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Electronic structure and magnetic coupling in copper oxide superconductors
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The electronic structure and magnetic coupling in La&Cu04 and Nd2Cu04 have been analyzed using

the results of all-valence-electron calculations for (Cu&0»)", (Cu40»)', and (Cu4020)' clusters,
and their p- and n-doped variants, embedded in a Madelung potential to represent the crystal environ-

ment. The calculations employ the semiempirical incomplete neglect of differential overlap (INDO)
method, which is parametrized on the basis of atomic and molecular spectroscopic data, but which

makes use of no data from copper oxide materials. The energies of the low-lying cluster spin states are
fitted to a Heisenberg Hamiltonian and yield values of J (134 meV for La2Cu04 and 117 meV for

Nd2Cu04) in close agreement with experiment. The evaluation of J can be compactly represented in

terms of the parameters (t, U, and V) of a one-band Hamiltonian that controls resonance among co-
valent and ionic valence-bond structures. The resonance mixing is achieved by configuration interaction
(CI) among valence-band structures defined in terms of localized molecular orbitals (LMO's) obtained
from self-consistent field (SCF) INDO calculations. I' doping is found to involve strong hybridization of
the 2pcr orbitals of the in-plane oxygen ions and the 3d 2 z orbitals of the Cu ions, and the resulting

x —y

holes are predominantly (-60%) located in the 2po orbitals. The lowest-energy n-doped cluster states
involve addition of electrons to the 4s/4p Cu atom manifolds. However, the separation of these states
from low-spin (3d' ) alternatives is uncertain because of apparent sensitivity to the representation of the

crystal potential, as found by Martin.

I. INTRODUCTION

Among the many challenges posed by the discovery of
high-T, superconductors, a correct description of the
electronic structure is an indispensable first step toward
unravelling the various novel properties of these rnateri-
als. The standard "band structure" approach, using the
local density approximation (I.DA), has been extremely
successful at describing many crystalline solids and also
many molecules. For example, the lattice constant,
cohesive energy, and magnetic moments of the 3d transi-
tion metals iron, cobalt, and nickel are well described by
the theory. However, the theory has not worked well for
the transition metal oxides such as FeO, CoO, NiO, and
CuO. Since the physics of the high-T, materials seems
closely related to that of the other oxides, one should be
cautious in applying the LDA. Indeed, several calcula-
tions' on La2Cu04 have failed to reveal the antifer-
romagnetism so well documented by neutron and Ra-
man scattering. This is almost surely related to the
"mean field" nature of the LDA and the fact that strong
Coulomb interactions necessitate a more detailed treat-
ment of electron correlation.

In the solid-state literature, this has led to the
widespread use of Hubbard models, ' where the large
Coulomb interaction is explicitly recognized. For high-
T, materials, the problem is often reduced to involve only
the strongly hybridized Cu 3d 2 2 and 0 2p„z orbitals in

the plane of the nearest-neighbor Cu—0 bonds, as in the
case of the three-band Hubbard model of Emery, " ' or
further renormalized to an effective one-band model, like
the resonating valence bond (RVB) model of Ander-
son, ' ' or that of Hybertsen, Schluter, and Christen-
sen, ' and the t-J model of Zhang and Rice. ' Two major
concerns related to model Hamiltonians are how the pa-
rameters are determined and, more importantly, how well
they describe the electronic structure. Eskes, Tjeng, and
Sawatzky, ' and Eskes, Sawatzky, and Feiner (ESF) in-
cluded all the Cu 3d and 02p states in their model Harn-
iltonian cluster calculations and derived the effective pa-
rameters by comparison with photoelectron spectroscop-
ic data. Hybertsen, Stechel, Schluter, and Jennison
(HSSJ) ' adopted a constrained density-functional ap-
proach and a mean-field fit to the three-band Hubbard
model. Neither group included the spatially diffuse Cu 4s
and 4p orbitals in its calculations. (In fact, the peak posi-
tions of the 4s and 4p wave functions are closer to 0 sites
than to Cu sites, as discussed below. ) The inclusion of
them in the model would allow a better treatment of the
many-body effects like screening and polarization, and
would also serve to "renormalize" the hopping integrals.

The experimenta1 Heisenberg superexchange J value
for La2Cu04 is a stringent test for the low-energy spec-
trum derived from these methods. ESF's calculated J
value is about two times larger than the observed one. '

HSSJ's J is in good agreement with the experimental
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value; however, they have emphasized that the 10% un-
certainty in their parameters allows a 50% deviation in
the very sensitive J result. Great sensitivity of J to the
details of the computational model has also been experi-
enced in computational studies based on the techniques
of ab initio quantum chemistry. In the very recent
study reported by Martin, the results of ab initio
configuration interaction (CI) studies for discrete molecu-
lar clusters were employed in determining the parameters
of an effective one-band Hubbard model. The relative en-
ergies of different doped states [obtained by removal (p
doping) or addition of an electron (n doping)] were also
discussed. The nature of the orbitals associated with
doping is a topic of considerable interest in the theoreti-
cal' ' ' ' and experimental literature.

%'hile attractive in terms of their compact simplicity,
conventional Hubbard models (e.g. , the one- or three-
band types) entail a high degree of renormalization, being
governed by effective parameters which bear an unclear
relationship to the all-electron Hamiltonian from which
they were derived. In particular, it is unclear how broad
the valid energetic range of a given low-order (e.g. , one-
or three-band) Hubbard model is. Processes of interest in
the copper oxides cover a very broad energy range, from
the low-energy transitions among different spin states
( ( 1 eV) to ligand-field and charge-transfer transitions as
well as ionization and electron attachment processes
which involve transition energies of the order of —1 —10
eV. One obvious variable of great importance in defining
effective Hubbard parameters is the degree of response of
the environment in final-state relaxation effects. Clearly,
the importance of such relaxation increases appreciably
as one proceeds from low-energy transitions involving no
charge transfer to local charge-transfer processes, and
finally to net ionization or electron attachment.

In approaching the above questions, we have adopted
the techniques of quantum chemistry (examples of ab in'
tio applications were noted above). These techniques can
be applied to finite clusters with a multiorbital descrip-
tion and can span the range from small U cases where
Hartree-Fock calculations (and presumably also the
LDA) work well, to large U where correlation effects are
crucial. This is usually done by the technique of
configuration interaction (CI) or mixing of Slater deter-
minants. Nevertheless, the task of obtaining quantita-
tively reliable results for clusters containing transition
metal atoms on the basis of ab initio techniques still poses
major computational problems, involving both the size of
the one-electron orbital basis set and the many electron
basis (i.e., the number of configurations included in the
CI)."

As an alternative to the all-electron ab initio quantum
chemistry model, we adopt in the present study the so-
called incomplete neglect of differential overlap (INDO)
model. The INDO model is based on an all-valence
electron Hamiltonian (in the present case, including the
full 3d, 4s, and 4p manifold of copper and the full 2s, 2p
manifold of oxygen), which is specified in terms of certain
empirically based parameters and which may be imple-
mented at the single configuration mean field or self-
consistent field (SCF) level, or at the multiconfiguration

CI level. Thus it is capable of a more detailed treatment
of electron correlation than that provided by the '*mean-
field" scheme of the LDA.

The "spectroscopic" version of INDO (INDO/S)
(Refs. 31, 34, and 35) which we employ below incorpo-
rates empirical input in the following manner: (1) atomic
spectroscopic data, including ionization and electron at-
tachment energies, are used in specifying all one-electron
(site energies) and two-electron (including Coulomb and
exchange integrals) atomic parameters; (2) molecular
spectroscopic data (including that for ligand-field and
charge-transfer transitions in transition metal complexes)
are employed in specifying certain atomic parameters
which govern the magnitude of two-center hopping in-
tegrals. In the present application, it is essential to em-
phasize that none of the standard INDO parameters
employed in the present study are based on the properties
of copper oxides.

As a result of the exploitation of empirical parameteri-
zation, together with a number of additional approxima-
tions in the specification of one- and two-electron molec-
ular integrals, it is computationally feasible to carry out
INDO calculations encompassing a broad array of elec-
tronic states for clusters containing as many as -25
atoms and -200 electrons, as reported below. The
INDO/S method has been successful in treating electron-
ic properties of a large variety of transition metal com-

lexes
In fact, INDO has been employed to study Cu-0 clus-

ters before. ' However, rather than using the spectro-
scopic data, the authors there chose a parametrization
scheme that reproduced the results of ab initio calcula-
tions on organometallic compounds. The 3d 2 2 elec-

x —y
trons were found to be strongly correlated and to form lo-
cal moments. But further quantitative investigations
such as the superexchange J value were not reported
there.

