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We demonstrate that a tight-binding Hamiltonian, to which a pairwise additive repulsive potential has
been added, can qualitatively and semiquantitatively account for the elemental structures of gallium, bo-
ron, zinc, cadmium, and manganese. These structures represent the most complex structures found in
the lighter elements of the Periodic Table (N & 40). We show that these structures result from the inter-

play of the number of valence electrons, the overlap of atomic orbitals, and geometrical features such as
the number of triangles of bonded atoms and the angles between bonds. To illustrate this last point, we

use the method of moments in a useful quantitative fashion. Finally, we account for the variation in cell
parameters observed in binary noble-metal and main-group hexagonal closest-packed structures.

INTRODUCTION

Elemental structures have played a pivotal role in
solid-state physics. Not only do they give insight into
the properties of the elements but they also pose chal-
lenging questions in their own right. The elements
display highly disparate structures separated from one
another by only minute differences in energy. Slight
miscalculations of binding energies therefore can lead to
large shifts in atomic positions. Accurate optimizations
of elemental crystal geometries have come to serve as a
stringent test for electronic structure calculations.

One of the recent triumphs of modern electronic struc-
ture theory has been the accurate calculation of these
small energy differences. ' For example, several
researchers have studied the phase transitions induced by
pressure on elemental silicon and germanium. These
workers have not only been able to predict the order of
these phase transitions (from diamond to white-tin, to
simple hexagonal, and finally to the closest-packed struc-
tures) but also the actual pressure at which these trans-
formations occur. It may fairly be said that accurate cal-
culations of the differences in energy between competing
structural alternatives are a current reality.

At the same time our understanding of the actual
structural features responsible for these electronic energy
differences has not progressed at a similar pace. For ex-
ample it is well known that copper adopts the face-
centered-cubic (fcc) structure while zinc adopts the
hexagonal-closest-packed (hcp) structure. The experi-
mental Hume-Rothery electron concentration rules show
that this structural transformation is due to a change in
the number of valence electrons. Although these rules
predate modern quantum mechanics, no theory has yet
been able to reproduce the entire range of the Hume-
Rothery electron concentration rules nor specify the per-
tinent structural features. Similarly we can consider the
elemental structure of gallium, which is a complex crystal
with seven bonds per gallium atom. To date, one impor-
tant study based on pseudopotentials has accounted for

the variation in bond lengths of this structure. However,
earlier workers were unable to explain why the peculiar
gallium structure itself is the ideal distortion mode for
the various bonds.

In this paper we show that a method based on the
tight-binding Harniltonian can be used to account both
qualitatively and semiquantitatively for elemental struc-
tures of main-group and later transition elements. This
calculational approach uses valence-band variance scal-
ing. ' This method in conjunction with the method of
moments' '" leads to a clear picture of the local structur-
al effects responsible for the stability of a given crystalline
phase. (Both variance scaling and the method of mo-
ments are described below. ) We apply these rules to ac-
count for the rhombohedral packing of icosohedra in ele-
mental boron, the corrugated layer structure of gallium,
the somewhat two-dimensional character of zinc and cad-
mium, the variation in the cell parameters of hexagonally
closest packed binary alloys, and the complex cubic pack-
ing of a-Mn.

CALCULATIONAL METHOD

Our theory is based on the tight-binding method, in
which the repulsive portion of the interatomic energies is
pairwise additive while the attractive portion is calculat-
ed from'one-electron hopping integrals. ' We therefore
express the total energy, ET as ET(r) = U(r) V(r), —
where U(r) is the hard-core interatomic repulsion energy,
V(r) is the attractive bonding energy, and r is a parame-
ter which corresponds to the overall size of the system.
We follow the idea of Heine, Robertson, and Payne' that
the repulsion energy is proportional to the coordination
numbers of the atoms in the system, C. This repulsion
energy is due to "Coulomb repulsion of the nuclei and the
exclusion principle in the overlap of the atoms. "' As has
been shown by Friedel and Cyrot-Lackmann, '

C=y f E p(E, r)dE
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where p(E, r) is the electronic density of states of the
valence bands which itself is (among other things) a func-
tion of the overall size of the system, and y is a propor-
tionality constant. We therefore find that the total ener-

gy ET is

ET=y' f E p(E, r)dE+ f Ep(E, r)dE .

The first term on the right-hand side of the equation is
the repulsive energy U(r), while the second term is the
attractive energy —V(r) T.he term Er refers to the Fer-
mi energy for the system in question. We now follow the
argument first discussed by Pettifor. ' We consider two
systems which we label 1 and 2. The terms Ez&, U&, V&,

ET~, Uz, and Vz refer to the various energies of these two
systems. We wish to calculate hE where hE =Ez., —E~.
It may be seen that

&("«q) &("&e ) 2("2eq)+ V2("2eq) '

where r„q and rz, q
refer to the respective equilibrium

sizes of the two systems.
We use the fact that we are interested in equilibrium

geometries in the following way. Note that at equilibri-
um to first order in distance, E~, (r) is constant. There-
fore,

U2(r2~q) V2(r2eq) = U2(r2, q+d ) —V2(r2,q+d ) .

