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The magnetic-field effects on lattice wave functions of Hofstadter electrons strongly localized at boun-

daries are studied analytically and numerically. The exponential decay of the wave function is modulat-

ed by a field-dependent amplitude J(t)= g', u2 cos(trar), where a is the magnetic flux per plaquette (in

units of a flux quantum) and t is the distance from the boundary (in units of the lattice spacing). The be-

havior of
~
J(t)

~
is found to depend sensitively on the value of a. While for rational values a=p/q the

envelope of J(t) increases as 2 ~, the behavior for a irrational (q ~ 00) is erratic with an aperiodic struc-
ture which drastically changes with a. For algebraic a it is found that J(t) increases as a power law t@ '

while it grows faster (presumably as t@ ""') for transcendental a. This is very different from the growth
rate J(t)-e ' that is typical for cosines with random phases. The theoretical analysis is extended to
products of the type J(t)=g'„: 2ucos{ mar") with v&0. Different behavior of J"(t) is found in various

regimes of v. It changes from periodic for small v to randomlike for large v.

I. INTRODUCTION

The properties of noninteracting electrons on a lattice
subjected to an external magnetic field have attracted
much attention since the early works of Hofstadter, '

Wannier, and Azbel. These works have focused pri-
marily on the exotic spectral properties as a function of
the electron's energy and the parameter a = //go, where

P is the magnetic flux per plaquette and Po=R/e is the
Aux quantum. The spectrum has special scaling proper-
ties as a function of the commensurability q for a =p /q
(rational) and becomes a Cantor set for incommensurate
fluxes (a irrational). The wave function itself is extended
in the q subbands for commensurate values of rational a.

The Hamiltonian describing the lattice electron is

g y,, =eP/A (1.2)

will do.
More recently there has been growing interest in

the effect of a magnetic field on localized electrons. The
combined effects of lattice periodicity and magnetic Aux
create a very complex behavior in the spatial variation of
the wave functions even in the absence of disorder. This

&=Kg a +aVg aa e "+c c
i

The phase y;, is associated to the link (ij ) between the
nearest-neighbor sites in accordance with the "Peierls an-
satz. " Any gauge such that the sum around a plaquette

V„=A, cosa.an . (1.4)

As discussed below, this model was generalized ' to

is the case when the electron's energy is deep inside a gap
between the quasibands of the bulk eigenstates. ' The
electron may be localized at inhomogeneities such as the
edge of the lattice (i.e., surface gap states) or at isolated
impurities in an otherwise ordered bulk. Clearly these
states decay exponentially going away from the inhomo-
geneity into the bulk. This exponential decay and partic-
ularly the "localization" length (associated with this ex-
ponential decay) will be affected by the application of an
external magnetic field to the system.

In the present work we look at some basic aspects of
this problem. While avoiding the full complexities of the
related questions, we look at a simple (maybe the simpler)
model in which the intricate salient features of this prob-
lem are predominant and can be addressed.

As is well known, ' the two-dimensional (2D) tight-
binding lattice electron problem reduces (in the Landau
gauge) to that of a 1D electron hopping in a potential
which varies as cos(k~ j+2ma) where k~ are the trans-
verse momenta in the y direction, and may be taken to be
zero by shifting the origin in the x direction. ' The
Schrodinger equation reduces then to the famous Harper
equation

u„+,+u„&+V„u„=(E—W)u„,

where the diagonal potential is
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potentials of the type

V„=A, cosman" . (1.5)

where (V/W) ' is responsible for the strong exponential
decay and J(t) contains all the interference effects. In the
absence of a magnetic field J(t) is just the total number of
paths going from the origin to the final site which in-
creases as 2 ' [note that since V «2W, I(t) still strongly
decays exponentially with t]. In the presence of a mag-
netic field J(t) has a very complex behavior as a function
of the flux a and the distance t. J(t) also depends explic-
itly on the geometry and the one utilized in most of the
works is that of a square lattice with the origin and final
sites being along the diagonal (this choice is a natural
one; similar calculations, however, may be carried for any
locations of these sites). For the surface realizations this
choice means that the edge is in the [1,1] direction (the
distance along this direction will hereafter be denoted x),
while the direction perpendicular to the edge is [1,1] (and
the distance from the surface into the bulk in this direc-
tion is t).

The J(x, t) for consecutive t are related by a transfer
matrix T:

J(x,t+1)= g Tg, +,(x,x')J(x', t) .
X

The solution relies on the diagonalization of T, and the
technical calculations are given elsewhere" and will not
be repeated here. The important feature is that in the

It can be used in order to analyze the transition from ex-
tended to localized wave functions in the proposed exper-
imentally realizable layered systems' '" in which the dis-
tance between adjacent layered increases as n" (for
0 & v & 1). The quantum transmission of such layered sys-
tems in the strong localization regime, for different values
of v, is also a part of our present investigations.

