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Electronic properties of linear compositions of two binary compounds
with random layer thicknesses
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The electronic properties of a one-dimensional (1D) disordered system are studied with a model

describing the linear composition of two binary compounds with random layer thicknesses; the model is

studied with Dean's method, the transfer-matrix method, and Landauer's formula. For certain degrees
of randomness, the energy spectrum, some wave functions, and the average resistivity are obtained. The
appearance of some special peaks in the spectrum is due to a particular arrangement of atoms that

occurs randomly. Some wave functions remain delocalized with disorder, contrary to the general

theorem on the absence of such states in 1D disordered systems.

The electronic, phononic, and magnetic properties of
one-dimensional (1D) quasiperiodic systems, especially
the localization features of the states, have been studied
by many authors. ' At the same time, 1D disordered
systems have been studied extensively. According to the
scaling theory on Anderson localization, the electronic
states in 1D disordered models are always localized. Re-
cently, Dunlap, Wu, and Phillips discovered that for a
special type of disorder this is not the case, and demon-
strated this by showing that there are some delocalized
states in a random-dimer model. Dunlap, Kundu, and
Phillips' and Flores" also found delocalization in certain
statistically disordered lattices in any spatial dimension.
In the present paper we propose another model of a 1D
disordered system by constructing a linear composition
formed from alternating connections of two binary com-
pounds with random layer thickness. The work is
motivated by current studies of GaAs/A1As superlattices
with artificial random thickness which exhibit some
unusual properties in experiments. '- The present 1D
model can be used to mimic the structure of these materi-
als in their growth direction and to describe some princi-
pal features of electronic states.

We use the tight-binding Hamiltonian

H= y E(n)~n ) (n~

+ & (tin) (n+1)+tin) (n —ll)

to describe the 1D electronic system, where ~n ) denotes
the Wannier state at the nth site, E(n) is the correspond-
ing energy level, and t is the nearest-neighbor hopping
strength. The chain is made of alternating connections of
segments of two compounds 3 and B; A is an atom array
consisting of two species a and b: ababab . .

; B is ar-
ray acacac. . .

, with c another atom species. The energy

level E (n) takes one of values E, , Eb, and E„respective-
ly for atoms a, b, and c, depending on the species of the
nth atom.

For a periodic chain, the atom arrangement is

ahab acac ahab acac
L~ La L~ L~

where L„and L~ are the lengths of segments 3 and B,
respectively, and the period is L„+L~. By introducing
random layer thickness, the segment lengths become ran-
dom variables and their fluctuations may be expressed by
the stochastic functions

XPA o(LA

P(Ltt ) = g ptt, 5(Ls i ), —

where

1, I =O

0 I&0'

and p~(z), - is the probability of finding a segment of com-
pound A (B) having i atoms. The length of a specific seg-
ment is randomly produced from this distribution, and
the whole lattice is formed by subsequent connections of
the segments.

Once the lattice is constructed for given values of the
parameters in Eq. (3), the energy spectrum can be calcu-
lated by Dean's method. ' For a finite chain of X atoms,
the number of states with eigenvalues less than c is the
number of negative U, (i =1,2, . . . , N), and the U's are
determined from following relations:

U, =E(i)—E —t IU, , i =2, . . . , N;
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By use of this theorem, the density of states is obtained
and shown in Fig. 1. By comparing the results for ran-
dom chains and a periodic one, it can be seen that for
random chains, there are two peaks at E= —0.75 and
E= —2.25, that are produced by aa atom clusters, which
are absent in the periodic system. It can also be seen that
more structures appear as the randomness is increased.

To calculate the wave functions, we use the improved
Dean's method. ' ' If a„denotes the amplitude at site n

of a wave function with eigenvalue EJ, and ak%0, then
we choose ak=1 and the other amplitudes can be ob-
tained from the recurrence relations:

ak+; = —t 5k+; ak+(;, ,), for N k ki 1,+

and

b, =1/[E(i) E+t—b,;+,], for N ~i+1~1,
b,~ =1/[E(N) E],—
5, =1/[E(1) E] .—

For a random chain two calculated wave functions are
shown in Fig. 2. The state shown in Fig. 2(a) is obviously
localized, while the state in Fig. 2 (b) seems to be delocal-
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FIG. 1. Energy spectrum of 1D model in text with 5000
atoms. The parameters in Eq. (3) are

0.75 for i =4,
(a) p»- =p»- = .0.25, for i =3,

0, otherwise .