In particular we choose a value for d such at
U2(r2, +d ) = U, (r„q). We now find that

bE: f EP~(E R&eq)dE f EP2(E r2eq+d)dE

We determine the value r„q from the true experimental
size factor and rpeq+d from the equality

f E P2(E, r2eq+d)dE= f E P&(E, r&eq)dE . (2)

We note that the expression in Eq. (2) refers to p2, the
second moment of the valence bond electronic density of
states, where p2

——I" E p(E, r)dE. In particular Eqs.
(I) and (2) state that the difference in energy between two
structural alternatives can be calculated from the
knowledge of the one-electron density of states alone.

To calculate this one-electron density of states we use
the tight-binding Hamiltonian

H, b
= QP;, a,+a, + ga;a; a;,

17J I

where p;. is a hopping integral between the ith and jth
atomic orbitals (nonzero only if i not equal to j), a,. is the
Coulomb energy of a given orbital, and a+ and a are
creation and annihilation operators. We furthermore fol-
low the Mulliken-Wolfsberg-Helmholz approximation'
for off-diagonal P;.,P, =(K/2)S;. (a,. +a ), where E is a
proportionality constant set at 1.75 and S, . is the overlap
integral between the ith and jth orbitals. The a, values
as well as the atomic orbital functions are chosen in con-
formity with Roothan-Hartree-Fock calculations on the
individual atoms. ' Slight adjustments to these values

have been made in accordance with the work of the
Hoffmann group on extended Huckel theory. ' In calcu-
lating the S;. matrix elements we assume Slater-type or-
bitals (STO) with single or double zeta expansions.

In practice the above reduces to the following: When
comparing two structural alternatives we calculate via
standard k-space techniques the band structure of one
compound at its true equilibrium size. For the second
structure we scale its size so that its second moment ex-
actly equals the second moment of the first. Then, using
a rigid band model, we calculate the differences in energy
of the two structures as a function of electron count. Fi-
nally we note that the constant y' remains undetermined
in this procedure. We therefore study only the structural
shape and not the overall size of the geometries in ques-
tion.

One of the chief strengths of this method comes from
its connection with the method of moments. ' '" This mo-
ment method is based on the following observations:
First, knowledge of p„, where p„=I" E"p(E, r)dE can
be used to determine exactly the function p(E, r). The
most advantageous transform technique uses a continued
fraction expansion' (see Appendix). Second, the p„may
be related to specific structural features, as p„ is the sum
of all closed paths of n steps in which one hops from one
valence atomic orbital to the next. Third, the earliest p„,
i.e., po, p&, and pz are all structure invariants: po is nor-
malized to equal I, p„ is just Tr(H) and is therefore a
constant sum of the Hartree-Fock atomic orbital ener-
gies, and finally pz is treated as a constant in our variance
scaling method [see Eq. (2)]. Finally we note that while it
is necessary to know all the p„ to determine p(E, r) exact-
ly, it is only the first few moments which control the prin-
cipal features of the attractive energy V(r) ''" As. we
discuss below, knowledge of p3 through p6 is often
sufficient in calculating energy differences between struc-
tures. This is particularly true if one uses the continued
fraction expansion in conjunction with the upper and
lower limits of p(E, r) (which we call, respectively, E„and
EI ). This use of E„and E& can be important. The reason
is that the higher moments are increasingly dominated by
these two values. In the absence of exact knowledge of
these higher moments, E„and EI have a significant role.
(It should be noted that E„and E& are also related to lo-
cal structural features; EI depends on the coordination
number g, and E„+E& depends on the degree of nonal-
ternancy. )

As an example of this method we consider band calcu-
lations for the fourth row of the main group. In particu-
lar we consider the elemental structures of Cu, Zn, Ga,
Ge, As, and Se (elements 29—34 of the Periodic Table). '

Copper and zinc are, respectively, face-centered-cubic
(fcc) and hexagonally-closest-packed (hcp), gallium
adopts an unusual seven-coordinate structure discussed
below, germanium forms in a diamond lattice, arsenic
forms a three-coordinate two-dimensional puckered
honeycombed sheet, while selenium adopts an infinite
one-dimensional helix. We therefore need to compare
p(E, r) for each of these six structure types.