In the localized regime the decay of the wave function
may be studied by looking at the probability of an elec-
tron localized at the origin to tunnel to another site a dis-
tance t away, II(t)l, where I(t)=(f (ot)g (00)) is the re-
lated Green's function [$0(r) is the wave function local-
ized at the origin]. Our results will be derived within the
"directed paths" approximation which becomes better as
the localization (=decay) length becomes smaller. This
will be the case when the hopping matrix element V is
much smaller than the on-site energy W and the energy E
is far away from the band 8'+2V of the extended bulk
eigenstates (E=0 is a convenient choice which fulfills this
requirement).

Preliminary results of investigations which go beyond
this approximation and include "returning loops" are re-
ported in the last section.

The Green's function G(r) may then be expressed as a
sum over paths, and since each step has an amplitude of
V/W (for E =0) the leading contribution comes from the
shortest, hence directed, paths. If only these are kept one
has4

'
2,t

(1.6)

presence of magnetic fields a gauge may be chosen such
that the matrices which will depend explicitly on t will,
nevertheless, commute and therefore may be diagonaliz-
able simultaneously. The eigenvectors are the transverse

Ek~z
waves e ' with k~=+mm/l. . (I. &&t is a large width
cutofl). So the localized state at (0,0) may be decomposed
into transverse Fourier components (x direction) and
each component (with k~) will "propagate" independent-
ly into the bulk in the t direction. It is thus very natural
to define the quantity J(t,kj) for each Fourier com-
ponent. In previous calculations it was found for a given
k~ and a=//Pc that

IJ.(t, k, )l'= g 12cos(~« —k, )I'.
r=0

(1.8)

V„"=tanm. an (1.9)

It was argued that it behaves like a random potential,
leading to localization of the eigenstates of the corre-
sponding model. In the field of quantum chaos it ex-
plains the quantal suppression of chaos. It was argued
that the sequence (1.9) is pseudorandom since if n
changes by 1, the phase changes by 2m.an which is a large
number. Since the tangent depends only on the phase

The asymptotic behavior of these products do deter-
mine the decay into the bulk of the surface gap states,
which in the transverse direction along the surface have

lkizthe same dependence as the eigenvectors, i.e., e
To find G(x, t) for an electron localized at a site we still

lk~x
need to sum factors like J (kj, t)e ' over all k~. The
asymptotic behavior in real space will be determined by
that of J (k~, t) for large t as we observed numerically.
The closed form of G(x, t) requires the knowledge of the
exact amplitude and phase of all J (k~, t) and is beyond
the scope of the present paper.

The behavior of products as in Eq. (1.8) is very sensi-
tive to the values of a. For any rational a=@/q it may
be shown that IJ(t)l increases as 2' ~. That naturally
raises the question what will be the behavior as q~ ~.
This and related questions are the subject of the present
paper.

Preliminary numerical investigation for a =(v'5 —1)/2
(the golden mean) has exhibited J (x, t) in the form of
bounded aperiodic fluctuations. Although an exponential
behavior where q is the scale is ruled out, other possibili-
ties like powers of t of lnt are still possible.

Another asymptotic behavior we should consider arises
if the phases of the cosines in the product are random.
Then the behavior is that of a product of random vari-
ables. The typical (though not the average) behavior is
e '" -e' '. It should be noted that this behavior corre-
sponds, in the original lattice model, to a magnetic Aux
which is uniform in the x direction but changes randomly
from one row to the next in the t direction (so-called
"random rods" ).

The initial motivation for the generalization of the po-
tential V„" [Eq. (1.5)] to v&1 came from the field of quan-
turn chaos. The kicked rotor model was mapped on the
tight-binding model with the diagonal potential'
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(mode) it depends on a small fraction of a large number.
Therefore, if a is irrational it is related to remote digits in
a representation of an irrational number and therefore
can be considered pseudorandorn. The theoretical inves-
tigation of this issue motivated the introduction of the
tight-binding model (1.3) with the potential (1.5). The pa-
rameter v controls the degree of pseudorandomness that
increases with v. It was found that the asymptotic behav-
ior of sums of the form

with

P„=an . (2.2)

Of particular interest will be the difference between this
sum and the corresponding random sum, namely the sum
where the phase P„ is replaced by a random variable that
is uniformly distributed in the interval [ —1,1]. In order
to estimate the sum (2.1) we will exploit the fact that each
term is periodic in P„. It is easy to see that