Various model clusters of different size, representing
LazCu04 and Nd2Cu04 and the doped counterparts, are
used in the current work. Madelung potentials were in-

cluded to provide a suitable crystal environment and
were defined by assigning the "standard valence charges"
[i.e., +3 for La(Nd), +2 for Cu, and —2 for 0] to the
ionic sites outside the clusters. The calculated electronic
populations support this "standard valence" presump-
tion, giving a posteriori justification for its use.

The primary result of the present study is the demon-
stration of the ability of the standard INDO Hamiltonian
(with no input from copper oxide data) to yield estimates
of the Heisenberg J coeScient for La2Cu04 and

Nd2Cu04 in exce11ent agreement with experiment. These
results are obtained on the basis of very compact
"valence-bond" (VB) wave functions which define the pa-
rameters of an effective one-band Hubbard Hamiltonian.
The calculated J values can be expressed in terms of these
parameters using second-order Rayleigh-Schrodinger
perturbation theory. The success of the calculations rests
on the combined inhuence of the atomic correlation
effects implicit in the INDO parameters and the molecu-
lar correlation effects incorporated via the CI (i.e., the VB
resonance). The SCF results by themselves yield an in-
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correct ferromagnetic picture of the ground state.
Additional calculations are reported for the properties

of doped systems obtained by removing or adding an
electron to the parent cuprates, and the effects on the
one-band Hubbard model of final-state relaxation attend-
ing such processes are explored.

The methodology adopted in the present study is dis-
cussed in detail in Sec. II. Results are presented and dis-
cussed in Sec. III, and summarized in Sec. IV.

II. METHOD

A. The INDO Hamiltonian

We express the Hamiltonian as

U;k, i
——&X;Xk IX,Xi &

=fy,'(r, )y k(r 2)(1/Ir, —rzl)y, (r, )y, (rz)dr, dr&,

(2)

where the variables include both space and spin. Clearly,
the integral will be zero if y, and y do not have the same
spin, and likewise for yk and yl. In the following, we
shall assume that spin integrations have been carried out
and shall deal explicitly only with spatial integrals. Since
the INDO approximations depend on the atomic centers
involved in the integrals, we now adopt the notation

A
+i ~+p (3)

where the collective index i is replaced by a site designa-
tion ( A ) and a label for the juth orbital on that site (when
necessary below the spin of y„" will be denoted by ~).

The INDO approach retains all one-center two-
electron integrals of appreciable magnitude (see Appen-
dix A),

(4)

H = g Iij ci cj + g Uikj lci ckclcj
ij ikj I

where c; (c; ) is the electron creation (annihilation) opera-
tor, which operates on an orthonormal basis set of spin
orbitals (y; J. If the basis is complete, then Eq. (1) is the
exact Hamiltonian of the system (neglecting relativistic
effects). The two-electron Coulomb integral Ujki is given

by

A AB0= g e„n„„,+ g t„c„„gB,
Ap~ AWB
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ppvo A pF Ape' A os' A vr
Apv

CTP77

+—g y„" n„„nc (6)
AXC
PP

where n A„,—=cA„,cA„, is the number operator for spin or-
bital y„, and where nA„ is obtained by summing nA„,
over alpha and beta spins.

While details of the INDO parametrization are given
in Appendices A and B, we note here a few essential
points:

(1) The INDO method employs a minimal valence
basis: 3d, 4s, and 4p for Cu and 2s, 2p for 0, in the
present application to copper oxide clusters. In compar-
ison with low-order band models which are common in
the solid-state literature (e.g. , the one-, three-, and 11-
band Hubbard-type models, based on the Cu02 planar
unit cell), ' ' the INDO method constitutes a 17-band
model. Thus, direct comparison of the "bare" INDO pa-
rameters with those of the lower-order methods is quite
difficult. However, effective INDO one-band parameters
are discussed in Sec. III.

(2) In the "spectroscopic" version of INDO used in
this study (INDO/S) (Refs. 31, 34, and 35) all one-center
parameters are defined in terms of atomic spectroscopic
information, including ionization potentials (I) and
electron affinities ( A ). In particular, the spherical com-
ponent of the self-Coulomb integral for orbital y„" Ii.e.,
the Slater F (pp) parameter] is evaluated according to
the traditional Pariser approximation

Fo (++)—yA A A (7)

(for an s orbital, F„(pp)=y„"„=U„"„„„).Equation (7) is
a particular application (to gas phase atoms) of a more
general approach commonly used to define (renormal-
ized) self-Coulomb integrals ( U) in extended systems.

(3) In view of the semiempirical parametrization of the
INDO/S Hamiltonian, one need not in general consider
explicitly the details of the nominal basis set, which is
taken as orthonormal. An important exception is the
evaluation of the two-center hopping integrals t„",which
are taken as being proportional to the overlap integrals
between Slater-type orbitals (STOs) or small linear com-
binations thereof: '

while the other two-electron integrals are evaluated ac-
cording to the "zero-differential-overlap" (ZDO) approxi-
mation,

I
AB

pA+ pB

2

(XpXp IXvXrr ~ Ypp ~AB~cD~pv pu

for AWC.
The one-electron integrals, I;, consist of diagonal "site

energies, " c.„, which include any Madelung contribu-
tions, and off-diagonal two-center "hopping terms, " t„"„.
The total INDO Hamiltonian can thus be written as

The summation is over the different angular momentum
components (m =0 to 1) of the overlap integral (S„„)
defined with respect to the AB axis, the f„„are the pro-
jection coefficients defined by the appropriate Euler an-
gles, and the g„are additional empirically determined
parameters (the conventional overlap integrals S„„corre-
spond to g~„=1 for all m ). Each of the additional pro-
portionality factors, p depends only on a single atom and
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was determined from least-squares fitting on the basic of
INDO/S calculations of various molecular spectral tran-
sitions. As noted above, no data for copper oxides were
employed in the determination of the P„"and P„parame-
ters. The Cu parameters are based primarily on spectra
for copper halide complexes, and the oxygen parameters
were fitted to spectra of organic oxides. This approach
offers a convenient device for defining the dependence of
t„on the relative geometrical configuration of orbitals

and y„and the fact that it involves the use of
nonorthogonal atomic orbitals (STO's) does not alter the
assumption of an orthonormal basis set when it comes to
solving the INDO secular equations.

could be obtained which reflect the full symmetry, the
symmetry-broken results are presented here, since they
offer a convenient representation of a localized doping
site.

Convenient expressions for orbital populations (q„) are
straightforwardly obtained by standard analysis of the
SCF wave functions, as discussed in Appendix C.

Although a number of exploratory CI results were car-
ried out (employing SCF orbitals), they did not alter most
of the conclusions based on SCF results which are
presented below. The one place where CI was found, as
expected, to be crucial, is in the evaluation of the Heisen-

berg parameters, J, for the undoped species.

B. SCF and CI calculations C. Clusters

The SCF calculations were of the spin-restricted open-
shell Hartree-Fock (ROHF) type, using the procedure
developed by Edwards and Zerner, which maintains
orthogonality between closed-shell and open-shell orbitals
through the use of projection operators. The SCF
method yielded converged results for the lowest-energy
state of each spatial symmetry type. For the undoped
states (corresponding to the charge states indicated in
Fig. 1), the lowest-energy SCF solution maintained the
point-group symmetry of the molecular geometry (D2I, or
D4& ). However, for the doped systems, symmetry-broken
wave functions yielded the lowest-energy solutions
(Dqs ~&2„',Dqq ~C2„). Although saddle-point solutions

~ 0
x Cu

Cu0

(Cu20)
'

In the present work, various model clusters, illustrated
in Fig. 1, are used to represent the undoped compounds
La2Cu04 and NdzCu04, and their doped counterparts.
(Cu20~, )' and (Cu402o) are models for La2Cu04,
with two out-of-plane oxygens located above and below
each Cu site, while (Cu40, 2)' represents NdzCu04,
where axial oxygens are absent ("plane" denotes the
plane of the nearest-neighbor Cu—0 bonds of the
square-planar Cu04 units). The experimental bond dis-

tances, rz„o=1.89 A (in-plane) and 2.43 A (axial) for

LazCu04, and rc„o=1.98 A (in-plane) for N12CuO&, are
used in this work. The clusters are based on the tetrago-
nal crystal structures, and the orthorhombic distortions
which characterize the undoped crystalline materia1 are
not expected to have a significant effect on the properties
explored in this study. The relevant Madelung energies
are given in Table I.

