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We present measurements of ab-plane thermal conductivity (k) for a series of Nd,_, Ce, CuO,_, sin-
gle crystals (x=0.025,0.15,0.22) at T <300 K. For all specimens « increases with decreasing tempera-
ture, rises sharply for T <100 K, and reaches a maximum at T =20-30 K. Near room temperature
k=12 W/mK for the insulator (x=0.025) and k=~ 14-16 W/mK in superconducting (x=0.15) and me-
tallic (x=0.22) specimens. These differences are attributed to differing electronic contributions to heat
conduction. No anomaly in x(T) was observed at the superconducting transition of the x=0.15 sample.
For T <T,, « is suppressed slightly by the application of a strong magnetic field, consistent with an in-
crease in phonon-electron scattering. The k data are compared to previous results for the other cuprates.

The normal-state transport properties of the cuprates
have been the focus of considerable experimental and
theoretical investigation in recent years. The lower-T,
cuprate Nd,_,Ce,CuO,_, (NCCO) is of particular in-
terest because it is viewed as electron doped and because
the normal-state properties may be investigated over a
broader temperature range.

In this Brief Report, we present measurements of in-
plane thermal conductivity on a series of NCCO crystals,
spanning the insulating (underdoped), superconducting,
and metallic (overdoped) regimes. Our general finding is
that NCCO behaves like a conventional phonon-
dominated heat conductor. The electronic contributions
to heat conduction are estimated to be rather small
(<20%) and can account for small differences in the
room-temperature values of k. The more heavily Ce-
doped specimens have substantially reduced conductivity
maxima at low temperatures, consistent with increased
phonon-defect scattering. The effect of superconductivity
on the heat transport is determined from direct measure-
ments of the normal-state k for T <T, by applying a
strong magnetic field.

The crystals used in this study were grown in CuO flux
using a directional solidification technique, as described
in detail elsewhere.! The platelike crystals were 50-75
pum thick (¢ axis), with 1-2-mm dimensions in the ab
plane. Superconductivity (ac susceptibility onset T, =24
K) was induced in the x =0. 15 specimen by annealing in
a reducing atmosphere. The electrical resistivity,"? Hall
coefficient,? and thermopower? of similarly prepared crys-
tals have been reported previously.

The thermal conductivity was measured by a steady-
state method employing a differential Chromel-
Constantan thermocouple and a small heater, glued to
the specimens with varnish. Samples were suspended in a
radiation-shielded vacuum can. The temperature gra-
dient during measurement was typically 0.5-2.0 K/mm.
Linearity in the AT response was confirmed by varying
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the heater power. The absolute accuracy of the k mea-
surements is limited by the uncertainty in the specimen
geometry and is estimated to be +10%. For the mea-
surements in-a magnetic field, the magnetothermopower
of the thermocouple was calibrated against carbon-glass
sensors in a separate experiment.

The in-plane thermal conductivity (k) versus tempera-
ture is plotted for three specimens in Fig. 1. The insula-
tor (x =0.025) has « (300 K)~12 W/mK, somewhat
smaller than « (300 K)=13.5 W/mK (x =0.15, super-
conducting), and 15.5 W/mK (x =0.22, metallic). These
differences are undoubtedly due, in part, to a larger elec-
tronic contribution to heat conduction in the supercon-
ducting and metallic specimens. Generally, we consider
the total thermal conductivity to be a sum of lattice (k)
and electronic (k,) components. We may estimate an
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FIG. 1. In-plane thermal conductivity vs temperature for
three NCCO crystals.
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upper bound for k, by applying the Wiedemann-Franz
law (WFL) k, <L,T/p (Ly=2.45X10"% Q W/K?). Us-
ing electrical resistivities?? p(300 K)=450 upQcm
(x =0.15) and 200 2 cm (x =0.22) implies x, = 1.6 and
3.7 W/mK, respectively. Thus, within the accuracy of
the measurements, the differences in k (300 K) for these
three specimens are consistent with estimated differences
in k,. From this, we conclude that «; (300 K) is compa-
rable for the three specimens.

