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Crossover analysis of the heat capacity of YBa2Cu307 near T, :
Evidence for XY-like critical behavior
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The heat-capacity anomaly of a largely untwinned single crystal of YBazCu307, is reanalyzed by
means of a crossover model. The conventional Gaussian-corrected BCS shape is shown to be inadequate

to fit the data within +4 K of T„a range much larger than estimated from the Ginzburg criterion. Im-

proved fits in the vicinity of T, were obtained using the approach of Chen, Albright, and Sengers, who

introduced a crossover function to interpolate smoothly between critical and mean-field behavior. The
best fit was obtained for the three-dimensional XY model, the expected "intermediate" critical behavior

of a superconductor. From the crossover analysis, we estimate the zero-temperture coherence length to
be (0=12 A.

I. INTRODUCTION

The superconducting transition, unlike most second-
order phase transitions, can usually be accurately de-
scribed by the mean-field Ginzburg-Landau theory. The
conventional explanation' for this rests on the Ginzburg
criterion, a statement that critical effects are unimportant
so long as the reduced temperature t= (T/T—, )

—1 is
much larger in magnitude than tG. The reduced
Ginzburg temperature tG, the point at which the first-
order fluctuation contribution to the heat capacity above
T, equals the mean-field heat capacity step b C, is given
explicitly as

tG =(1/32tr )(k~/6 C(0)

where go is the coherence length at zero temperature.
For a conventional superconductor such as Sn, we have
b, C=1 mJ/cm K, go-—2X10 cm, and tG-10
clearly inaccessible. The situation is quite different for
high-temperature superconductors, where hC =30
mJ/cm K, (o-—10 cm, and tG-—10; fiuctuations
become significant within =10tG or =1 K of T, . Indeed,
fluctuations have been observed as contributions to the
heat capacity, electrical conductivity, and magnetic sus-
ceptibility of YBa2Cu307

In a review of fluctuation effects in type-II supercon-
ductors, Fisher, Fisher, and Huse (FFH) argued that the
conventional Ginzburg criterion, Eq. (1), underestimates
the width of the critical region by an order of magnitude.
Higher-order contributions, it turns out, exceed the first-
order Gaussian correction at tG. Thus, data within 10 K
of the transition are likely to be within the crossover re-
gion between critical and mean-field behavior; neither
mean-field nor critical-point expressions are appropriate.

Yet, an accurate treatment of fluctuations can, through
the exponents and amplitudes in both critical and mean-
field regimes, provide information on the symmetry of the
order parameter and the effective dimensionality of the
system.

Recently, Chen, Albright, and Sengers (CAS), and co-
workers' "proposed a workable scheme to treat cross-
over behavior in heat-capacity data. They introduce a
Landau expansion of the free energy that incorporates a
crossover function Y(T). Far from T„Y~1,and the
expansion reduces to the zero-field Ginzburg-Landau
form. Near the critical point, Y vanishes in a way that
reproduces both the critical behavior and corrections to
scaling of a system of n degrees of freedom in d-
dimensional space. This approach is particularly useful

if, as argued by FFH, data for YBazCu307 lie entirely
in the crossover region.

In this paper, we analyze the heat-capacity data for
YBazCu307, measured previously on sample YC187 by
Inderhees et al. ' We proceed by demonstrating that the
first-order (Gaussian) corrections to mean-field theory fail
to describe data within 4 K of T„casting doubts on con-
clusions drawn from such analyses. Next, we follow the
procedure of CAS to determine the best-fit parameters
for various (n, d) models, for d =3, the presumed inter-
mediate critical behavior as discussed by FFH. The fit

for n =2, d =3 is statistically better than for either n = 1

or n =3. Finally, we discuss the magnitudes of the fitting
parameters and their connection to BCS theory and con-
sider the Ginzburg criterion in the context of the CAS
approach.