Doping appropriately with holes or electrons brings
these materials from the insulating phase into the super-
conducting state, and it is essential to know the atomic
character of these charge carriers. The clusters involved

in the study of doping are: (Cu20»)', x =17 and 19,
(Cu&02o)

' and (Cu~O, z)', which result from increas-

ing or decreasing by one the electron count of the un-

doped clusters. In this preliminary study we only model

(e)
0 X ~ X ~ ( Cu20) f} TABLE I. The Madelung energies for different ionic sites in

the La2Cu04 and Nd, Cu04 compounds.

Madelung energy (eV)'

(d) X ~ X ~

~ X ~ X ~

( Cu40)o)

( Cu40&2)
16-

Ion site

Cu
0 (in-plane)
0 (axial)d

La(Nd)

La2Cu04

+28.5
—21.0
—20. 1

+27.9

Nd~Cu04'

+24.5
—22.0
—20.7
+30.0

FIG. 1. The cluster models studied in this work. The indi-

cated charges correspond to undoped species. The T-phase
(Cu4020)' has eight atop oxygens sitting above and below the
four Cu atoms. There are no axial oxygens for the T'-phase

(Cu40&z) ' . Cases (a)—(c) and (d) correspond, respectively, to
the Dzl, and D4I, point groups.

'That is, the energy of a point electron at the site of interest, in

the field of the other ions taken as point charges (+2~e ~
for Cn,

+3~e~ for La and Nd, and —2~e~ for 0), where e is the electron-

ic charge.
Based on the tetragonal crystal structure at T=295 K, taken

from Ref. 47.
'Based on the tetragonal crystal structure from Ref. 48.
See Fig. 1.
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doping in the idealized limit of infinite dilution, since the
Madelung field was maintained at the undoped value.
Even though the dilute limit lies outside of the actual su-

perconducting range [e.g., x =0.05 —0.3 for
La& „M„Cu04 (M =Sr, Ba, Ca, . . . )], we nevertheless
expect to obtain useful information about the nature of
the charge carriers and the effect of doping on the elec-
tronic structure.

III. RESULTS AND DISCUSSION

A. Models for undoped materials

1. SCF results

Before addressing the subtle details of magnetic cou-
pling, we examine the gross electron structural details on
the basis of SCF wave functions for the various copper
oxide clusters. The net negative charges on the clusters
are chosen to correspond to the nominal oxidation states
(Cu +,0 ) appropriate to the undoped materials. The
lowest-energy SCF solutions are high-spin configurations
with n half-filled orbitals of primarily 3d character (where
n is the number of copper atoms in the cluster), coupled
so as to yield the maximum possible spin value, S=n /2.
As expected on the basis of crystal or ligand field theory
for square planar complexes, the lowest-energy spatial
configurations are those in which the open-shell 3d-like
orbitals are of 3d & 2 character (see coordinate systemx y
defined in Fig. 1). The relative energies of alternative
(CuzO»)' hole configurations, in which the two holes
are promoted to orbitals of different 3d character, are
presented in Table II. Since the hole-orbitals can be tak-

TABLE II. Relative energy of different hole configurations
for undoped clusters (eV).

Hole type'

INDOb

(Cu,o»)"- (Cuo, )"-
Ab initio (CI)'

(Cu06)'

o. (in plane)
o (axial)
m. (in plane)
5
~ (out of plane)

0.0
d

4.2
4.5
4.6

0.0
2.2
2.3

2.5'

0.0
1.9
1.8

2.3'

'Relative to the coordinate system defined in Fig. 1, the five hole
types are dominated by 3d orbitals of type x —y, 3z —r, xy,
yz, and xz, respectively.
Present INDO results based on triplet [(CuzO»)" ] and dou-

blet [(Cu06)' ] SCF calculations. As discussed in Sec. III A 1,
the excited hole configurations may be viewed in terms of exci-
tations localized at each Cu atom site. The (Cu20l I ) excited
states, which involve two-particle excitations with respect to the
ground configuration (a local excitation at each Cu site)„are
found (as expected) to involve excitation energies roughly twice
those of the corresponding one-particle excitations in the
(Cu06) ' clusters.
' Ab initio results based on doublet CI calculations (Ref. 24).
A converged SCF solution for the axial sigma hole state could

not be obtained.
'Note that 3d, and 3d, are degenerate in the D4& point group
which governs the Cu06 cluster.

en approximately as orbitals localized at each Cu atom
site (see below), one might expect the two-hole excitation
energies in (Cu20»)' to be roughly twice those for the
analogous ligand-field excitation energies at a single Cu
site, and in fact such a relationship is indeed observed
(see Table II) between calculated results for (CuzO»)'
and (CuO~)' . For (Cu06)', the present INDO re-
sults and the ab initio CI results of Martin are in
reasonable agreement.

While one may attempt to define egectiue low-order
band models (see below), the hybridization of atomic or-
bitals reflected in the SCF MO's is quite complex. As an
example, we present a one-electron density of states for
(Cu20»)' in Fig. 2 (based on the MO eigenvalues and
the Mulliken atomic orbital populations of each MO),
and for reference (Fig. 3), the relative orbital energies of
isolated Cu + and 0 ions. The relative energies of the
open-shell manifolds of the (Cu20»)' and (Cu402p)
clusters are displayed in Fig. 4. In each case (Figs. 2 —4),
the contributions of atoms not explicitly included in the
cluster ion are represented by a point-charge Madelung
term (see Appendix A). The Mulliken atomic orbital
populations of all the undoped clusters are given in Table
III, both for the total occupied manifold [Table III(A)]
and the open-shell manifold which is dominated by the
3d 2 2 orbitals. Further details regarding orbital hy-x —y
bridization in the open-shell orbitals are presented in
Table IU.

The calculated Cu3d populations are all reasonably
close to the idealized limit, 3d [Table III(A)], consistent
with inferences from experimental data. ' If the
Cu4s/4p orbitals are considered in effect to contribute
most of their populations to the region in the vicinity of
the planar oxygen atoms (see comments in Appendix C),
then the -3d configurations also imply a net effective
atomic charge for Cu close to the value of +2 assumed in
the specification of the Madelung potential. The exploi-
tation of the diffuse Cu 4s and 4p orbitals by the oxide
anions so as to enhance their local basis sets is not
surprising, since an expansion of the oxygen charge cloud
with increasing negative charge is expected. Model ab in-
itio Hartree-Fock studies with very flexible basis sets
show that the rms extent of the 2p charge cloud of 0
(0.73 A) is -50% greater than for the 0' anion (0.52
A), even when the former ion is placed in a stabilizing
Madelung potential equal to that appropriate for an ox-
ide ion in the La2Cu04 crystal. '

The important role of the Madelung potential in con-
trolling the electronic structure is underscored by model
INDO studies of the CuO molecule, with bond length
maintained at the crystal La2Cu04 value (1.89 A). As
the strength of the surrounding Madelung potential is
continually increased from zero (i.e., CuO in Uacuo), the
3d population changes from an initial value of 9.9 to a
final value of 9.0, with most of the change occurring rath-
er abruptly as the potential varies from -30% to -50%%uo

of the full crystal value.
Figures 2 and 3 show that the centroid of the 2s and 2p

bands is well below that of 3d (Figs. 2 and 3). In particu-
lar, we note that the 2po. orbitals of the divalent in-plane
oxygen atoms in the model clusters have their maximum
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populations in MO's near the bottom of the molecular @-
orbital range [e.g., the 2p„orbital indicted in Fig. 2(d)], in
contrast to the 2pcr orbitals of the axial oxygens [Fig.
2(e)j, which lie very near the Fermi level and which have
been invoked in a mechanism for superconductivity based
on an excitonic model. The divalent oxygens are the
ones most appropriate as models for the in-plane oxide
ions in the extended solid, and it is their 2po' (and 2s ) or-
bitals whose hybridization with 3d & 2 orbitals is crucialx —y
for the superexchange coupling needed to establish prop-
er energetics of spin coupling, as discussed in Sec. III A 2.
In view of the significant 2s/3d and 2p/3d energy gaps
(Fig. 3), orbital hybridization eff'ects are expected to be

ORBITAL
ENERGY (eV)

0--

S
& Cu2+

20

) 6 Total

02s

20

I,', I
-30 -?0 -10 0 10

(b)

$

Total
(occupied)

8 i0

Ch

O
0 4

2-

A nl i4 IIII'

8 0 (in plane)

3 Ri'I III)I
(c)

xz- yz

FIG. 3. Relative orbital energies (eV) of the isolated Cu'+
and 0' ions, with inclusion of Madelung energy contributions
(see Table I). The orbital energies for Cu'+ refer to the orbital x
in the configuration {3d)'(x)', where x =—3d & ., 4s, and 4p,x —

y

and (3d)' is the filled shell associated with the 3d orbitals of
3z-' —r, xy, xz, and yz type. The 0' energies are based on the
(2s )'(2p ) configuration.