N

S~= g V„"
n=1

(1.10)
oo

lnlsinOI = —ln2 —g —cos2m 8,
m=1 m

(2.3)

is of crucial importance for the understanding of localiza-
tion. Sums of this form' ' are of great importance for
the present work as well. The pseudorandom properties
of the sequences (1.5) were classified in the framework of
standard tests for pseudorandomness. ' One of the con-
clusions of these investigations is that they are very
different for various regimes of v. For v) 2 the behavior
of the sequences is very similar to that of the correspond-
ing random ones, namely to sequences where the phase is
truly random. For 1 (v (2 the asymptotic growth of the
sums (1.10) is Sz-&N, as for random ones, but the
growth takes place ' in narrow regions in n. For
0&v&1 the difference between consecutive terms ap-
proaches zero for large n and the sequences do not resem-
ble random sequences at all. The physically important
cases v=1 and v=2 are bordering cases between different
regimes. Although the generalization (1.5) of the usual
Harper equation was proposed ' for purely theoretical
reasons, it was suggested to be relevant for plasmon dy-
namics in artificially constructed superlattices. ' "
Effects of such potentials on modulated waveguides in the
microwave regime may be investigated as well. '

In the present paper the asymptotic behavior of J(t}is
investigated. For this purpose the sum

implying

oo
( 1}m

in lc os'.g„ I= —ln2 —g cos(2ng„m } .
m ——1

The original sum (2.1) reduces to the form

oo
( 1)m N —1

AN= —g g cos(2ng„m) .
m=1 n=O

If the phases P„are random

(2.4)

(2.5)

(2.6)

while

8-2

12
(2.7)

where ( } denote averages over the realizations of the
random phases.

Therefore, if the phase P„ is random one expects that
the typical size of Az will be of the order ~N. If, on the
other hand, Pz is given by (2.1) the behavior is complete-
ly different. In this case, the sum over n is just a
geometric series, namely

is investigated in Sec. II. It turns out to be very different
from the corresponding quantity where the phases are
random. It can be generalized to arbitrary v as

N —1

A'=lnlJ"(t=N)I=in g 2lcosmar I (112)
r=0

1 sinma(2N —1)m
cos2manm =—

2 sin~am

leading to

AN= AN+ —,
' ln2,

with

(2.8)

(2.9)

II. THE SUMS A~ FOR
THE INCOMMENSURATE PHASE (v= 1)

ly

In this section we will estimate the sum of (1.11),name-

In the end of Sec. II it is shown that a small perturbation
in v around 1 yields a drastic change in the behavior of
A~. In Sec. III the behavior of the sums (1.10) is studied
in the regimes 0&v—,', —,

' « @&1,1(v&2, and v 2. In
each of these regimes one finds different behavior that
also differs from the one found for v=1. The results are
summarized in Sec. IV.

( —1) sinn. a(2N 1)m-
m sinmam

(2.10)

The sum AN is dominated by the terms where the
denominators are small. These are terms where m is
equal to qk —a denominator of the rational approximant
of order k to a. The method that will be used is closely
related to the one that was applied by Berry' for a
different problem. Let a be an irrational number, and the
elements of its continued fraction expansion be ao,
a . - - a . - and let its rational approximants of order k
be

(2.1 la)
A~= g ln2lcos(mg„)l,

n=0
(2.1)

where pk and qk are integers. The error in this approxi-
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mant is

(2.11b)

note that

5k
qk (2.20)

For almost all irrational numbers (Ref. 19, p. 78; Ref. 20,
p. 169) 5= —lna, (2.21)

where 5 depends in general on a. For the golden mean

C2
leg, l-

qklnqk
(2.12) while for generic numbers [almost all irrational numbers

for which Eq. (2.12) applies]

while for irrational numbers with continued fractions
with bounded elements a; (Ref. 19, p. 44)

5=
12 ln2

(2.22)

C2
leg, I—

qk
(2.13)

For the numbers with bounded a; like the golden mean,

the sum behaves as

where c2 and c2 are constants independent of k. For the
golden mean a=~5 —1/2, for example cz = I/&5 (Ref.
19, p. 41; Ref. 20, p. 163).

The sum (2.10) can be estimated as

A„"' f-"dk sin(2m. Ncz/qz)
N

sin 2' q
1 ~dq .
5 q q

(2.23)

A n
k

( —1}q~ sinn. ez(2N —1)

qk sinmek
(2.14)

where q =qz /cz and kz are related via (2.21}and (2.19).
N

This integral is convergent. It can be easily estimated
with the help of the change of variable

For irrational numbers with continued fractions with
bounded elements the approximation (2.13) holds, result-
ing in

leading to

(2.24)

( —1)" . 77(2N 1)—
sin C2

k c2~ qk
(2.15) 1 1/'e sin 2~Nx

dx50" (2.25)

A~ = — [ A~"+ A~ '],
2C 277

(2.16)

We turn now to estimate the sum Az of (2.15) for large
N. The contributions from the terms with large values of
qk can be approximated by a convergent integral. This
motivates to split the sum in two parts, namely

Since

sin2n Nx
(2.26)

Az ' behaves as a constant in the limit N ~ 00.
The error in the estimate of the sum Az by an in-(2)

tegral is of the order of
where

and

kN

1)qz . m'(2N —1)
k=0 qk

(2.17)
E

k =kN+1 qk

(2.27)

—5(kN + 1)
c~n.(2N 1) czqr(2N—1)e—

1 —e '

( 1) „. qr(2N 1)—
sin C2

k =kN+1 qk
(2.18)

The condition

qk =N (2.19)

determines kz. We first turn to evaluate the sum Az '.