II. WIDTH OF THE CRITICAL REGIME

In the regime where Gaussian corrections to mean-field
theory are sufficient, the heat capacity of a superconduc-
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tor may be represented by'

3

C, = gb t +ft '", T&T, ;
m=0

and

3

C = g b t +2 fjtj ' In+h&+h2t, T&T, .
m=0

(2)

(3)
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Here f is the amplitude of the fluctuation term (assuming
that d =3), h &, the mean-field step, and hz, the slope of
the mean-field heat capacity below T, . The polynomial
sum represents a smooth background variation that in-
cludes lattice, normal electronic, and addendum contri-
butions.

The regime of validity for including only Gaussian
corrections was found by applying the following princi-
ple: Both the values of the parameters and the goodness
of fit should not depend on the domain of temperatures
included, so long as that domain falls entirely within the
range of validity of the functional form being tested. Any

systematic variation of the parameters with domain size
implies that the postulated fit is inadequate to model the
data. Hence, Eqs. (2) and (3) (with various values of n)
were fitted to the data by a linear least-squares method
but excluding data close to T, . Values of the sample vari-
ance s (Ref. 14) were determined with all data points for
which j t j T, & T weighted to zero, while weighting to
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FIG. 1. Parameters of the Gaussian fit vs half-width T* of
the excluded temperature region. (a) Amplitude f of the Gauss-
ian term; (b) magnitude hl of the mean-field-like step; and (c)
sample variance s (mean-square deviation per degree of free-
dom). Unity on this scale corresponds to an rms error of 0.03
J/kg K or 0.02% of the total heat capacity.
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FIG. 2. Result of the Gaussian analysis for T*=5 K (solid
line) plotted through the data points. The dashed lines indicate
the smooth polynomial background and that background plus
mean-filed-like behavior. For clarity, only 25% of the data
points used in the fit are shown.

III. THEORY AND METHOD

The CAS method constructs a renormalized form of
the Landau free-energy functional, whose minimum with

unity all other points. Figure 1 shows the dependence of
f, h„and s on the size of the excluded temperature
range. The results are qualitatively the same for n =1, 2,
and 3. For T* & 6 K, f and h, behave rather erratically
because the fluctuation contribution is not large enough
to define a Gaussian term unambiguously. For T' &4 K,
all three parameters vary smoothly; the increase in s in-
dicates that the Gaussian form is not obeyed. The de-
crease in f with decreasing T" may indicate that
T' & T, jtG~; i.e., that the system is in the crossover re-
gime. Over no extended range of temperature does the
Gaussian form provide a good fit to the data with param-
eters independent of T', except perhaps in the limited re-
gime 4 K( T* (6K.

Figure 2 shows the quality of the Gaussian fit for n =2
and T*=5 K, along with the fitted polynomial back-
ground and mean-field-like contribution. This plot shows
that the magnitude of the Gaussian contribution is quite
large; even 10 K from T, that contribution is & 30%%uo of
the mean-field step. Thus, the reduction of s for T') 4
K is not simply because the t ' term is small in that
region. As we will show below, the fitted background for
T*=5 K is quite similar to that obtained from the CAS
fit, which gives credence to the physical significance of
that background. For smaller T* the Gaussian term de-
creases, as noted above, and the polynomial background
increases to the point that data at lower temperature ac-
tually fall below the background.

~e conclude that the Gaussian approximation (for
d =3 and any n) is incapable of describing the heat-
capacity data over the full range of t. Consequently, a
more complete analysis that correctly interpolates be-
tween mean-field-like and critical-like behavior is ap-
propriate.
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respect to the order parameter is capable of reproducing
both mean-field behavior and critical divergences. To the
usual Landau parameters (T„amplitude u of the term
quartic in the order parameter, and overall amplitude c, )