modest, in contrast to the results of local density approxi-
mation (LDA) band structure calculations which lead to
strong hybridization between 2p and 3d. '

In analyzing orbital hybridization, it is convenient to
characterize the open-shell manifold of the undoped clus-

6-

6-

4-

2-

Op„

0 (axial)

I I Ii ~L~)i
I'

I

Opz

A

(e)
18-

(cu20„)

3d „2 2 IGVGIS

3U

81g

0.69 eV

-]2 -8 -4
E (ev)

FIG. 2. Density of one-electron states (DOS) for (Cu&O» )'
Each of the SCF orbital energies is broadened with a Gaussian
function with width of 0.5 eV. The zero of energy is the Fermi
level (energy of highest occupied MO): (a) total valence band;
(b) total occupied manifold dominated by 2p and 3d; (c) 3d con-
tributions to Fig. (b) DOS; arrows identify levels dominated by
3d 2 &, the 3d 2 2 contribution at the Fermi level is -35%%uox y 3z

of that for the 3d 2 2 orbital; (d) contributions to Fig. (b) DOS
X —y

form in-plane oxygens. The arrow denotes the level dominated
by the 2po. orbital of the central (divalent) oxygen; (e) contribu-
tions to DOS of Fig. 2(b) from axial oxygens. The highest peak
(arrow) is dominated by 2pcr orbitals of the axial oxygens.

2g 1.90 eV

(cu o )
'

1.22 eV

1g
(D4h)

FIG. 4. Relative orbital energies (eV) for the open-shell man-

ifolds of the clusters (i.e., involving the 3d 2 2-like orbitals).
x —y

Results are given for high-spin SCF wave functions [triplet and

quintet, respectively, for the {Cu20»)" and {Cu402p) clus-

ters].
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TABLE III. Orbital populations for undoped systems.

(A) Total population'
(Cu,o)+'
(Cu20»)"
(Cu40»)'
(CU4020 )

CU(3d)

9.04
8.96
9.05
8.64

Cu(4s, 4p )

0.17
2.43
1.78
3.14

0 (in plane)

7.58
7.50
7.39
7.32

0 (axial)

7.68

7.63

(B) Localized hole orbital
(Cu20)
(CU2011)
(CU4012 )

(Cu4020)

0.71'
0.76'
0.77'
0 77'

0.02
0.02
0.02
0.05

0.03
0.22
0.20
0.16

& 0.01

0.02

Mulliken populations (Ref. 46) for SCF INDO wave functions (triplet state for Cu2 species and quintet
state for Cu4 species).
Populations for the half-filled localized MO's, obtained by transformation of the canonical delocalized

SCF MO's.
Includes only the 3d 2 2 contribution. Other 3d orbitals contribute &0.01 electrons, with the excep-

x —y
tion of (Cu, O) +, where the 3d, , 2 orbital has a coefficient of 0.24.

ters in terms of localized MO's (LMO's), which may be
defined by the unitary transformation of the canonical
delocalized MO s which minimizes interorbital repul-
sion or maximizes the separations of orbital centroids.
In the present case, either criterion leads to the same set
of symmetry-equivalent LMO's, whose properties are
summarized in Tables III(B) and IV. All four model clus-
ters yield similar pictures of hybridization dominated by
3d 2 2 and oxygen 2p~ orbitals, and aside from thex —y
(Cu20) + clusters, where the Cu atom lacks a full planar
coordination shell, all clusters yield to within -1% the
same fractional contribution of the 3d 2 2 orbital, andx —y
lead to a picture of modest 3d ~ &/2po. mixing (as anti-

X

cipated above).
Table IV focuses on the orbital coeScients of the

atoms involved in the linear CuOCu subunits. As noted
above, these subunits are the ones which are crucial for
magnetic coupling, and the similarity of the coefficients
for the two different clusters is striking, even though the
overall LMO populations exhibit some variation ITable
III(B)]. These variations are undoubtedly artifacts of the
model arising from the unavoidable presence of mono-
valent (i.e., "terminal" ) oxide atoms which have a single

Cluster

(Cu2011) '

(Cu4020)

3d 2 2 (Cu)

0.869
0.876

2s (0)b

—0.108
—0.118

2px (0)

—0.148
—0.136

'The localized orbital is as defined in footnote b, Table III.
The results are given for the divalent cluster oxygen atoms (i.e.,

those lying between Cu atoms). These are the oxygens which
are crucial for the magnetic coupling of the Cu ions. The nega-
tive signs denote anti-bonding interaction with the 3d 2 2 or-

x —y

bital.

TABLE IV. Selected atomic orbital coefficients for the local-
ized hole orbital in the undoped species. '

Atomic orbital

nearest-neighbor cation. The ratio of terminal to divalent
oxide atoms is 6:1 in (Cu20»)', but only 2:1 in

(Cu40~0)
The LMO's may be taken as useful representations of

the local spin moments on the copper ions (i.e., the local
holes associated with the -3d configurations), and the
dominant 3d character of the LMO's is consistent with
the picture of the local moments inferred from experi-
ment. While the oxygen contribution to such spin mo-
ments is not directly observable for the antiferromagnetic
state (where the a- and P-spin moments on oxygen would
canel), we note that the relative importance of 2s and 2p
implied by the ratio of LMO coefticients in the present
model studies of La2CuO~ (0.7—0.9) is very similar to
that (0.8) inferred on the basis of magnetic resonance for
the magnetically active oxygen atoms which hybridize
with the Cu 3d 2 2 orbitals in YBa2Cu307. The com-

X

parable roles of 2s and 2po. in hybridization of the singly
filled MO's at the top of the occupied band are perhaps
surprising given the particularly large energy separation
of 2s and 3d orbitals (Figs. 2 and 3). However, we note
that the overall hybridization of 2s orbitals (considering
the entire occupied band) is quite small, as indicated by
the fact that the 2s population ( —1.95~e

~
) departs very

little from that of a closed-shell (2s ) atomic
configuration. By contrast, the in-plane 2pcr populations
are —1.4~e ~.

Finally we note that the general features of the elec-
tronic structure found here are very similar to those of
(CuO&)' based on INDO and ab initio results.

2. Magnetic coupling

We now take up the task of evaluating the low-energy
spectrum of states arising from the various possible spin
couplings of the Cu + ions in their local 3d con-
figurations. In previous studies of numerous transition
metal complexes, the INDO/S method has been shown
to yield reliable values for the relative energies of
different spin states. In keeping with earlier practice, we
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shall represent the spin coupling information for the
copper oxide clusters in terms of the exchange parame-
ters, J, in the Heisenberg spin Hamiltonian,

H= gJ;,S, S, , (9)

where the vectors S in the present case refer to the local
spin doublets centered at each Cu site. The sign conven-
tion of Eq. (13) implies that J is positive for antiferroinag-
netic coupling. We also note that as defined in Eq. (9), J
is the singlet/triplet splitting for two spin- —, particles.

The crucial role of electron correlation in evaluation of
the J coefficients and the sensitivity of the calculated re-
sults to the details of the wave function have been demon-
strated in a variety of prior electronic structure calcula-
tions. Even with the semiempirical INDO method, it
turns out to be essential to supplement the atomic corre-
lation implicit in the parameters of the Hamiltonian with
certain key components of molecular correlation (as in
prior INDO/S studies of the energetics of different spin
states ). Reliable and stable results for J are obtained by
adopting a CI wave function which includes all possible
configurations generated by excitation within the open-
shell manifold. While the results are independent of par-
ticular choice of MO representation (e.g. , delocalized
canonical MO's or LMO's), it is convenient to employ
LMO's, since this allows a pictorially appealing
identification of the various "configurations" in the CI
with conventional valence-bond (VB) structures, as de-
picted in Fig. 5. CI in the context of VB structures is
generally referred to as resonance" [e.g. , as in the
resonating valence-bond (RVB) model]. ' ' Note that
the B structures, while corresponding spatially to single
configuration wave functions, nevertheless may involve
several single determinants (the case illustrated in Fig. 5
include 1-, 2-, and 4-determinant wave functions).

The singlet VB structures employed here represent
"neutral" (covalent), "ionic", and "hybrid" (i.e., mixtures
of covalent and ionic) bonding types. In the higher-spin
cases (triplet and quintet), one or more of the covalent
electron pairs are replaced by triplet-coupled pairs.
While such chemical bonding terminology may offer use-
ful insight into the spin couping of the undoped copper
oxides, it must be emphasized that the relative impor-
tance of the different VB structures depends greatly on
the details of the localized MO's which serve as the
effective "atomic orbitals" (AO's) of VB theory. ' The
LMO's employed here are clearly not pure 3d 2 2 orbit-

x —y
als [see Tables III(B) and IV]. Nevertheless, one may still
think of them as effective 3d, ,-like orbitals whichx —y
define a one-band model. Since by construction they are
orthonormal, they are closer in spirit to Wannier func-
tions than to the non-orthogonal AO's common in tradi-
tional VB theory.