The factor ( —1) introduces a rapid oscillation in the
terms of the sum. However, locally the number of even
values of qk is not equal to the number of odd values.
Actually, the number of odd values of qk is twice the
number of even values as demonstrated in Appendix A.
Therefore this factor does not result in local cancella-
tions. It may change the value of the sum but not its
asymptotic N dependence. We will ignore this factor in
the evaluation of A~ '. If ( —1) ' is ignored the sum can
be approximated by an integral. For this purpose we

kN

A~'= g ( —1) "sin2npy
m=0

where
—5kN

2p =cz(2N —1)e

(2.28)

(2.29)

(2.30}

and

k=k~ —m . (2.31)

Note that p approaches a constant in the limit N —+ 00.

that is bounded following the definition (2.19) of kz and
(2.20). Therefore the sum Az' is bounded with a bound
that is finite in the limit N~oo. We turn now to esti-
mate the behavior of A~', that turns out to dominate the
sum A~ of (2.15). For this purpose it is rewritten in the
form



12 158 SHMUEL FISHMAN, YONATHAN SHAPIR, AND XIANG-RONG WANG

P"(m) =(py )mod 1 (2.32)

Typically p is an irrational number. For integer values
of y, the sequence

k~,

Az"=5 g (
—1) 'k sin 27Tpf

5k

from Az" that now takes the form

(2.39)

can be considered random, since it is a shift along the
digits of an irrational number, in the base y. If y is not
an integer it is hard to believe that P"(m) will be less ran-
dom (although we do not claim to justify it rigorously).
In what follows it will be assumed that [P (m)] is a ran-
dom uncorrelated sequence. With this assumption A~(I)

takes the form

where p, y, and k are defined by (2.29)—(2.31). Following
the argument presented after Eq. (2.32), the sequence
A&' can be considered random with the variance of the
order of —,'(5k&) —

—,'(lnN) . The typical values of this se-
quence are therefore of the order of lnN, while the maxi-
mal value of

~
A~.

~

for N' ~N is

N

A~'= g ( —I) "sin2n. g"(m) . (2.33)
A~'" —k~ —(lnN ) (2.40)

Assuming that I P"(m) ] is random one finds that the
variance of Az" is —,'kz-lnN/25. Hence the typical

magnitude of Az" is of the order of &1nN. Therefore
A~~~I is the dominant contribution to A~ of (2.15) and

A&
' is negligible for large N. Because of the randomness

of IP"(m)] the sums A~" and A~ look like a random
walk in one dimension.

It is instructive to define Az'" as the maximal value
that

~ A~ ~ may take for N' & N. From the random-walk
property of Az" one finds that for large N

A~'"-k~-lnN . (2.34)

[It is easy to show that the typical interval between two
consecutive N"s for which Az" )ClnN'(C &5/2) is

b,Ã ~ N ' '(nlnN'/5)'. "«N. ]
For generic a, where (2.12) holds the sum, (2.15)

should be replaced by

AN—
(
—1) "Inqz

sin
C 2'

(2N 1)c2. —

qj, lnqI,
(2.35)

The sum can be split into two parts as was done in
(2.16) and sums similar to (2.17) and (2.18) are obtained
with each term multiplied by lnqI, and c2 replaced by c2.
The sum AN

' is approximated by an integral with an er-
ror of the order (2.27) that is bounded.

Considerations similar to those leading to (2.25), with
the change of variable

C2

qlnq
'

lead for large q to
c~/q 1nq

dx sin 2&Nx
5 o X

(2.36)

(2.37)

Here q =qI, =N. Since for large N the upper limit of
N

the integral is much smaller than 1/N the integral can be
estimated as

c&/q 1nq 2m N 2m
dx lnx —— —=, (2.38)

5 o 5 q 5

which is bounded. Again the leading contribution results

We conclude that the typical growth of A~ with N is
lnN and not &N (as if the original phases P„were ran-
dom). For irrational numbers with continued fractions
with bounded elements the typical growth is of the order
&lnN. The maximal value that the sum takes grows as
(lnN ) and lnN, respectively, in these cases.

In Fig. 1 Az and Az'" as a function of N are depicted
for a= —,'(&5 —1) and a=1/e. The values of A~ are of
the order unity and are very different from the values ex-
pected for random sequencing. It is hard to see the ex-
pected growth of Az because of its erratic nature. Since
A~'" is a monotonically increasing sequence, its growth
is systematic and obvious. Note the difference between
lnN and a faster growth consistent with (lnN ), found for
irrationals with bounded and unbounded elements of the
continued fractions. These results are in accord with the
assumptions that were made on the phases of the sine in
(2.33) and (2.39).