are added the critical exponents and fixed-point value u *

of the appropriate (n, d) model. The method is imple-
mented within the renormalization-group method by
separating the critical part of the free energy into a
mean-field part and a fluctuation part, both of which con-
tain the rescaling length l. Because the physical free en-
ergy is independent of length scale, one is free to seek a
particular value I = I*, called the match point, at which
the ffuctuation part vanishes. The remainder has
Landau-expansion form, but with the temperature, order
parameter, and interaction strength u all renormalized,
and with an additional term proportional to the square of
the reduced temperature. To accomplish this, CAS intro-
duce a crossover function Y(l') =[u (l*)—u']/
[u u* ],—where u (1 =0)= u and u ( I = oo ) =u '. In the
mean-field limit Y~1, while Y~O in the vicinity of the
true critical point. The match point can be related to the
product of the correlation length and the physical wave-
vector cutoff A, which therefore appears as a nonuniver-
sal parameter in the problem. The mean-field-like critical
free energy can then be written as

Y'=0, (6)

where

and

1+(u —1)Y

u[l+(A/~) ]'/

()r/A) =(r/k )Y ~ ~+(uu*/2k)~Q~ Y"

We will discuss below the relation between ~ and the ac-
tual correlation length g( T).

The fixed-point coupling constant u* and the critical

) r i(I)i2Y(
— /v —g)/ + iq)i Y( —q)ice

24
(4)

t 2( Y
—a/6

2au A

Here we have t =c,t; u = u /u *;R, the gas constant; and
v, g, a, co, and 6 =catv are the critical exponents. %e can
eliminate c„on which 6 A depends nonlinearly, in favor
of an energy-scale variable Ao, by making the substitu-
tions /=4/c, ', A=A/c, ', and /Io =RT,c, / . In
terms of these variables, Eq. (4) becomes

P) —) r
~ q~

Y2( 2)/~ —7))/ +
~

y~4Y(1
—2g)/cu

2 24
(5)

nv —2 ~/a
)

2Qu k

The value l* at which the ffuctuation part of the free
energy vanishes is contained implicitly in a pair of equa-
tions that Y must satisfy at each temperature:

TABLE I. Fixed points [Z. Y. Chen (private communica-
tion)] and exponents [J. C. LeGuillou and J. Zinn-Justin, J.
Phys. (Paris) 46, L137 (1985)] for (n, d) models with d = 3.

cx —2 —3v

0.472
0.630
0.79
0.031
0.110
0.498

0.422
0.669
0.78
0.033

—0.007
0.522

0.379
0.705
0.78
0.033

—0.115
0.550

exponents depend on (n, d) and are given in Table I for
various (n, 3). For each choice of n, t, and the nonuniver-
sal parameters /I o, T„u, and A„P takes on the value that
minimizes 6/I(t)/), subject to the constraint of Eq. (6);
1.e.)

a(a~) a(a~ )

a@
+

aY
dY
d l()

(10)

where the second derivative was computed numerically
from closely spaced values of 5A, and the sum represents
all noncritical contributions.

For any choice of the nonlinear parameters, the corre-
sponding linear parameters were found by an unweighted
least-squares fit. A global minimum of s was found by
either a simplex method in the nonlinear parameters u, ).,
and T, or by systematically exploring the space of non-
linear parameters.

IV. RESULTS

For fixed n and T„a contour plot of the sample vari-

ance s in the u-k plane shows a sharp crevasse whose
depth varies little along its length. Thus, there is an al-
ternative coordinate system in which s is independent of
one coordinate. A convenient choice is the uk —u /k sys-
tem, with s nearly independent of the latter coordinate.

Explicit expressions for the required derivatives can be
found in Appendix 8 of Ref. 10.

6 A ( T) was calculated by a numerical procedure
Values of t)/ and Y were determined on a closely spaced
temperature grid by subjecting them to a relaxational
equation of motion in the P —Y plane, with the driving
forces determined by the degree to which the current
values failed to satisfy Eqs. (6) and (9). At each step, the
changes were therefore given by 5 tt/ ~ —d(A/I)/d ~g
and 6 Y ~ —Y'. The procedure was continued until con-
sistency was achieved; 63 was then calculated from Eq
(5). The process was repeated at each successive temper-
ature with the previous values of g and Y as the starting
point for the subsequent stage. The process was simplified
above T, by the requirement that ll =0; note from Eq. (5),
however, that 63 WO above T, . Finally, the heat capaci-
ty was represented as
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TABLE II. Best-fit parameters of (n, d) models with d =3.
No data points have been excluded from the fit in calculating s .