The J, coefficients defined in Eq. (13) are obtained as
follows. For each spin state, the eigen values of the
Heisenberg Hamiltonian are matched up with the lowest
energy set of eignvectors from the INDO CI defined
above. Since the Heisenberg eigenvalues are linear in the
J, -, a linear least-squares fit of them to the INDO eigen-
values offers a convenient means of evaluating the J; .

SINGLET VALENCE BOND STRUCTURES

NEUTRAL SINGLY IOIVIC DOUBL Y IONIC

(a) Cu2 ~ ————- ~

(b) Cu 4 ~ ————- ~ ~ ————- ~

~ ————- ~

0 0

0 0+ 0

0+ 0
+ ten

other
structures

+ four
other
structures

FIG. 5. Schematic depiction of valence bond structures em-

ployed in the singlet CI calculations. The dots denote Cu sites
and the dashed lines indicate singlet pairing of orbitals on two
different sites. Only a single orbital on each site is explicitly
considered, corresponding to the 3d & 2-like orbital of the Cu

x —y

atom. Empty or doubly occupied orbitals are denoted, respec-
tively, by circles enclosing + or —.(a} For the Cu2 cluster, one
covalent and two ionic structures span the full two-electron
singlet space. For triplet spin, a single structure is possible. (b)

For the Cu4 cluster the full four-electron singlet space is
spanned by 2 neutral, 12 singly ionic and 6 doubly ionic struc-
tures. The triplet and quintet spaces are spanned, respectively,
by 3 neutral and 12 singly ionic, and by one singly ionic struc-
ture.

For (Cu20»)' the analysis is isomorphic with the tradi-
tional hydrogen molecule problem (with the 3d, 2 holex —

y
providing the counterpart of the hydrogen 1s electron or
hale), ' and J is defined exactly by the singlet-triplet
gap. For (Cu40zo), six state are involved, and a non-
trivial least-squares fit is necessary (e.g. , see Fig. 6).

The final J(XX) and J'(XXX) values are listed in
Table V. These values, which are obtained from a mod-
el containing no parameters based on copper oxide data,
are in excellent agreement with experimental estimates
and imply antiferromagnetic coupling. Since the experi-
mental analysis is based on a model which neglects non-
nearest-neighbor terms in Eq. (9), our primary compar-
ison with experiment is based on constrained least-
squares fits which also neglect such terms (i.e., J'=0).
The (Cu~o»)' and (Cu4020)' clusters yield very
similar results and suggest the absence of significant sen-
sitivity to cluster size if the appropriate Madelung poten-
tial is used in each case. (A similar conclusion was
reached in INDO cluster studies of electronic properties
of crystalline LiF. ) The calculations also reproduce the
reduction in J in proceeding from the LazCu04 structure
to that of Nd2Cu04, reflecting the effect of increased in-

plane NN copper-oxygen separation. The calculations re-
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veal that next-nearest-neighbor terms (J') are apprecia-
ble, and the quality of the least-squares fits is consider-
ably less when the J'=0 constraint is imposed, with the
o value (see Table V) for (Cu402o) being -25% of the
magnitude of J [it is interesting to note that the cr values
for (Cu~Ozo) are about twice those for (Cu40, z)' ].
The near invariance of results with respect to cluster size
is especially pronounced when the results of the uncon-
strained least-squares fit are compared [151 meV for
(Cu20»)' vs 144 meV for (Cu402o) ]. The J'=0
constraint, although consistent with the analysis of exper-
irnental data, is seen to introduce an artifactual increase
in variation of J with cluster size. The notably poorer re-
sults yielded by the (Cu20) + cluster suggest that full

square-planar coordination of copper is necessary for a
minimally acceptable model of J.

The Heisenberg Hamiltonian [Eq. (9)) is nominally
defined only for nonionic states (i.e., in the present appli-
cation, those for which each site has a 3d doublet
configuration). However, the influence of superexchange
coupling, as mediated by virtual ionic states, is implicit in
the J; coefBcients. In fact if the ionic structures are
omitted from the CI, the resulting J; values are much re-
duced in magnitude [23 meV for (Cu20&t)' and 50 meV
for (Cu~02o) ] and their signs are reversed; i.e., the
nonionic terms yield a weaker coupling of the ferromag-
netic type. In (Cu402p) the dominant contribution is
from the singly ionic structures (Fig. 5). Omission of
doubly ionic terms reduces J by —10 meV. The possible
role of other contributions to J, beyond those obtainable
from the present one-band model (e.g. , virtual 2pcr to
3d 2 2 excitations, can be explored by carrying out CI

X —y
calculations which include excitations involving the
closed-shell and empty orbital spaces. Although we have
not attempted an exhaustive exploration, inclusion of
large numbers of additional single excitations, relative to
the VB space defined above, caused variations of no more

( Cu402o )
32-

16-(Cu0 )4 12

0.6—
H=JZ S. S.+ J Z S..S.

I j . . I j
l&J l&J

(NN) (NNN)

0.4—
CLl

0.2— --- 3J/2
————-J+J /2

-J'/2

J+J /2

0 — -—-—-- -2J+J /2

S=0 S=1 S=2

FIG. 6. Relative CI energies for various spins states of
(Cu402p ) (solid lines) and (Cu40» )

' (dashed lines) . The
levels are also labeled with the values they would have if they

corresponded exactly to the eigenvalues of the Heisenberg
Hamiltonian. The lowest energy singlet corresponds to the zero
of energy for both clusters. Least-squares fittings are performed
to attain the J, J' values listed in the Table V.

than 10% in calculated J values. In particular, excitation
of the type 2po to 3d 2 2, which arises in Anderson's

X —y
'

atomic orbital (AO)-based model, is not found to be
significant in the present CI study, which is based on an
occupied orbital space consisting of variationally deter-
mined LMO's.

3. Effective one band model-

The evaluation of J may be compactly analyzed in
terms of the parameters of an effective one-band Hamil-
tonian,

TABLE V. Heisenberg exchange integrals. '

Cluster

La2Cu04(rc„p =1~ 89 A)'

(Cu20)
(Cu,o„)"
(Cu40„)"-
exp (Neutron)'

(Raman)g
o

Nd2Cu04(rcup 1.98 A)'
(Cu4012 )

exp (Raman)

JNN (meV)

70.0
151

134' (144)
134
128

117'(120)
108

JNNN (meV)

~ ~ ~

0.0(39.0)

0.0(14.4)

cr (meV)

~ ~ ~

35.0(10.3)
5

6

13.4(5.5)
6

'All calculated results are obtained from full CI within the open-shell space as described in the text.
JNN and JNNN denoted nearest-neighbor and next-nearest-neighbor interactions [see Eq. (9)].
0. denotes the estimated uncertainties for the experimental values and the rms error in fitting the calcu-

lated energy levels (see Fig. 6) to the eigenvalues of the Heisenberg Hamiltonian.
'The crystal structures of these compounds defined the cluster geometries and Madelung potentials.
This cluster is the only one which does not provide the full fourfold planar coordination for the Cu

ion.
'Obtained from least-squares fit constraining J'=0, for comparison with analogously defined experi-
mental values. The unconstrained results are in parentheses.
'Reference 7.
Reference 8.
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Holle barid teer y (ct/ / +ct c )
A &B(NN)

U V+—g nA~A~ +— g n„nB
A A AB(NN )

(CAr BrCArCBr)
A &B(NN)

7 7 7

(10)

H'"' '" is adapted from Eq. (6) and corresponds to the
case of effective 3d 2 &-type spin orbitals at each Cux —y
atom site A, with spin (a or P) governed by the variable

Fo.r simplicity in Eq. (10) we have omitted the site en-
ergies eA [cf. Eq. (6)], which contribute only a constant
energy term in the applications reported below.

We consider the (CuzO»)' cluster, where only
nearest-neighbor (NN ) Cu-Cu interactions arise, and
define the effective orbitals ( A and B ) as the half-filled
LMO's discussed in the previous section [extension of Eq.
(10) to larger systems with non-nearest-neighbor interac-
tions is straightforward]. Direct evaluation of the param-
eters in H'"' '", using the LMO orbital coefficients and

q';.„;,=(1W'2)(I 3& I+ IBBI ),
4„; )„=(1&2)(IABI—IBA I),

(1 lb)

(1 lc)

the INDO integrals in the atomic orbital basis, yields the
first column of numbers in Table VI. These are designat-
ed as "frozen orbital" values since they are defined entire-
ly in terms of the LMO's of the undoped system, in con-
trast to previous approaches. '

These parameters include a screened hopping integral
( t '"'), the self-(one-center)Coulomb integral
( U = UA A A „), the NN two-center Coulomb integral
( V—= U„B„B), and the NN exchange integral
(ir: —= U„BB„),where reference is made to the notation in-
troduced in Appendix B and Sec. II. The screened hop-
ping integral t""consists of a one-electron term (t ) plus a
mean two-electron screening term.