In Fig. 1(b) we see that in addition to the continuous
increase of A~'" with lnN, there are also discontinuous
"jumps" which are periodically spaced and of similar
heights. These jumps are compounded by contributions
from two consecutive N's. When we looked instead to
the series Bz =In'„ I ~

sin(mar ) ~
with the same

a=(&5—1)/2 we observe a continuous increase with
lnN [but with a different slope which may be understood
from the absence of the factors (

—1) in Eq. (2.10)] but
without any discontinuous jumps. For other rational o. s
other structures of periodic jumps were seen. On the oth-
er hand no periodic structure is seen in these jumps for
nonalgebraic a's [Fig. 1(d)]. This is clearly a commen-
surability effect connected with the continuous fraction
expansion of 0.. So far we do not have a more quantita-
tive understanding of these discontinuities.

All computations were done in double precision. To
check possible effects of the finite precision we also ran
the same program in single precision (and with both de-
grees of precision on a different machine) without dis-
cernible differences. So we are confident that the struc-
ture observed is real and is not an artifact of the finite
precision.

In this section we examined so far the behavior of Az
for v= 1; namely the expression (2.2) for the phase P„" was
used. In the next section values of v&1 will be investi-
gated. As a first step in that direction we explore the sta-
bility of the v=1 behavior for slight deviations of v from
this value.
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CO We therefore consider the case v-v=1+@and attempt to
find the deviation:

b, A'( )= A~+'(a) —A~(a) .N & (2.41}

0.0 80.0 i60.0
N

240.0 320.0

h b, A ' (a) as N ~ oo for arbitrarilyA divergence in t e N a
v= 1 behavior.small e will indicate the instability of the v= 1 be avior.

For small e we expand,
N

1+aA~+'(a)= g lnhcos(n. nr )h

r=1

= g lnhcosIirnr(l+elnr) )h

= gl nhcos(mar)h+enar lnrhtg(mar)h .

CO
CO

R
C)

(5

Thus from (2.26}we have

b, A'(n)=@ma g r lnrhtg(mar)h .Q
r=1

(2.42)

0.0
I

4.0
I

8.0
lo g}0(N)

12.0 16.0

(c)

clear that this sum will diverge at least as
N lnN. However, the presence of the rg(m. ar may yie
a stronger divergence.

oints rTo explore this effect we concentrate on the poin s r
such that 2ar= n . e-2 +1. Near these points 2a is approxi-

d b the continued fraction pk qk so t a
pk lqkh-&k, with 5k -1/qklnqk. Evide yentl the

singular points wi e e'll b the r=q for which pk is odd.
Near these points

&}JJ IJ(
tg (n+ —,')m+ 2

Vr5k
(2.43)

Inserting to b, Az(a), we obtain

2qk lnqk
b, Ai'v(a)- g' qklnqk

k

—X'(qk»qk }' (2.44)

0.0

R
C)

g$

I

80.0 160.0
N

240.0 320.0
where g' means the sum only over these k for which pk

The asymptotic behavior is obtained by transforming
to an integral as before:

6AN(a) -eN (lnN )
2 2 (2.45)

F the nongeneric rational num erers like the Goldenor
mean there will be one less power of lnN, enence
hA'(G. M. }-N InN. In any case, the v=1 point is un-
stable to any small deviation in v since th 1 tX
and a~0 do not commute.

In the following section the sums AN wil" will be investigat-
ed for various va1ues of v.

0.0
I

4.0 8.0

}og }O(N)

12.0 16.0

III. THE SUMS A~ FOR VARIOUS VALUES
OF v+1

In this section the sums

FIG. 1. v=1 in ~a N or a —
2

~ . ( ) A f a= —'(&5—1), (b) max AN for
a= —'(&5—1), (c) AN for a=1/e, and (d) max AN for a=1/e.2

N —1

g ln2hcosn. g„"
h

n=0
(3.1)
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with The limits of the summations are

P„=an" (3.2)

will be investigated.
With the help of (2.4), which is independent of the

form of P"„,it can be written in the form

m *(m) = Int[c, n
' /Z~av]+ 1,

n *(m) =Int[(2vram v/c, )'~' ' ']+1,
{3.10)

(3 ~ 11)

(
—1)

A~ = —g S~(am),
m

where

N —1

SN(a)= g cos2~an
n=0

(3.3)

(3.4)

M=lnt[c, (X—1)' '/2vrav], (3.12)

where Int[x] denotes the integer part of x, namely the
largest interger that is smaller than x.