For meaningful comparisons we need to calculate the
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electronic energies of each of these six structures for the
same atom type. The Hartree-Fock energies of the
valence 4s orbital ranges from a(4s)= —6.5 to —22. 9
eV, while the 4p orbital energies range from
a(4p) = —5.7 to —12.4 eV. ' The g(4s) exponent of the
STO's range from g(4s) =1.21 for Cu to 2.4 for Se and
similarly the g(4p) exponent ranges from g(4p)=1. 6 to
2.1. With this great disparity in parameters, it would at
first appear necessary to calculate 36 separate band struc-
tures, as for each of the six atom types we would need to
compare all six of the possible structural alternatives. In
practice it turns out not to be necessary. This is so as the
differences in energy between structures are reasonably
insensitive to changes in the Hartree-Fock parameters.
In Fig. 1 we show the difference in energy between these
six structures as a function of electron filling of the
valence bands for a single set of atomic parameters.
Values chosen were a(4s) = —16.0 eV, a(4p) = —9.0 eV,
g(4s)=2. 16, and g(4p)=1. 85. These are the extended
Huckel parameters for Ge developed by Thorn and
Hoffmann. ' They correspond closely to the Hartree-

4.48 All Moments (a)
Gu Zn

2.24

E0
0.00

UJ
CI

-2.24

-4.48

Band Filling

4.44 First Six Moments

Fock values for this atom. Germanium was chosen as it
lies in the middle of the sequence of the six elements and
therefore has average parameters with respect to the full
series. The differences in energy plotted in Fig. 1(a) are
between the structure of the labeled element and the dia-
mond structure of germanium. Figure 1 is plotted with
the convention that the curve with the most positive
value at a given electron count corresponds to the most
stable structure. For example, Ga is the most stable
structure for a combined s and p band filling of 0.3—0.4.
As we have previously discussed, " the results in Fig.
1(a) match the elemental periodic trends exactly; each
element is calculated as being most stable in its observed
structure. What perhaps was not clear from our earlier
work is that the method of moments can be used to quan-
titatively account for these results. In Fig. 1(b) we use
only the values of p3-p6 together with the various E„
and E, to calculate an approximate set of hE functions
(see Appendix). It may be seen that Fig. 1(b) corresponds
with the results of Fig. 1(a) in both the energy scale and
the shape of the five functions. As our principal inputs
are the values of p3-p6 we can furthermore trace the
provenance of a given structure's stability. In this
respect it is useful to recall the effect of each individual
moment. " These effects are summarized in Fig. 2. A
large negative p3 stabilizes electron band fillings below
0.5, a large p~ stabilizes nearly filled band systems, and a
large p6 stabilizes the half-filled band. We recall that
p„are the sums of all closed paths of n steps in which,
via the hopping integral, one hops from one orbital to the
next. Therefore, the p3, p4, and p6 values correspond in
part to the number of atoms bonded in, respectively, tri-
angular, square, and hexagonal arrangements. (As we
will discuss later, other structural effects change the vari-
ous moments. In particular the number of bonds and
bond angles alter p~. ") We therefore conclude that the
large number of triangles in the fcc and hcp structures
stabilize these structures at low electron counts, the
slightly fewer number of triangles stabilize the gallium
system, the myriad of hexagons stabilize the diamond
structure, and so forth.

2.22
Zn

E0

)~ 0.00

LLI

CI
2.22

-4.44

Band Filling

FIG. 1. Differences in energy between the structure types of
elements 29—34 as a function of fractional s and p band filling.
Energies are reported as the differences in energy to a fixed
reference structure (in this case the diamond structure of Ge).
In (a) we show the results for full band calculations while in (b)
only the values of p3-p6, E„,and El were used. See discussion
of Fig. 1 in the text for figure conventions.

FIG. 2. Differences in energy between structures which have
triangles, hexagons, pentagons, or squares in their structure as a
function of x, the fractional band filling. Results are taken from
Ref. 11. See discussion of Fig. 1 for figure conventions.
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GALLIUM

The methods outlined above can be used to resolve the
structure-energy relations of complex structures. As a
first example we consider the stable form of gallium un-
der standard conditions. The structure, illustrated in
Fig. 3, is curious and unique. Each gallium atom is sur-
rounded by seven other close-lying gallium atoms. One
of these seven neighbors lies at a short distance of 2.47 A
away from the central gallium atom while the remaining
six lie between 2.70 and 2.80 A away. The overall coordi-
nation environment is remarkable in that these latter six
atoms all lie in one hemisphere around the central galli-
um atom while the unusually close gallium neighbor lies
in the center of the opposite hemisphere. The overall ar-
rangement therefore resembles an umbrella which has
been blown open by the wind.

This gallium structure is fundamentally different from
those of its neighbors, which all have highly symmetrical
first coordination environments. It is therefore useful to
consider the relation of the gallium structure to its more

symmetrical neighbors. The most convenient starting
point is the two-dimensional closest-packed lattice, illus-
trated in Fig. 4(a). (It is instructive to note that rather
isolated two-dimensional closest-packed layers are found
in elemental zinc, and element adjacent to gallium in the
Periodic Table. ) The gallium structure can be derived
from these sheets in two steps. First, one puckers the lay-
ers into the corrugated form shown in Fig. 4(b). The de-
gree of puckering is controlled by the z parameter shown
in this figure. These corrugated sheets are then stacked
upon one another so that every gallium atom makes one
bond with a gallium atom in either the sheet above or
below it. A study of this geometry shows that there are
three ways in which one can follow such a prescription
(while keeping the c-axis parameter fixed). These three
are illustrated in Fig. 5 along with their space-group la-
bels. The true gallium arrangement has Abma symme-
try.