The NN Heisenberg superexchange coefficient J may
be related to the parameters of H'"' '" [Eq. (10)]
through the use of second-order perturbation theory, em-

ploying the following wave functions, defined in terms of
single determinants, Iij I:

+,.„„,„,=(1/&&)(I &B I+ IB& I), (1 la)

TABLE VI. Effective one-band' parameters (eV).

Nature of'
doped states

Nearest-neighbor
t scr

U
V
U-V
K

Next-nearest-neighbor
t tscr

Vf

Frozen
orbital

—0.59
11.1
3.5
7.6
0.014

+0.26
2.6

INDOb

Relaxed

—0.57
7.1g

4.0~'"

3.1~'

Ab initio (CI)'
Relaxed'

—0.65
12.8(11)
2.3(2.5)

10.5(8.5)
0.04

Local density
approximation

Relaxed

—0.4
4. 1

0.1 —1.0
3.1 —4.0

+0.07

'Generalized one-band Hubbard model [Eq. (10)]. The signs of t"' and t'"' are consistent with the

phase convention implied by Eq. (16).
Present results based on the (Cu20» )" (x = 17-19)and (Cu402p) (x =31—33) clusters.

'Reference 24, based on (Cu207)" (x =9—11) and (Cu20»)" (x = 17-19)clusters (Ref. 24).
References 21 and 24.

'The parameters are defined in terms of the calculated energies for the undoped and p- and n-doped
clusters. Wavefunctions for the doped states were fully relaxed except for the first column of INDO re-

sults, which are defined entirely in terms of the orbitals of the undoped state (i.e., the doped states are
treated at the frozen orbital or vitual level).
The values in parentheses were adjusted from the best ab initio CI values so as to reproduce the experi-
rnental Jvalues (taken as —120—130 meV) (Ref. 24).
These INDO values are based on the doublet n-doped state, in which the added electron pairs up with

one of the initially impaired electron. This state corresponds to the n-doped states employed in the ab
initio (Ref. 24) and LDA (Refs. 21 and 24) results, with which comparison is made. Alternative values

of U and V (respectively, 6.5 and 4.6 eV) are obtained in the n-doped species is represented by a quartet,
the INDO ground state (see Sec. III B2) in which the electron is added to an empty orbital. The U

values are based on Eq. (15). The results for V are mean values obtained as V=[E(—2) —2E( —1)
+2E(0)—2E(1)+E(2) ]/2, where E(Z ) is the total energy of the species and Z is the net charge of the

species relative to that of the undoped system (Z =0, +1, and +2 represents undoped, singly doped and

doubly doped systems, analogous to those employed in Ref. 24).
"The singly doped states (Z =+1;see footnote g) in the calculation of U and V are based on symrnetry-

broken SCF wave functions which yield localized doping sites. If alternatively, a delocalized represen-
tation is employed, the resulting U and V values are, respectively, 8.7 and 2.4 eV (with a doublet n-

doped state) and 7.4 and 3.7 eV (with a quartet n-doped state),
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where

ionic: ~ +ionic ~
~

~ +ionic ~

Ecovalent ( +covalent~~+covalent} ~

and where the —2E term is the zeroth-order contribu-
tion. Equations (10) and (11)allow J to be reexpressed as

J= 2E+—4{t ')'/(U —V), (13)

where the small contribution of E to the energy denomi-
nator is neglected. With the frozen-orbital parameters
displayed in Table VI, Eq. (13) yields J= 155 meV, in ex-
cellent agreement with the result from the variational cal-
culations (151 meV) given in Table V.

If the one-band model [Eq. (10)] is extended to a three-
band model which includes the 2po. -type LMO's, we find
that the additional perturbational contributions [over and
above those of Eq. (12)] amount to only a 2% change.
Thus the three-band model based on LMO's containing
variationally determined ligand-field mixing and hence an
appreciable direct (through-space) hopping integral (t"'),
stands in strong contrast to the traditional three-band
model based on pure 3d 2 2 and 2po atomic orbitals,x —y
where direct coupling of Cu ion sites is negligible (t -0).
This latter model yields J as the following fourth-order
expression

J 4t d/b, d Udd +—8t d/hpdb, 2~d, ,
p dd

(14)

where tpd refers to NN Cu and 0 sites, d and d' denote
3d 2 2 orbitals on NN Cu sites, and Udd, hpd, andx —y
6 2dd, are the excitation energies, respectively, for the vir-

p dd
tual processes, d —+d', p ~d, and p ~dd' [the quantity
t d/h~d is the counterpart of t"' in Eq. (13}, and the
two-center Coulomb integral ( Vdz. ) is neglected]. In the
present INDO calculations (involving formally a 17-band
model), the variational mixing embodied in the molecular
orbitals is much more complex than that allowed within a
perturbative three-band model. Accordingly we have not
attempted to derive effective values of tpd Lekpd

p dd
from the INDO results.

The parameters t"' and U may be represented in terms
of ionization and electron attachment energies, yielding
expressions of general applicability, including not only
the present frozen-orbital {Koopmans' theorem ) model,
but also cases involving final-state relaxation. For U we
have [cf. Eq. (7)],

U=I —A, (15)

where I and A are, respectively, the local ionization en-
ergy (I) and electron attachment energy (A). At the

where A(A ) and B(B)denote nearest-neighbor spin or-
bitals with a(P) spin. We then obtain

Etriplet singlet

~ +covalent ~ ~ +ionic ~ { ionic covalent } ~

(12)

frozen-orbital level these are, respectively, the energy cost
for removing an electron from the half-filled 3d 2 2-type

Z

LMO in the undoped material (I) and the energy gain
from adding an electron to the LMO (A }. Splitting of I
and A due to delocalization of the doped states is con-
trolled by the value of t '. Thus, for the present two-site
case [(Cu20i i )

' ], t"' is given by

(16)

where the plus and minus signs correspond to the cases in
which the ionization or electron attachment involves a
symmetric (plus) or antisymmetric (minus) delocalized
MO.

Values obtained from Eqs. (15) and (16) through the
use of relaxed final state as well as frozen orbital final
states are displayed in Table VI. The relaxed results are
based on INDO SCF calculations for doped cluster states
and are discussed in Secs. III C and III D. The relaxed
local I and A values for use in Eq. (15) are obtained from
broken-symmetry final-state SCF calculations which yield
localized doping sites, whereas the relaxed t'" values are
based on I and A values obtained from delocalized
final-state SCF results.

The transfer integral t"' is closely related to the
transfer integrals which control the kinetics of
oxidation/reduction reactions involving electron (or hole)
transfer between transition metal complexes. Evalua-
tion of these latter integrals using the INDO/S method
has yielded results in good agreement with available
values based on model ab initio cluster calculations and
on experiment.

B. Models for doped Materials

1. p doping

As a model for the p-doped states of La2Cu04 we con-
sider SCF results for the (Cu20ii)' cluster [similar re-
sults were found for the larger (Cu40zo) ' cluster]. The
relative energies for different final hole states are
displayed in Table VII and the degree of localization and
orbital character of the holes are summarized in Table
VIII(A). The relative energies are in good overall agree-
ment with the ab initio CI results of Martin for Cu06
clusters, indicating a ground state which places the hole
primarily (-60%) in the 2po-type orbitals of the planar
oxygen atoms, consistent with experimental evidence.
In the first excited state (at —1 eV), the hole is primarily
concentrated in the 2po. -type orbitals of the axial oxy-
gens. For the higher excited states, the major charge de-
pletion is from the 3d orbitals.

We consider the ground p-doped state in more detail in
view of the great interest in this topic reflected in the re-
cent literature. The overall broken-symmetry dou-
blet state for (Cu~O»)' state may be characterized as a
local singlet associated with the doped Cu06 subunit and
a local doublet at the other Cu ion site. The singlet Cu06
subunit is dominated by a closed-shell configuration (as
determined on the basis of various CI calculations at the
INDO level), and is thus similar in character to the
closed-shell model advocated by Martin, in which the
depletion of 2po. population arises from strong hybridiza-
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TABLE VII. Relative energies ofp-doped states (eV).