The sum over n in (3.8) can be approximated by an in-

tegral, namely

b S, (am ) =S~(am )
—S",(am )

The sum Ag, is dominated by the Sz(am) with the lowest
values of m. The general form of these sums does not de-
pend strongly on m. Sums of the form (3.4) were encoun-
tered in earlier work. From the experience of these in-
vestigations it is known that for v@1 there are the fol-
lowing distinct regimes: ' ' ' 0& v & 1, 1 & v &2,
v) 2, and v=2. We will investigate the sums in these re-
gimes separately. It turns out that the regime 0&v&1
should be divided into two subregimes and the behavior
of the sum (3.3) for 0& v& —,

' difFers from the one found

for —,
' & v & 1.

A. The regime v&1

n=n (m)

cos2vramn '

N —
1

dn cos2m. man v . (3.13)

where

X=(N —1)' (3.15)

and

Introducing the variable x =n, one obtains

xbS'~ (am )=— dx xI'~ ' 'cos2mamx, (3.14)n, N

2+am v «n (3.5)

For v& 1 the terms in the sums Sz(a) of (3.4) vary
slowly with n for suSciently large n. Since each term in
the sum is of order unity the sum S~(ma) can be approx-
imated by an integral in the regime where the difference
between two consecutive terms is less than unity. This
requires

x*=n" .

e(1/v) —1

2'"am v
sin2m. amx *+RN

Integrating by parts one finds for large N

X(1/v) —1

b,S", (am )- sin2mamXn, N 2mam v

(3.16)

The terms in the sum (3.3) can be considered as points
(n, m) on a two-dimensional lattice, with the restrictions
0&n &N —1 and 1&m & ~. We define a line in the
(n, m) plane

Nl —v

2@am v

n el —v

2&am v

sin2m. amN

sln27Tamn +RN m (3.17)

2'7Tam v=c1n (3.6)
where the remainder term is

= —Bn N ~ (3.7)

so that on one side of this line (3.5) is satisfied and the
sums (3.4) can be replaced by integrals, while on the other
side this is impossible and a different approximation is re-
quired. c, in (3.6) is of order unity. The sum of (3.3) can
be divided into two parts so that in each part all terms
are on one side of (3.6), namely

N
R~ =6

m

e(1 —2v)

+0
m

(3.18)

The sums bS, (am) should be substituted in (3.8) in
n

order to calculate BN. We will show first that the contri-
bution of the second term in (3.17) is negligible for large
N. Its contribution to BN is

where

M
( 1)m W —1

8&= g g cos2mamn
m =1 n=n (m)

(3.8}

M
( 1)m ( *)1—v

Rs = —g sin(2~amn '
)

2wav

M
( 1)m

sin(2m. amn "),
m

{3.19)

and

N —1 oo

m =m (n)

( —1)
cos2&amn (3.9)

where (3.11) was used.
This sum is clearly bounded by a term that grows as

1nM, which is proportional to lnN for large N due to
(3.12). The estimate of Rs can be improved since for
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0& v& 1, 1 & 1/(1 —v) & ao and the phase of the sine in
(3.19) varies rapidly with m [see (3.11}].The contribution
of a group of terms in the vicinity of some m is of the or-
der of 1/m; consequently the sum is convergent in the
limit M~ ao and therefore it behaves as a constant for
large N. The contribution of the remainder term Rz of
(3.18) is of the order of N' since the sum

,[(—1) /m ] is convergent. Therefore, substitu-
tion of (3.17) in (3.8) yields

O

O—
I

(a)
I1

Ni —v M
( 1)m

BN = g sin2namN . "+Rz,
27TCXv

(3.20)
I

0.0 12.0 24.0
V

36.0 48.0

where Rz is a remainder term of the order N' . The
sum over M is convergent (in the limit M~ oo), therefore
it is dominated by the small m terms. The remainder
term RN is negligible for sufficiently large N.

We turn now to analyze the behavior of DN of (3.9).
The terms in the sum vary rapidly with m. If one groups
several terms in the vicinity of m, their sum is of the or-
der 1/m . Consequently the sum over m in (3.9) is ap-
proximately

I

O-

S =
n

m=m (n)

( —1) g, (n)
cos2namn ".-, , (3.21)

m m'(n}
O—

I

where g&(n) is a function of n with a bounded amplitude.
It is determined mainly by the terms in the vicinity of m *

and the function Int[x] of (3.10). In the derivation we
used the fact that up to a constant

+(I/m )-1/m'. With the help of (3.10) one
finds that for large N the sum (3.9) is approximately

D„2nav ~ li 2nav
d

'9i
(3 22)

N (n) (n)

c] ~ 0 n c] 8 n

O
O
C9

O
I

0.0 30.0 60.0
V

90.0

(c)

120.0

where n is some lower cutofF that is not important since
the integral diverges in the limit N~ (x) and is therefore
dominated by the vicinity of N The func.tion r)i(x) is
determined mainly by the terms in the vicinity of m * in
the sum (3.21), where m is determined by (3.10). One
can see from direct examination of these that the values
of n where function g, (n) changes sign become sparser as
n increases. This function is expected to exhibit random-
like behaviors on very long scales due to the nature of the
functions Int[x] and cosx and the slow variation of their
argument with n. Because of the slowness of the varia-
tion of gi(n) for large N, the asymptotic behavior of the
integral (3.22) is

i —v
(3.23)

as one finds from substitution of (3.20) and (3.23} into

where ~g(N)~ =2na/c, and n, is some lower cutoff that
has no significance.