1/3, for 5~i ~3
(b) 0, otherise .
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FIG. 2. Two wave functions of a random chain. The param-
eters of randomness are the same as those of Fig. 1(a). The cor-
responding eigenvalue is (a) E= —1.9820t. (b) E= —1.9851t.
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[e E(n—)]a„—a„+,—a„,=0, for N+1 ~n ~1 . (6)

The relation connecting both ends of the segment can be
expressed by the transfer matrix

)V+1
e E(i) ——1 a&

. (7)
aN+2

0aN+1 a0 a0

ized. Thus, we have also been led to the unusual con-
clusion previously obtained in Refs. 9—11.

To further confirm this conclusion, we use Landauer's
formula, together with the transfer-matrix method, to
calculate the resistivity, which is a plausible quantity for
estimating the localization and can be examined, in prin-
ciple, by experiment. This method has been used by
several authors to investigate the localization in disor-
dered and incommensurate models. ' ' As a first step
implementing the method, we embed a segment of the
present random chain containing %+1 atoms in an
infinite and perfectly conducting chain. By setting t =1,
the equation for amplitudes in the segment of a wave
function with eigenvalue c becomes

function, we use an average resistivity defined as

p(e, N) =—g R (E,i) ii .

For delocalized states, the reflection coefficient is smaller
than unity, so
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The wave function in rest of the system, which is a per-
fect conductor separated into two parts by the random
segment, can be expressed as plane waves. We then con-
sider a particle being injected into the segment from left
of the perfect parts with unit incident amplitude. If the
amplitudes of the reflection and transmission waves are
rN and tN, respectively, then we have

exp( ikn )+rz exp( i kn ), —n ~ 0,
C

ttt exp(ikn ), n ~ N + 1 .

)a.
C)

Ql
0

2500
SIZE N

5000

We define another transfer matrix TN as

so

N TN ) ) TN ) 2

TN

Ir~ I'=
I T+12I'~

I T~i ) I',

0

(10)
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From Eqs. (7)—(9), T~ can be calculated as

TN =OS ' VNS,

where

(a.

Q)
0

—1-

exp[ik(N + 1)] 0
0 exp[ ik(N + 1—) ]

(13)

exp( i k ) exp( ik)—
1 1

The energy-dependent and dimensionless resistance
R (e,N) of the segment is defined by Landauer's formula:

(14)

To find an e6'ective criterion for localization of a wave

-3,
[ |

SIZE N

FIG. 3. Logarithm of average dimensionless resistivity as a
function of the size of the system. The parameters of random-

ness are the same as those of Fig. 1(a). The corresponding wave

function is (a) The wave function shown in Fig. 2(a). (b) The
wave function with energy level E= —1.9845t. (c) The wave

function shown in Fig. 2(b).



46 BRIEF REPORTS 12 007

and

R(E,i)/i=~r;~ li(1 —
~r;~ )~0 when i~ao,

P(c., N)~0 when N~ao .

Thus, after reaching some value of N, the average resis-
tivity monotonically decreases with increasing N for ex-
tended state, and increases with N for localized state.

The logarithm of average resistiviity as a function of
the size of the random segment is plotted in Fig. 3. The
localized behavior of the corresponding wave function
can be seen in Fig. 3(a), while the wave functions used for
calculation of Fig. 3(b) and Fig. 3(c) are delocalized.

In summary, we have studied an on-site model of a spe-

cial random chain. The energy spectrum, wave functions
and the specially defined resistivity are numerically calcu-
lated. It is found that randomness causes some specific
structure in the energy spectrum to appear. By increas-
ing the randomness the band width is enlarged. From
studying the results of the calculations of the wave func-
tions and resistivity, it is shown that the delocalized
states still exist when the system is disordered. This
differs from Anderson's localization theorem, but is con-
sistent with the conclusion of some recent litera-
ture 9—11,18

The authors would like to thank Chao Bin for perform-
ing some computer calculations.
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