As a first problem, we compare the energies of these
structural alternatives as a function of z, the parameter
which controls the puckering of the sheets. The value
z =0 corresponds to unpuckered sheets. An increase in
the value of z leads to more highly puckered sheets with
ever shorter interlayer bonds. It may be seen in Fig. 6
that for all values of this parameter the experimentally
observed Abma structure is the lowest in energy. It may

Z,t

FIG. 4. Construction of the gallium structure from a 2D
closest packing. (a) shows the undistorted 2D sheet while (b)
shows the corrugated sheets found in the gallium structure.

also be seen that the optimal value of z is near the value
z=0. 10. The experimental value for this parameter is
0.095. In total there are four parameters which control
the crystalline shape of the Abma structure. These are
the ratio of the cell axes, e/a and b/a, and the two atom-
ic positional parameters x and z. We therefore found
the global energy minirnurn on this four-dimensional en-

ergy surface using the variance scaling technique. Op-
timal values for the four parameters are shown in Table I.
A comparison (assuming an optimal value for y') of
theoretical and experimental bond distances is shown in
Fig. 3.

The above results demonstrate that a tight-binding
theory with a pairwise additive repulsive energy contains
the leading terms responsible for the gallium structure.
We now can apply the method of moments to pinpoint
the important structural features of the structure. We
consider erst the differences in energy between the
Abrna, Icma, and Pnma structures. In Fig. 7 we plot
these differences as a function of band filling (for
z =0.10). In Fig. 7(a) we show these differences for a full
set of band calculations while in Fig. 7(b) we use only the
values of p3, p4, E„, and Et. It may be seen that these
latter results contain the principal features of the full
band calculations. In particular the shape of the curves
resemble strongly the p3 curve shown in Fig. 2. We recall

G(j//ium Theory
p=28/4 q=2.79
r =267 s=243

Ex peri rT) ent
p=270 q=Z79
r =274 s=247

Pnrna Jcma

FIG. 3. Elemental structure of gallium. The four in-

equivalent bonds in this structure are labeled p, q, r, and s. Ex-
perimental and theoretically optimized values for these bond
lengths are shown on the right side.

FIG. 5. The three alternate stackings of the corrugated
sheets of Fig. 4 such that every atom makes one extra short
bond with atoms either on the sheet on top or the sheet below.
The 2.99-A bond discussed in text is shown as a dotted line.
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fcma TABLE I. Crystal parameters for the gallium structure.

~ -73.0)
hl

-77.0

.fO

Pnma

Abma

Parameter

a
c/a
b/a
Ga x
Ga z

'At 4.2 K.

Experiment'

4.516 A
1.690
0.994
0.044
0.095

Theory

1.61
0.94
0.035
0.100

FIG. 6. Valence electronic energy per atom for the Abma,
Pnma, and Icma structures as a function of z, the sheet pucker-
ing parameter.

that the actual values of p3 depend on the number of tri-
angles of bonded atoms. The stability of the Abma struc-
ture therefore is due to the overabundance of triangles of
bonded atoms in Icma and Pnma structures. As the
three polymorphs are identical within the puckered two-
dimensional sheets, this overabundance must occur in in-
tersheet interactions. An examination of the crystal
geometries shows the existence of an interlayer 2.99-A
bond in the Icma and Pnma structures not present in the

Abma structure. This bond is indicated by the dotted
lines in Fig. 5. Calculations both with and without the
H;~ elements of this bond reveal that it is indeed this
bond which is principally responsible for the shape of the
curves in Fig. 8. Furthermore, it may be seen that the
presence of this bond leads to intersheet triangular in-
teractions. We conclude the stability of the Abma struc-
ture is due to the elimination of these unwanted triangles.

We now turn to the factors which control the optimal
parameters of the Abma structure. We restrict ourselves
here to the parameter with the strongest energy depen-
dence, z. In Fig. 8(a) we show the results of a full band

1.41

0.70
E0

0.00

LU
Cl

4.70-

-1.41

0.20

Icma

AII Moments

Abma

0.90

1.88

0.94

C0
0.00

LLI4
%.94

-1.88

Band Filling

Band Filling

1.41-

0.71

E0
0.00

LLI

Cl
-0.71-

0.20

p3 and p4 only

Abma
I

(b)

1.72

0.86 z=p.pp

E0
0.00

ul4
A.86

p and p~

0.1

-1.72 .

Band Filling

Band Filling

FIG. 7. Difference in energy between the Icma, Pnma, and
Abma, structures as a function of fractional band filling. In (a)
we show the full band calculation while in (b) we use the contin-
ued fraction approximation using only p3, p4, E„and E&. See
discussion of Fig. 1 for figure conventions.