The asymptotic form of the sum (3.3) is

Nl —v M
( 1)m

AN —— g sin2namN" —ri(N)N",
2&cxv ) m

(3.24)

O
O
C9

I

0.0
I

2.5 5.0
N

7.5 io.0x10

FIG. 2. The sums AN as a function of x =N" for
a= z'{~5—1) and (a) v=1/3, (b) v=1/2, and (c) v=0. 8.

for v( —,
'

lim N~ —2v
0 for v)-,' . (3.25}

Therefore the first term dominates for v & 1/2 whi/e the
second dominates for v& —,'. In order to investigate how
well the approximation (3.24) works we plotted, in Fig. 2,

(3.7). The first term is an oscillating function of X=N
with the period 1/a, while the second is a slowly varying
"randomlike" term. The ratio of their magnitudes is of
the order
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the AN of (3.1) for several values of v. Actually, we plot-
ted

O
O
O
CQ

A~
F„(x)= (3.26)

O
O

as a function of X=X . In Fig. 3 the Fourier transform
F„(Q) of F„(x) is presented. It is clear that the period is
indeed 1/a. For v —,

' the sum is pure1y periodic in X
and the weight of the high harmonics, corresponding to
large values of I in the sum (3.24), is small. For v) —,

'

the erratic behavior resulting from the nature of the func-
tion g(X) is obvious. Since it is slow it results in a peak
at Q =0 of the Fourier transform. The oscillating behav-
ior resulting from the first term is observed as well. For

~Og o~O

O

O
O t|e~IW uJ

0.000 0.025 0.050 0.075 0.100
f

FIG. 4. The Fourier transform of the sequence of Fig. 1{a).

O
OO

O
p

I O

(a)
v=1 the periodic structure that is found for v(1 disap-
pears, as is clear from Fig. 4.

B. The regime 1 & v & 2

In this regime the sums are dominated by terms in the
vicinity of n that satisfy the condition

2mavn ' ' =2lm, (3.27)

Oo
0.0 1.0

I I

2.0 3.0 4.0

where I is an arbitrary integer. For large n the distance
between two consecutive values of n that satisfy (3.27) is

b, n =n "/av(v —1) . (3.28)

O
Oo

O

I O

o
62

O
OO

1.0 2.0
f

I

3.0

(b)

4.0

Note that An —+~ in the limit n~(x). For large N the
typical size of Sz(a) in this regime is &X, as if P„would
be random as demonstrated in Fig. 5. Note that the
number of terms in the sums of this figure is of the order
of 10 . Although the typical size is similar to the one
found for a random phase, the variations differ strongly
from those found for random phases. The variations are
large and take place for values of n that satisfy (3.27), and
the resulting separation between them is (3.28). The
growth takes place in extremely narrow regions and is
most pronounced for small m where the separation be-
tween these regions is the largest. [For m %1, a in (3.28)
should be replaced by ma. ] The sum (3.3) is dominated

O
O

O
OO

1

O
N

o
OO

O
O

0.0 1.0

j
I I

2.0 3.0

(c)

4.0

0—
M

O
O
CQ

I

O
O

f

1000.0 1002.5 1005.0
N

1007.5 1010.0x 103

FIG. 3. The Fourier transform of the sums of Fig. 2.
FIG. 5. The sums Az for a =

—,
' {&5—1) and v= 1.5 as a func-

tion of ¹
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C. The regime v&2

In this regime the sums Sz(a) are expected to behave

as if the phases 4"„were random. ' ' Moreover, in this

regime (P„")modl is found to pass the g' test for pseu-
dorandomness. ' It is expected that Az of (3.1) will

behave as if the phases are random. This is demonstrated
in Fig. 6, where the behavior of AN with v=3 is depict-
ed. It is consistent with a ~N increase. This plot could
not be distinguished from that obtained with "random"
phases. (We recall, however, that the random number
generator used to generate the random phases is also
based on a quasiperiodic sequence. )

D. v=2

This is a bordering case between regimes B and C. For
v=2, (P„")modl fails the y test for pseudorandomness,
but not remarkably, and as tests of pseudorandomness
are concerned it is quite close to a random sequence. ' In
particular SN exhibits fiuctuations consistent with v N
but there are no regions of strong variations of the form

O
O

O

O

I

0.0 1250.0 2500.0 3750.0 5000.0

O
O
C)

O
O—

by terms with small m, therefore the separation between
regions of the largest variation is given approximately by
(3.28). This is demonstrated in Fig. 5, where the varia-
tion in a relatively small region is plotted. The prediction
of (3.28) for separation between the regions of large varia-
tion in Fig. 5 is hn =2.15X10 in good agreement with
the numerical results.

that were found for 1 & v &2. The sum AN is depicted in

Fig. 6(b) (note its difFerence from that with v= l. 5 plotted
in Fig. 5).