The increase in « with decreasing temperature, the oc-
currence of a sharp maximum, and the rapid decrease in
k at the lowest temperatures are all characteristics of lat-
tice heat conduction in insulating materials.* At temper-
atures approaching the Debeye temperature, phonon-
phonon scattering tends to dominate the lattice heat con-
duction of nearly perfect insulators, giving rise to a
k < 1/T behavior. The much weaker temperature depen-
dencies evident for 77>100 K in Fig. 1 indicate that
phonon-defect scattering is substantial in all specimens.
Near the maximum (k,,,), defect scattering tends to dom-
inate the lattice thermal resistance, with higher and
sharper peaks expected in more perfect specimens. Gen-
erally, we anticipate that the cation disorder associated
with the substitution of Ce for Nd will result in addition-
al scattering of phonons at low temperature, leading to a
suppression of «,.. The x =0.025 specimen has the
highest and sharpest maximum with «,, <96 W/mK at
T ~20 K. However, the data for the x =0.15 and 0.22
specimens do not follow a simple trend. For x =0.22,
~58 W/mK at T=20 K whereas the peak for
~28 W/mK, and

Kmax
x =0.15 is substantially smaller,

occurs at T =25 K.

One possibility we have considered is that the reducing
anneal, to which the x =0.15 crystal was subjected to in-
duce superconductivity, introduced defects that could ac-
count for its lower k,,,,. To test this hypothesis, we an-
nealed the x =0.22 specimen under similar conditions’
and remeasured k. These data are shown in the inset of
Fig. 2. The decrease by =2 W/mK in the high-
temperature value of « for the annealed crystal can large-
ly be accounted for by geometric uncertainties in the
placement of the thermocouples, though a decrease in k,
is also possible. The normalized data (Fig. 2) show clear-
ly the reduction in the relative peak height, with little
change in its temperature position. Also shown is the
normalized data for the x =0.15 specimen.

The effects of the heat treatment were to reduce K.y,
though apparently not by as much as required to account
for the observed difference in the data for the x =0.15
and 0.22 crystals. Chemical inhomogeneity (e.g., nonuni-
form Ce distribution) is another possible source of pho-
non scattering. Preliminary studies > of the nominally
x =0.15 crystal using the color of polarization® and
energy-dispersive x-ray analysis reveal distinct, phase-
separated layers with differing Ce concentrations along
the growth direction (c axis). This stratification undoubt-
edly introduces additional scattering at the interfaces be-
tween regions. Further measurements correlating « with
crystal chemistry and microstructure would be required
to make more conclusive statements regarding phonon-
defect scattering.
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FIG. 2. In-plane thermal conductivity, normalized to values
at 300 K, vs temperature for the x =0.15 and 0.22 (annealed
and unannealed) crystals. The inset shows « (T) for the x =0.22
crystal before and after the anneal.

Another issue we have explored is the effect of super-
conductivity on the heat flow in the x =0.15 crystal. In
Fig. 3 we plot « for the x =0.15 specimen, measured in
zero magnetic field and in a field H =9 T parallel to the ¢
axis. Note that the zero-field « is slightly reduced (with
T ,..x now =30 K) from the data of Fig. 1, the latter mea-
sured several months earlier. The origin of this aging
effect is unknown. No deleterious effects of aging on the
superconducting transition were observed.

For fields parallel to the ¢ axis, magnetization measure-
ments’ on Sm-Ce-Cu-O crystals yield an upper critical-
field slope dH,,/dT =~ —0.5 T/K. We thus estimate that
for a 9-T field our specimen is driven normal for T = 6-7
K. The data reveal a slight field-induced reduction in «
by =~1 W/mK. In Fig. 4 we plot the normalized thermal
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FIG. 3. In-plane thermal conductivity vs temperature for the
superconducting crystal (x =0.15) with and without a 9-T mag-
netic field applied along the c axis.
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FIG. 4. Ratio of in-plane thermal conductivities in the super-
conducting and normal states, k°/k"=k (H =0)/k (H=9 T),
plotted vs reduced temperature.

conductivity «*/k"=« (H =0)/k (H=9 T) versus re-
duced temperature. The error bar of +2% represents the
estimated uncertainty associated with the thermocouple
calibration.