FIG. 8. Differences in energy between the Abma structure
when the z parameter equals 0.00 and 0.15 and when it equals
0.10 as a function of fractional band filling. In (a) we show the
full band calculation and in (b) the continued fraction approxi-
mation using only p3, p4, E„,and E& ~ See discussion of Fig. 1

for figure conventions.
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calculation for z =0.00, 0.10, and 0.15. In Fig. 8(b) we
use only p3, p4, E„,and E&. It may be seen that the prin-
cipal features of the curves in Fig. 8(a) are reproduced by
Fig. 8(b). These results can be understood in the follow-
ing manner: At z =0 one has unpuckered two-
dimensional (2D) closest-packed sheets with little inter-
layer interaction. As each atom lies on six different trian-
gles in 2D closest packing, there is a surfeit of triangles
for an s- and p-band filling of 0.375 (the band filling of
gallium). In changing z from z =0.0 to z =0. 1 one re-
places the intralayer triangular interactions with an inter-
layer hexagonal interaction (these hexagons can be seen
in Fig. 5). However, by the time the point z=0. 15 is
reached, the interlayer hexagons have almost completely
supplanted the aforementioned triangles. At this point,
we have too few triangles to be compatible with the frac-
tional band filling of 0.375. The optimal value for
z =0.10 is therefore due to an optimization of the num-
ber of triangles.

ZINC AND CADMIUM

Zinc and cadmium form in the hcp structure. The
hcp structure type has only one size-independent parame-
ter, the ratio of the c and a crystallographic cell axes
(c/a). For a c/a value of 1.63 the hcp structure is a true

l.75-
'

exp.

theory
o I

o I

I

I.65;, "-
~ ~ .. o

i
$ y

experiment

.l50 .l75 .200 .225 .250
fractional band filling

FIG. 9. The c/a ratio in noble metal and main group metal

hcp structures as a function of fractional s and p band filling.
The experimental curves are the average of the following binary
alloy systems: Au-Hg, Au-Cd, Au-In, Au-Sn, Au-Zn, Ag-Ga,
Ag-Hg, Ag-As, Ag-Sb, Ag-In, Ag-Cd, Ag-Sn, Ag-Al, Az-Zn,
Cu-Ga, Cu-Ge, and Cu-Zn. The theoretical curves are the opti-
mized values using variance scaling, a rigid band model, and
zinc atomic parameters. Small circles indiate the actual results
of our optirnizations. Filled circles indicate global minima,

empty circles indicate local minima. The bars around each cir-
cle indicate values within 0.005 eV per unit cell of the associated
minimum. The fork in the theory curve near a fractional band
filling of 0.235 indicates the presence of a double minimum.
The dashed line indicates a region without experimental data.
The ideal c/a ratio of 1.63 is indicated as a horizontal line. A
90 k-point mesh was used for all hcp optimizations.

closest packing and every atom has exactly twelve nearest
neighbors.

It is well established that the ratio of the t" /a axes in
noble-metal and main-group metal alloys depends strong-
ly on the number of valence electrons. This dependence
is shown in Fig. 9. It may be seen that at fractional band
fillings near a value of 0.15 the experimental c/a ratio is
near the ideal value of 1.63. For the slightly greater elec-
tron filling of 0.23, the c/a ratio is lowered to 1.55.
There is then a discontinuous jump in this c/a ratio as
one approaches a fractional band filling of 0.25. Finally
the hcp structure does not exist for noble-metal —main-
group metal alloys at higher electron concentrations than
0.25 except in the case of relativistic heavy atoms. These
experimental results may be compared with our theoreti-
cal results which are also shown in Fig. 9. It may be
seen that the qualitative trends of the experimental
curves are reproduced in our calculations. For electron
concentrations near an s and p band filling of 0.15, the
ideal c/a ratio of 1.63 is observed. Near a band filling of
0.23 the c/a ratio reduces to a value near 1.55. Finally at
a fractional band filling of 0.235 there is a discontinuous
jump in the c/a ratio. While in the true zinc experimen-
tal structure this ratio rises to 1.86 (in cadmium the c/a
ratio is 1.89), in our theory a pure two-dimensional sheet
is the preferred structure. Thus while we are able to ex-
plain why the sheets become separated in elemental zinc
or cadmium, we have not properly modeled the restoring
force which prohibits further increase in the c/a ratio
beyond the c/a ratio of 1.86.

The qualitative agreement between the experimental
and theoretical curves allows us to determine the princi-
pal structural feature responsible for the increase in the
c/a ratio in elemental zinc (and cadmium). We find that
at band fillings greater than 0.21 the three-dimensional
closest packings have a surfeit of triangles of bonded
atoms. Both raising and lowering the c/a ratio from 1.63
reduces the size of p3. As one increases the band filling

the only effective way to reduce p3, however, is to in-

crease the c/a ratio. The two dimensional packing is
therefore adopted for the same reason that the Abma
structure is observed for elemental gallium. As we dis-
cussed in the preceding section, by the point the band
filling is 0.375 the two-dimensional closest-packed
(z =0.0 geometry) structure in turn gives way to the gal-
lium structure with even fewer triangles.