IV. CONCLUSIONS

To summarize, our findings on A (r}=lnCJ„(t)C
are as

follows:
(i) For v=1: The behavior depends on the number

theoretic properties of the ratio a=//go. For algebraic
irrational a, with bounded continued-fraction expansion,
CJ"(t}C increases algebraically as t~. For a generic irra-
tional number, whose continued fraction expansion con-
sists of an unbound series of integers

C
J"(t)

C
increases fas-

ter than algebraically with analytical prediction of an in-
crease such as t~'"'. It remains to understand the depen-
dence of the exponents P(a) on a, which we leave for fu-
ture studies. The same holds for the discontinuous jumps
discussed at the end of Sec. II.

(ii) For v%1 different regimes of behaviors were
identified:

(1) For 0 & v & —,': The behavior of A~ is essentially

periodic in the variable X=t when a finite number of
harmonics dominates the whole sum.

(2) For —,
' & v & 1: In this regime there appears a large-

scale random component superimposed on the periodic
behavior as exhibited in the Fourier spectrum by a noise
band near the origin.

(3) For 1 & v & 2: The behavior of the series is dominat-
ed by the special points where o,vn" ' is an approximate
integer.

(4) For v&2 the behavior of J"(t) is indistinguishable
from that of a product of cosines with a random-phase
uniformly distributed in [0,2m ].

As for possible experimental realizations, for v=1 the
best candidates are artificially fabricated superconducting
(or Josephson junctions) networks. ' The existence of
surface states (localized solutions of the linearized
Ginzburg-Landau equations} was already discussed in the
context of numerical simulations of these networks.
Measurements of the exponential decay of the super-
current transmission as a function of the magnetic field
and/or the sample width may exhibit some of the proper-
ties analyzed here.

It will be interesting to go beyond the "directed path"
approximation and see how the inclusion of returning
loops modifies this behavior. Preliminary results indicate
that the important features will be conserved as long as
the energy is in the forbidden zone (and, hence, returning
loops are finite}.

Finally, crossing the "mobility edge" between localized
and extended states would allow us to make the connec-
tion between our results and the previous studies of the
Hofstadter bulk eigenstates.

I

6750.03000.0 4250.0 5500.0 8000.0
N

FIG. 6. The sums A& as a function of N with a= z(&5—1)
for (a) v=3 and (b) v=2.
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APPENDIX A: PARITY STATISTICS
OF THE APPROXIMANTS' DENOMINATORS qg,

The recursion relation (Al) for qk defines a linear map
between u'"' and u'"+" which only depends on n(ai). If
we denote by ~;'' the probability for U

' '= e;, i = 1,2, 3,4,
the probability distribution for vr(az) will thus determine
a relation between co',

+" and co', '.
For a generic irrational number, the probability for ak

to be equal to m is 1/m(m+1). Hence the probability
for ak to be odd is ln2. The matrix relating co',

"' for con-
secutive k's is found to be

In this appendix we show that for a generic irrational
number the qk's are twice as likely to be odd than even in
the k —+00 limit. %e recall that the recursion relations
for qk and pk in terms of the continued-fraction integers
ak are

1 —ln2 0 ln2 0
1n2 0 1 —ln2 0
0 1 0 0
0 0 0 1

(A3)

qk =a~qk &+qI, 2 with qo =1,q, =a, ,

pk =a&pk &+pk 2 with po=qo, p& =aoa&+1 . (A2)

0 1 0
, and e4=

We begin by considering the parities m k
= n (qk ),

~„=0(1)if q„ is even (odd).
Let us define the two component vectors v'"'=( " ')

I( —2

over the Zz field [0, 1 j. The whole vector field consists of
four elements:

Obviously co4=0 because qo
= 1.

To find the stationary distribution for co';" ' i = 1,2, 3 we

note that (A3) defines a Markov process and the eigenvec-
tor with the largest eigenvalue (by virtue of the Perron-
Frobeniiis theorem) has oi, =oi2=co& which (since co~=0)
is ro'"'=(1/3, 1/3, 1/3, 0). To assume that this distribu-
tion is reached we still need to assure that ro'"' (the initial
ro) is not orthogonal to co'"'. Indeed v'"'=(&,' ~) and

l

therefore co'"'= (1/2, 0, 1/2, 0) and ro'"'ro' "'= 1/3 )0.
Counting the numbers of times 1 and 0 appears in e&,

e2, and e3, we conclude that if they are uniformly dis-

tributed as k~ ~ the probability for qk to be odd is
twice as large as that to be even.
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