Hole type

o. {in-plane)
o. {axial)
6
~ (out-of-plane)
vr (in-plane)
m' (in-plane)

INDO'
{Cu20i I

)"
0.0
0.9
1.8
1.8
2.2

Ab initio {CI)
{Cu06)

0.0
1.2
2.1'

2. 1

2.4

tion of the 3d 2 2 and 2pcr atomic orbitals in the MO's
X —y

of the doped system. In the present calculation, the dom-
inant 3d 2 & character (see Table IV) of the half-filled

X y
MO's in the initial state [(CuzO»)' ] is in strong con-
trast to the case for the fully relaxed final-state SCF wave

'Based on spatially broken-symmetry SCF calculations, which
yield localized holes {see Table VIII). For the ground (doublet)
state, the doping corresponds to removal of one of the initially
unpaired electrons, while for the higher (quartet) states the dop-
ing breaks an electron pair, leaving a local triplet on the doped
site and a doublet one the other Cu site. The listed results are
for holes dominated, respectively by 3d orbitals of type x' —y'
or 3z —r, yz, and xz or xy.
Reference 24. Analogous to the doublet and quartet states re-

ported for (Cu20»)' (see footnote a), the ground and higher
states listed for (Cu06) have, respectively, singlet and triplet
spin. The holes transform like the 3d orbitals listed in footnote
a.
'See footnote d of Table II.
The state of 2.4 eV involves a hole dominated by in-plane oxy-

gen 2p orbitals directed perpendicular to the Cu-0 vectors,
similar to that obtained by Guo and co-workers (Ref. 22).

function [(Cu20»)'7 ], where the orbital emptied as a re-
sult of the doping has only a —50% contribution from
3d 2 2. The strong final-state relaxation which accom-

X

panies p doping in the present study (i.e., the screening of
the zeroth-order final-state 3d hole by 2p to 3d charge
transfer) is very similar to final-state effects observed in
electronic processes (ionization or charge transfer ) in-

volving other transition metal complexes. The INDO/S
model has been shown to give a good account of such re-
laxation effects.

2. n doping

Table VIII(B) summarizes population changes upon n

doping, based on the (Cu20»)' cluster. For the quar-
tet (high spin) ground state, the n doping primarily in-
volves the 4s/4p manifold, whereas for doublet (low spin)
excited state (0.6 eV above the ground state), the 3d man-
ifold is the most important. Previous ab initio calcula-
tions employing Madelung potentials have also yielded a
high-spin ground state for n-doped clusters, with the
dopant electron accommodated primarily by the 4s/4p
manifold. ' However, it has recently been demonstrat-
ed that a more realistic crystal potential, which includes
a repulsive pseudopotential for the nearby Cu + and
La + ions, leads to a low-spin ground state in which the
electron is added to the 3d manifold, thus yielding an
—3d ' configuration, a result which is consistent with ex-
periment. The La + pseudo-potential apparently
prevents artificial stabilization arising from the presence
of very diffuse basis functions in the ab initio calculations.
While such diffuse functions are not incorporated into the
INDO model, and while the INDO model, as a result of
its use of empirical atomic Coulomb and exchange in-

TABLE VIII. Charge depletion' in various doped states of (Cu20» )
'"

Fraction
on local

CUO6 Distribution within Cu06 unit

Electron/hole
type

A p doping
o (in plane)
0. (axial)
6
m (out of plane)
~ (in plane)
8 n doping'
4s

3d-2-, 2

unit

82
88
86
87
86

88
58

CU(3d)

25
41
63
63
53

—16
41

Cu(4s, 4p)'

—6
—16
—34
—33
—27

62
5

0 (planar)

63
29
43
41
50

37
30

0 (axia1)

18
46
28
29
24

17
24

'Defined in terms of loss of electronic population (based on Mulliken analysis) relative to that for the
undoped species (Cu,0» )"
The broken-symmetry SCF calculations for the clusters (Cu20») x=17—19) yield doped sites

confined to the extent indicated on a local Cu06 unit {based on orbital populations).
'The negative sign denotes a gain in 4s/4p electronic population upon p doping.
See footnote a Table VII.
4s and 3d 2 2 denote the orbitals experiencing the largest increase in population when the extra elec-

x —y

tron is, respectively, unpaired (quartet state) or paired (doublet state) with one of the unpaired electrons
in the triplet state of the undoped SCF wave function.
'Denotes a loss in 3d popu1ation upon n doping.
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tegrals, has no obvious energetic bias against a closed-
shell 3d configuration, the relative energies of the INDO
n-doped clusters may still be sensitive to the details of the
crystal potential.

The n doping at the INDO level leads to a stabilization
of the cluster, whereas the most recent ab initio energies
reported by Martin for the n-doped clusters, while varia-
tional (within the constraints of symmetry-restricted
wave function), are nevertheless higher than those for the
undoped clusters. In spite of remaining uncertainty re-

garding energetics, it seems clear that more detailed
treatment of electron correlation would be expected to
accentuate the energetic preference for the low spin (d' )

n-doped state.

where the factor —2 arises because polarization reduces I
and raises A. This gives E, -3 eV, which is close to
the observed range. Note that this correction to the gap
should not be applied to calculations of the Heisenberg
superexchange coupling (J) because they involve local
excitations. Eskes co-workers' have argued that finite
cluster studies are not useful in this context because of
the need for this polarization correction to the gap. On
the other hand, model calculations solve this problem by
renomalizing the effective site energies and Coulomb in-
teractions. Since it is our goal to study these renormal-
ization effects by starting with bare parameters we have
chosen not to do this.

C. Comparisons of one-band parameters IV. SUMMARY

The frozen-orbital INDO parameters (i.e., based on
virtual d-d' excitations) may be compared with "relaxed"
parameters, based on p- and n-doped final states. It is in-
teresting to note that the frozen-orbital INDO parame-
ters, which give an excellent account of J, are in good
overall agreement with the relaxed ab initio parameters of
Martin, whereas the relaxed INDO value for U is closer
to the relaxed value obtained from local density calcula-
tions. ' The INDO results yield a sizable two-center
Coulomb integral (V-4 eV), both at the frozen-orbital
and the relaxed level.

D. Band gap

We define the band gap as the energy required to re-
move an electron from the highest occupied orbital and
place it in the lowest unoccupied orbital infinitely far
away from the (localized) hole. ' It is measured by the
difference in threshold energies for photoemission and in-
verse photoemission. In a cluster it is defined as the
difference between the ionization potential and the elec-
tron affinity.

E, =I A. —

This is the same value as the U in an effective one-band
model as defined in Eq. (15). From Table VI, the relaxed
value of U is -7 eV. The actual gap is much smaller, in
the range 1.5 —2.0 eV, though it is not accurately known
[the threshold for photoconductivity in La2CuOz is
2.0+0. 1 (Ref. 68)]. The reason for this discrepancy is
that relaxation or polarization effects due to charge out-
side the cluster need to be included. These effects are
difficult to estimate, but following Janssen and
Nieuwpoort, the polarization can be roughly found sim-
ply by considering the region outside the cluster as a
dielectric with a spherical cavity. Since the dielectric
constant is reasonably large, the polarization energy at-
tending ionization or electron attachment is

Eppes

e /2R

where R is the effective radius of the cavity. In our case,
taking R -3 A yields E,&

-2 eV. The gap becomes

E =I—A —2E

The electronic structure and magnetic coupling in
La2Cu04 and Nd2Cu04 have been analyzed using the re-
sults of all-valence-electron calculations for (Cu20»)'
(Cu40,2)', and (Cu4020) clusters, and their p- and
n-doped variants, embedded in a Madelung potential to
represent the crystal environment. The calculations em-
ploy the semiempirical INDO method, which is
parametrized on the basis of atomic and molecular spec-
troscopic data, but which makes use of no data from
copper oxide materials. The energies of the low-lying
cluster spin-states are fitted to a Heisenberg Hamiltonian
and yield values of J (134 meV for LazCu04 and 117 meV
for Nd2Cu04) in close agreement with experiment. The
evaluation of J can be compactly represented in terms of
the parameters (t, U, and V) of a one-band Hamiltonian
whi. ch controls resonance among covalent and ionic
valence-bond structures. The resonance mixing is
achieved by configuration interaction (CI) among VB
structures defined in terms of localized orbitals (LMO's)
obtained from self-consistent field (SCF) INDO calcula-
tions.

P doping is found to involve strong hybridization of
the 2po. orbitals of the in-plane oxygen ions and the
3d 2 2 orbitals of the Cu ions, and the resulting holesx —y
are predominantly ( -60% ) located in the 2p0 orbitals.