BORON

With the exception of sulfur, no element displays
greater polymorphism in its crystal structures than bo-
ron. Nine polymorphs have been reported with unit
cells ranging from a twelve-atom rhombohedral cell to a
1708-atom cubic cell. The structures of five of these po-
lymorphs have been fully resolved. In all five, regular
icosohedra play a significant role. Structures derived
from icosohedra play an equally ubiquitous role in molec-
ular boron chemistry. We show this icosohedron from
two perspectives in Fig. 10.

The nature of the bonding within boron icosohedra is
well understood. ' Wade's rules for clusters associate 26
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TABLE II. Crystal parameters for the boron R-12 structure.

FIG. 10. Two views of the icosohedron. On the left it is seen
down a twofold axis while on the right it is viewed down a
threefold axis.

Parameter

a
a
8(1)x
8(1)z
S(2)x
8(2)z

Experiment

5.057 A
58.06
0.010
0.657
0.221
0.632

Theory

56.7
0.00
0.67
0.22
0.62

valence electrons with bonds internal to the icosohedra
(intraicosohedral bonds). These rules have been amply
tested both experimentally and theoretically. There is
therefore no current need to reinvestigate these in-
traicosohedral bonds. The same cannot be said for interi-
cosohedral bonds. While it is known that three center
(triangular) and two center bonds are important, the ex-
act relation between these bonds and electronic energy is
not well established.

In our calculations we will concentrate on the simplest
of the boron polymorphs, the R-12 structure, which con-
tains twelve atoms in a rhombohedral cell. Each unit cell
of this structure contains one icosohedron whose center
can be placed at the cell axes origin. As boron has three
valence electrons, there are a total of 36 valence electrons
per primitive unit cell; of these 36 electrons, 26 are used
in intraicosohedral bonds and 10 in intericosohedral
bonds.

There are five crystallographic parameters which con-
trol the shape of the R-12 polymorph. They are the
rhombohedral cell angle a and the atomic x and z frac-
tional coordinates for the two symmetry-inequivalent bo-
ron atoms. In Table II we show our optimal values for
these parameters using our variance scaling technique.
The six inequivalent bonds in the R-12 structure are
found experimentally to have the lengths of 2.021, 1.787,
1.785, 1.777, 1.733, and 1.709 A. Theoretically (if we as-
sume an optimal value of y') we find these bond lengths
to be respectively 1.90, 1.88, 1.89, 1.79, 1.56, and 1.73 A.
While our calculated bond lengths are roughly in the
correct order in going from longest to shortest lengths,
the numerical agreement is poor. The average error in
bond lengths is 0.09 A.

As in the preceding studies on gallium and zinc, it is
instructive to compare the R-12 structure with reason-
able crystallographic equivalents in order to elucidate the
most significant structural features of the R-12 structure.
As our primary interest is with the intericosohedral
bonds we consider alternative packings of these icosohe-
dra. In particular, for the sake of numerical simplicity
we consider systems which have exactly one icosohedron
per unit cell. Furthermore we assume that the icosohe-
dra line up in such a way as to preserve some portion of
the point-group symmetry of the individual clusters. Of
the three types of rotational axes (fivefold, threefold, and
twofold) only the threefold and twofold axes are compati-
ble with translational crystalline symmetry. These sym-
metry axes are found in the trigonal, orthorhombic, and
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FIG. 11. Differences in energy between the high-symmetry
Bravias lattices where there is one icosohedra per unit cell as a
function of fractional band filling. At the fractional band filling
of boron, 0.375, the experimentally observed rhombohedral
form is preferred. See the discussion of Fig. 1 for figure conven-
tions.

monoclinic crystal classes. We consider here only the
higher symmetry trigonal and orthorhombic lattices. We
recall that there are four types of orthorhombic Bravais
lattices (primitive, face centered, end centered, and body
centered) and only two types of trigonal Bravais lattices
(primitive and rhombohedral). We therefore need to ex-
plore these six different Bravais lattices. We therefore
optimized elemental boron assuming that its structure
corresponded to one of these six different lattice types. In
each case we maintained a perfect icosohedral shape for
the individual clusters. In Fig. 11 we compare the
differences in energy of these polymorphs. It may be seen
that at an s and p band filling of 0.375 (which corresponds
to the fractional band filling of elemental boron) the ex-
perimentally observed rhombohedral form (R-12) is the
most stable. At lower electron counts the primitive trigo-
nal and face-centered orthorhombic structures are more
stable while at higher band fillings the C-centered and
primitive orthorhombic cells are energetically preferred.

