-
tial, radial functions centered at the corresponding MT spheres. The radial matrix elements for the kinetic energy in
the interstitial region are just Wronskians [see (12), (13)] and depend only on the MT-sphere radii but not on their posi-
tions.

Some care should be taken to calculate the difference between the interstitial-potential tnatrix elements [fifth and
sixth terms in (A2)]. Since they are calculated using one-center expansions for LMTO s we now redefine the interstitial
volumes for the final atomic configuration to make the radial matrix elements in both geometries coincide. This is done
by shifting the whole polyhedron Qrt together with its nucleus (not only the MT sphere as assumed before). We intro-
duce 0'rt'+srt which is Qrt +srt

—srt+s„. With this definition the difference between fifth and sixth contribution in (A2) is

expressed via the change in the structure constants plus the integral over the surfaces of the polyhedra. We arrive at

"'rt'L' rtL =X fi o "'rt's. ' rtr. +g o&X 'rt'L'l rt, lXrtr, &sw&+g &X"'rt'r. 'lfi'1 rt, ltrtL &n
dRp

where the derivative d/dR here means that only structure constants have to be differentiated and where the second
term is the integral over the surface S]t"of the polyhedron. The latter can be represented as the volume integral taken
with the gradient of the integrand function which gives

'R'L' Rr X fiR0
dR

H 'R'r' Rr +X 'fiRo f„ 1 rt, (rrt, ) II X"'rt'r'(rrt, .)X"r(L(rrt, )]drrt, +2 &X,"'R'L'lfil rt, lr."rtL&Q, ,

0 Ro

(A4)

where 5VR is the full change in the potential.
0

The variation in the overlap matrix is calculated analogously. Since we do not use one-center expansions for LMTO s

to calculate interstitial overlap integrals we just obtain

k d
«'R'L'aRL g fi'0 dR «'R'L'«Rl.

k (A5)

expressing it via the change in the structure constants. By multiplying (A4) and (A5) by A,".„*r,A „Rr, and summing
over tr'R 'L', trRL we come to formula (54).
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