The lowest-energy n-doped cluster states involve addi-
tion of electrons to the 4s/4p Cu atom manifolds. How-
ever, the separation of these states from low-spin (3d' )

alternatives is uncertain, because of apparent sensitivity
to the representation of the crystal potential, as found by
Martin.
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APPENDIX A One-electron terms

INDO parameters

We summarize here the essential details concerning the
evaluation of the parameters in the INDO/S Hamiltoni-
an [Eq. (6)].

Two-electron terms

All one-center two-electron integrals U„which can
be represented as linear combinations of the empirically
determined Slater-Condon factors F" and G" (Table IX)
are retained. The other nonzero integrals are of small
magnitude (hybrid integrals of the type (sp ~dp ) ) and are
neglected. The spherical component of the self-Coulomb
integral, F (pp), is evaluated according to Eq. (4), while
the other F and 6 parameters listed in Table AI are
obtained from atomic spectroscopic data. In general,
parameter values involve averaging over the various pos-
sible valence states of the atom.

The two-center Coulomb integrals, y„"z [Eq. (4)] are
evaluated according to the following empirically deter-
mined form:

AC f e2
y

2f~e /[Fw (pp )+Fc(pp) ]+"~c
(Al)

where f is set equal to 1.2 on the basis of fits to the ben-

zene spectrum, e is the electronic charge, and r„c is the
interatomic separation of atomic sites A and C. Note
that Eq. (Al) through its dependence on the spherical
component of the self-Coulomb integrals (F ), thereby
implies a spherical averaging for the two-center y in-

tegrals (i.e., the approximation for the (pp pp) integral
includes only the spherical component of the charge den-
sities y„and g ). This averaging is imposed to maintain

P
proper rotational invariance.

For sufficiently long-range interactions one expects

y „ to approach an asymptotic limit of e ir „c (i.e., with

f~ =1.Q). In a more refined INDO model this could be
achieved smoothly by incorporating an r-dependent
switching function. However, for the relatively small
clusters examined here, the fixed value of f,, is probably
not too severe a constraint.

F'(ss ) =F"(pp )

F (dd)
F (sd)
G'(sp )

F'(pp)
G-'(sd )

G'(pd )

F (pd)
G (pd)
F'(dd )

F (dd)

CU

7.68
13.84
9.01
2.5658
1.1156
0.5529
0.6966
1.3263
0.8590

10.660
7.1864

0
13.00

~ ~ ~

11.815
6.9026

TABLE IX. Slater-Condon factors (see Ref. 67) for Cu and 0
(eV) (see Ref. 33).

The on-site term, e„[Eq. (6)], is given by

~ Z ., ~c+ ~, Mad
~p +p ~ Cf pC p

C~A

where cz„ includes the expectation value of the kinetic en-

ergy and the core potential on center 3, the second term
includes the expectation value of the core potential pro-
vided by the other centers C, with core charges Zc, and
a„"™4is the Madelung energy (approximated as
eP"' ', where P™4is the Madelung potential at site
A). The Madelung potential ' includes long-range in-
teractions involving atomic sites beyond those contained
in the molecular cluster and is evaluated by the Ewald
method on the basis of a simple point-charge Coulom-
bic model, in contrast to the more elaborate expression
employed for the shorter-range two-center interactions
within the cluster [Eq. (Al)]. The differences between the
values calculated here and those given in Ref. 71 are
presumably related to small differences is assumed values

0

for atomic coordinates. Variations of +0.01 A in Cu—0
bond lengths lead to variations of —+0.3 eV in
Madelung energies.

The a„" terms [Eq. (A2)] are empirically determined in

terms of atomic ionization energies, and have been as-
signed the following values (eV): a~,"= —97.2;
a4p

—93. 1; a3d" = —139.2; az, = —89.6; and
= —75. 3 ~

The quantity y„"c in Eq. (A2) is a mean two-center
Coulomb integral in which the various y contributions

PP
are weighted according to the occupations of the orbitals

in the ground state of atom C. Through its use of a
common set of Coulomb integrals in both one- [Eq. (A2)]
and two-electron [Eq. (Al)] terms, the INDO parametri-
zation maintains reasonable balance (i.e., proper screen-
ing) between attractive and repulsive energy components
of the total energy.

The hopping integral t„" is evaluated according to Eq.
(8), using the empirically determined values (eV),
Pcu Pcu 1 Q Pcu 33 Q Po Po 34 Q35

necessary overlap integrals depend on the Slater-type or-
bital (STO) exponents (g). The empirically determined
values are as follows: the minimal basis for 0 2s and 2p
are 2.275ao ', for Cu 4s and 4p they are 1.482ao, while

for 3d on Cu, a two-component STO basis is specified by
exponents 2.765ao ' and 6.795ao ', together with linear
coefficients 0.6968 and 0.4473, respectively. Putting these
values into Eq. (8) leads to td =2.45 eV and

tdp
—0.90 eV for the nearest-neighbor Cu-0 hopping

The often quoted hopping integral between a d ~ ~ or-
X

bital on the copper and a p orbital on the oxygen is in

fact Q ,' td =2. 12 eV. Fo—r the oxygen-oxygen interac-

tion we find t =0.58 eV and t = —0.04 eV. This
makes use of the factor g„„in Eq. (8) which are 1.267 for
t and 0.64 for t . We note that compared to parame-
trizations in terms of three-band Hubbard models (see,
e.g. , Ref. 15) the hopping integrals in this work (which

employs nominally a 17-band model) are significantl
different. In particular t is smaller while td is larger.
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Both of these effects are partly due to the addition of Cu
4s and 4p orbitals which significantly enhance the O-O
hopping (relative to the bare t~~ value) and, via overlap
of Cu 4s with neighboring Cu 3d, reduce the Cu-0 hop-
ping (relative to the bare tz~ value).

APPENDIX B

Screening of hopping integrals

Insight into the INDO hopping integrals t„" may be
gained from considering the matrix element of the Hamil-
tonian with respect to two single determinant wave func-
tions, f„nad t)/„, which differ only in the occupation
numbers for a single pair of orbitals g„and g, (i.e., g„ is
related to P„by the one-electron excitation, g„~y„):

OCC

fP„HP„=t„",'=—t„„+ g ((pk ~vk ) —(pk ~kv)),
kAp, v

(Bl)

where the sum is over all occupied spin orbitals yk,
kAp, v. When the y's are the atomic basis, then the
ZDO approximation neglects all the two-center integrals
on the right-hand side of Eq. (Bl). Thus the INDO
empirical parametrization of t„[Eq. (7)] implicitly
rejects significant screening relative to the "bare" hop-
ping integral appropriate for the atomic cores character-
ized by positive charges Zc [Eq. (A2)]; i.e., the influence
of the neglected two-electron terms is folded into the
INDO hopping integrals.

In the more general case where the orbitals are molecu-
lar orbitals which span common atomic sites, the in-
tegrals (pk~vk) and (tLtk~kv), denoted respectively as
two-electron hybrid and exchange integrals, will be
nonzero in the INDO model, and the screening effects
must be explicitly included, as discussed in Sec. III A 3.
In this case, we may identify the matrix element in Eq.
(Bl) as an effective (screened) one-electron hopping in-

tegral, t„"'.

APPENDIX C

orth +STOg —1/2 (Cl)

where g"'" and g are row vectors and S is the STO
overlap matrix. In this case, the definition of orbital pop-
ulation must be generalized, and we adopt the Mulliken
approach, according to which the orbital populations
are given by the diagonal elements of the matrix, (p roS )

q (psTOS ) (C2)

where the density matrix in the STO basis, p, is given
[on the basis of Eq. (Cl)] by

STO g 1/2 orth' 1/2 (C3)

All of the populations presented in the tables are based
on single-configuration SCF wave functions, since they
were found to be quite similar to those obtained from cal-
culations including CI. In the SCF case, where p=CC
and C is the matrix of coefficients of the occupied MO's
(taken as column vectors), we obtain [using Eqs. (C2) and
(C3)],

q„=&(C' )(C ) S)„„
(S

—t/2(( orth)(( orth)tS1/2)
PP ' (C4)

Since the copper 4s and 4p orbitals are spatially diffuse,
with centroid r =1.83 A vs a CuO bond length of 1.89 A,
it is probably more appropriate as a first approximation
to assign their populations to the nearest-neighbor (in-

plane) oxygen atoms rather than to the copper atom.

Orbital populations

Orbital populations (q„) may be defined as the diago-
nal elements of the first-order density matrix, p "", ob-
tained from the INDO calculations, where the super-
script denotes the implicit orthonormal basis in the
INDO model. In practice it has generally been found
more useful to define the populations in terms of the auxi-
liary STO basis discussed in connection with Eq. (8). The
transformation from p'"" to p is defined by the as-
sumption that the l implicitly orthonormal basis (g'"") is
the Lowdin-orthogonalized STO basis: i.e.,
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