We now apply the method of moments to determine
the specific structural causes for these energy differences.
In particular, we will consider the primitive trigonal form
as an example of a polymorph stable at low band fillings
and the C-centered orthorhombic lattice as an example of
a phase stable at high band fillings. It is instructive to
first consider in detail the pertinent structural features of
these phases. In Fig. 12 we illustrate the rhombohedral
(R-12), C-centered orthorhombic, and primitive trigonal
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polymorphs. In the middle of Fig. 12 we portray the
rhombohedral structure viewed down primarily the hex-
agonal [001] axis. It may be seen that in the (hexagonal)
a-b crystallographic plane the intericosohedral bonds
form both triangles and squares of bonded atoms. There
are two such triangles and three such squares per unit
cell. Also shown in Fig. 12 is a triangle of atoms con-
nected to the regular icosohedra by 1.71 A bonds. This
triangle represents the base of an icosohedron in the
next-higher plane in this structure. These 1.71 A bonds
lie on intericosohedral hexagons of bonded atoms. We
note that these 1.71 A bonds point radially outward from
the icosohedron. On the bottom of Fig. 12 we illustrate
the primitive trigonal cell viewed down primarily the
[001] axis. It is identical to the rhombohedral cell within
the a-b plane. It differs in the positioning of the out-of-
plane icosohedra which in the primitive trigonal struc-
ture lie directly above the lower icosohedra. The bases of
four of the out-of-plane icosohedra are shown in Fig. 12.
It may be seen that the interlayer cavities are octahedra.
As octahedral faces are triangles, these out-of-plane oc-
tahedra increase the p3 value for the primitive trigonal
lattice significantly.

On the top of Fig. 12 we illustrate the C-centered or-

v

—b-
C- centered orthorhornbic

thorhombic structure viewed primarily down the [100]
direction. It may be seen that there are squares involving
intericosohedral bonds in this structure normal to both
the a and b directions. Bond angles between these inter-
isocohedral and the intraicosohedral links therefore are
as small as 90'. Harder to see are the hexagons of bonds
normal to the c axis. It is interesting to note that the a-b
plane of the icosohedra found in the C-centered ortho-
rhombic structure is identical to sheets found in the
rhombohedral structure.

In Fig. 13 we show the differences in energy between
these three structures using only p3, p4, E„, and E, .
These curves reproduce many of the qualitative features
of the full band calculations. In particular, it may be seen
that the primitive trigonal structure is stable for low frac-
tional band fillings while the C-centered orthorhombic
structure is stable for high band fillings. These
differences in energy can be explained in terms of local
structural features. The difference in energy between the
primitive trigonal and the rhombohedral geometry is due
to the larger p3 in the former geometry. This difference
in p3 is due to the formation of octahedral cavities be-
tween the individual icosohedral units (octahedra have
eight triangular faces).

The difference in energy between the rhombohedral
and C-centered orthorhornbic structures is due to the
different fourth moments for the two structures. The C-
centered orthorhombic structure has twice as many
squares of bonded atoms as does the rhombohedral struc-
ture. Although this contributes to the larger p4 of the C-
centered cell, the principal difference in p4 is caused by
the intericosohedral bond angles. In particular, JM4 is
minimized when the intericosohedral bonds point radially
outward. The six 1.71 A bonds in the rhombohedral
structure are oriented in exactly this manner. By con-
trast none of the intericosohedral bonds in the C-centered
cell are aligned in such a fashion. We therefore conclude
that the rhombohedral Bravais lattice is energetically
preferred for two reasons. On the one hand it minimizes
the number of intericosohedral triangular interactions,
while on the other it minimizes the p4 term by maintain-
ing the proper intericosohedral bond angles.

rhombohedral
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FIG. 12. The optimal structures of the C-centered ortho-
rhombic, rhombohedral, and primitive trigonal Bravais lattices
of single icosohedra.

FIG. 13. Difference in energy between the primitive trigonal,
C-centered orthorhombic, and the rhombohedral Bravais lat-
tices of single icosohedra as a function of fractional band filling.
The results shown here are the continued fraction results using
only p, , p4, and E, .
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MAGANESE

Maganese has the most complex of all elemental struc-
tures. The thermodynamically stable form
( &727'C)a-Mn has 58 atoms in a body-centered cubic
unit cell. A portion of this cell is illustrated in Fig. 14.
The crystal structure of a-Mn has been determined six
times, and from this data it would appear that the
structure belongs to the body-centered cubic space group
I43m with four symmetry-inequivalent sites. There are,
however, still unresolved structural issues in the a-Mn
structure. a-Mn is known to be antiferromagnetic. On
the basis of symmetry conditions alone, one may deduce
that two of the symmetry-inequivalent sites are each di-
vided into two sets of magnetically inequivalent sites.
Hence the I43m space group is not compatible with the
magnetic structure. A space group which is compatible
with the lower symmetry is the body-centered tetragonal
cell of I42m.

Earlier studies have applied tight-binding techniques to
rationalize the structures of the transition elements. We
have shown in our earlier work that the a-Mn structure
is the most stable structure at an electron count of seven
s, p, and d electrons per atom when compared to the oth-
er known transition-metal structures and also when using
first-row transition element parameters. This comparison
was made with the P-Mn, body-centered-cubic, fcc, hcp,
and 0-phase structures. This earlier study correctly ac-
counted for the structures of the group 5-group 12 ele-
ments of the Periodic Table in much the same way as our
results shown in Fig. 1 correctly account for the struc-
tures of elements 29—34. These results suggest that the
electrons involved in the antiferromagnetism of a-Mn do
not control the principal character of this structure.