To interpret this result, we must consider the contribu-
tions from both k; and k,. At temperatures just above
T,, the electrical resistivities of nominally x =0.15 crys-
tals' ™% are nearly T independent (residual resistivity re-
gime) and fall in the range 50-250 uQ) cm. Applying the
WFL, these values correspond to k, in the range 0.3-1.2
W/mK. We see that, while k, represents only a small
fraction (<10%) of the total-heat transport for 10 K
<T =T, it represents a substantial fraction of the field-
induced change in k.

Theoretically, k, decreases for T' < T, when defects are
the principal source of electron scattering (elastic-
scattering limit).® The temperature independence of the
electrical resistivity near T, suggests that this is the ap-
propriate description for NCCO. In contrast, «; tends to
increase for T <T,, as the formation of superconducting
pairs reduces phonon-electron scattering. When we drive
our specimen normal by turning on the field, we thus ex-
pect an increase in k, and a decrease in «; . The observed
decrease in the total x (Figs. 3 and 4) then implies that
the reduction in «; is larger than the increase in «, .

The rather small field-induced change in « indicates
that k; is not strongly affected by scattering from car-
riers. This is not surprising, given that at these tempera-
tures the long-wavelength acoustic phonons responsible
for most of the heat conduction tend to scatter principal-
ly from defects and the crystal boundaries. Note that this
conclusion is not necessarily inconsistent with a moderate
or strong electron-phonon coupling parameter (1), which
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represents an average over the entire phonon spectrum.

Finally, we compare the present results with measure-
ments of in-plane « in crystals of the hole-doped cuprates.
All of the cuprates® (including NCCO) are similar in that
phonons dominate the heat conduction. YBa,Cu;0,_g
(YBCO) has the highest « for the hole-doped materials.
We find that the magnitude of « for NCCO at
T =200-300 K is larger than that of twinned'® YBCO by
a factor of 1-2, but comparable to that of untwinned
YBCO.!! YBCO crystals typically have electrical resis-
tivities half that of NCCO, implying «, values twice as
large. This suggests that «; is several W/mK larger in
NCCO than in YBCO.

Another observation which suggests superior lattice
conduction in NCCO is the temperature dependence of «.
From Fig. 2 we see that « increases by =~40% as T de-
creases from 300 to 100 K. As noted above, this negative
temperature coefficient of « is the signature of phonon-
phonon scattering. The substantially weaker temperature
dependencies observed for the other materials in this re-
gime suggest that phonon-defect scattering is relatively
less important in NCCO. Analyses of «; in YBCO (Refs.
12 and 13) indicate that phonon-defect scattering ac-
counts for more than half the thermal resistance at
T>T,. For La,_,Sr,CuO, (x =0.2), the closest hole-
doped analog of NCCO, « is smaller than that of NCCO
by a factor of 2 and decreases with decreasing tempera-
ture,' suggesting a more disordered lattice. The same
can be said of « in Bi 2:2:1:2 crystals.!> Thus, with regard
to lattice conduction, it appears that NCCO is “cleaner”
than the other materials investigated to date.

To summarize, we have reported measurements of in-
plane thermal conductivity on a series of NCCO crystals
with various Ce concentrations. The data demonstrate
that -heat transport in NCCO is qualitatively similar to
that of imperfect insulators, with a relatively small elec-
tronic contribution ( <20%). The low-temperature max-
imum in k is suppressed with increasing Ce content and
after a reducing heat treatment, consistent with increased
phonon-defect scattering from cation and oxygen disor-
der. Generally, the lattice heat conductivity is larger and
more strongly temperature dependent than in crystals of
the other cuprates, implying relatively less phonon-defect
scattering in NCCO. For the superconducting composi-
tion at T <T,, k is reduced in a magnetic field sufficient
to drive the specimen normal, indicating an increase in
phonon-electron scattering.
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