We have, therefore, optimized this structure using the
variance scaling method. Due to the large size of this

FIG. 14. The structure of a-Mn.

TABLE III. Crystal parameters for the a-Mn structure.

Parameter

a
Mn(II)x
Mn(III)x
Mn(III)z
Mn(IV)x
Mn(IV)z

Experiment

8.913 A
0.318
0.357
0.035
0.090
0.282

Theory

0.29
0.34
0.02
0.06
0.28

calculation we have only explored the energy surface near
the experimental parameter values. Assuming the sym-
metry is I43m there are five atomic positional parame-
ters. In Table III we show our calculated optimized
values for these parameters. Errors are slightly larger
than in the main-group element optimizations, the aver-
age error being 0.017. We can also use our method to
probe the space-group assignment of the x-ray crystallo-
graphic group. We therefore allowed the Mn atoms to
lower themselves from cubic symmetry to the I42m
tetragonal space group. We find that the I42m solution
is considerably lower in energy than the optimal cubic
I43m geometry (by at least 4 eV per unit cell). At this
time, we have not made an exhaustive search among all
subgroups of I43m and it is therefore possible that there
are subgroups with even lower energy. Nevertheless our
data suggest it would be worthwhile to see if indeed, as
the magnetic data suggests, a-Mn is subtly distorted from
the accepted cubic space group.

CONCLUSION

In this article we have used a tight-binding theory to
study the structures of the lighter elements in the period-
ic table. We have examined first the trends in structure
found in a single period. We have then studied the curi-
ous structures of a-Mn, gallium, boron, zinc, and cadmi-
um. In all cases we have found that our tight-binding
method can account qualitatively and semiquantitatively
for the experimentally observed crystal types. The only
structure-dependent integrals calculated in our method
are the two-center overlap integrals between valence
atomic orbitals. Exchange, Coulombic, self-consistent-
field, and correlated electron motion effects have been ig-
nored except insofar as they contribute either to the pair-
wise repulsion energy (which itself is also estimated from
the two-center overlap integrals) or to the structurally in-
variant Hartree-Fock atomic parameters. Together with
previously published results for clusters, alloys, and in-
termetallic systems, ' our findings present a startlingly
simple picture of the interactions principally responsible
for the shape (but not size) of metallic and covalent solids
and molecules.

The type of structure adopted by an element is princi-
pally governed by the overlap of the element's valence
atomic orbitals. The effect of these valence atomic orbit-
als can be readily decomposed in a finite cluster-type ex-
pansion (moment expansion). The principal feature
which controls the stability of an elemental structure is
the local coordination environment around the atoms.



12 130 STEPHEN LEE, ROGER ROUSSEAU, AND CYNDI WELLS

The most important relation is between the number of
triangles of bonded atoms and the fractional band filling.
For example, both the elemental zinc and elemental galli-
um structures are the result of optimizing the number of
triangles of bonded atoms with respect to fractional band
fillings of 0.25 and 0.375. In a similar fashion there exists
an interplay between the number of squares and bond an-
gles and the fractional band occupancy, as we illustrated
in the case of elemental boron. These relationships are
pithily described by continued fraction functions.

These effects hold equally true for metals such as galli-
um as for nonmetals such as boron. Within the context
of our method the oftentimes-made distinction between
the directional covalent nonmetallic bonds and the non-
directional metallic bonds obscures more than it il-
luminates. We find instead that the structures of metals
and nonmetals are due to the overlap of the same valence
atomic orbitals. The critical difference between metals
and nonmetals arises from the fact that in the regime of
small band fillings, structures rich in triangles are ener-
getically stable. Band calculations on such structures
show that such triangle-based structures rarely have band
gaps. We conclude that in those cases where the struc-
ture type is controlled by electron count (versus size) the
nondirectionality of metallic bonds is principally a conse-
quence of the high coordination numbers associated with
triangle-rich structures.
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APPENDIX

We state here the formulas needed to generate p(E)
from the values of p„. It is useful to define the variable

po p&

p) p2 pn+i

pn pn +1 p2n

We may then define the sequences a; and b;, where

A„=aoa, a„A„
Et'+'B (E)p(E)dE= —ao a (bo+b, + b ),

Bz(E)=(b &+E)B,(E)—a &B 2(E),

where

p(E) =Im E+bo—

ao

a,
a2

E+b~ f—
(Al)

In Eq. (Al) the number of a; and b; corresponds to the
number of moments in use. For example Eq. (Al) is the
correct function to use when one knows only po —p4. For
the case of po —p6 an extra row would be added to the
fraction on the right side of Eq. (Al). These formulas
only hold in the case of purely continuous functions.

B t(E)=0 and Bo(E)=go .

We now use E„and EI to find a and b, where
E„= b+2&a—and Et= b —2&a—. The formula for
p(E) is then
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