10 g (J/kg K)
uk,

u/1,
T, (K)
A'. (J/kg)
b() (J/kg K)
bl (J/kg K)
b,

'
(J/kg K)

b (J/kg K)

12.0
3.1+0.2

(8+2)X10 2

91.06+0.01
153.+8
174.4
196

—71.3
—42.2

6.0
0.98+0.01

(5+5)X 10
91.04+0.01
77.1+0.8

173.1
203

—67.8
—151

9.3
0.588+0.002

(2+1)X 10
91.02+0.01
53+3

172.4
207

—66.1
—232
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FIG. 4. Residuals for (n, d) =(2,3).

P~~~VIPi~."~

The insensitivity to u /A, introduces considerable uncer-
tainty into our estimates of q, and go, but does not affect
the conclusions that follow.

Table II gives s for the possible choices of (n, 3). The
error bars reflect the insensitivity of the fit to the ratio
u/A, . The best fit was obtained for n =2 for which the
result is plotted together with the experimental data' in
Fig. 3. Figure 4 shows the residuals for n =2, d =3.
Clearly, the crossover model for n =2 provides a satisfac-
tory fit to the data over the range 5X10 ~ (,t) ~0. 15.
A11 data points are included in the calculated s; more
than half the value in Table II is contributed by points in
the rounding regime

~
t

~
( 5 X 10

V. DISCUSSION

In the previous section, we showed that the choice (2,3)
produces the best fit to the heat-capacity data. What can
be said about the crossover between mean-field and criti-
cal behavior? The crossover behavior can be extracted
most easily from Eq. (8) for t & 0, where /=0 and

ir /A = ( )/ t /A, ) Y"

In the mean-field limit Y~ 1, then, we find
g(T)=(A, /q, )t ' . Consequently, defining go to be the
amplitude of the coherence length in the mean-field re-
gime, we find that go q, =A, ~ 30, from Table II. In other
words, the coherence length is no less than five times the
cutoff wavelength, which must be on the order of the lat-
tice constant.

In the limit of asymptotic critical behavior, on the oth-
er hand, both sc and Y tend to zero, so that we can ap-
proximate F=(tr/u A) from Eq. (6). Substituting that
result into Eq. (11) and rearranging terms, we obtain
g(T)=g"'t, with g"'=go (uA, )

" '. Because ui, = 1

in our fit, the mean-field and critical values of go are equal
within experimental uncertainty. The magnitude of go
can best be determined in the mean-field limit. Setting
7=1 in Eq. (5), we can readily show the underlying
heat-capacity step to be b,C =3Aop/u*u A, T, =39
mJ/cm K, a value close to that reported earlier' using a

(aj

Following Ref. 9, we introduce a scale factor c to relate
the dimensionless ~ and A to the physical coherence
length g(T)=c /a. and cutoff wave vector q, =A/c&.

+ 2
'b.

44
44. 4

2.00

1.95

0.3

0.2

0.1

0.0
0.0

4o
44 o

4 4444 4
0

4

u 1.90

1.85

0
o4

~ —0.1 —,o

a

85 90 95
TEMPERATURE (K)

100 —0.2
75 105

FIG. 3. Result of the cross-over analysis (solid line) plotted
through the data points. The dashed line indicates the smooth,
polynomial background. For clarity, only 25&o of the data
points used in the fit are shown.
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FIG. 5. Calculated behavior, for the n =2 fit, of (a) the gap
function ~it ~, (b) the crossover function Y(T), and (c) the criti-
cal part of the free energy 6 A ( T).
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logarithmic representation of the critical behavior. We
assume that the mean-field coherence length corresponds
to the BCS solution, and use'

b, Cgo=(1.76k~/tr)%vugg(EF ) . (12)

For v~=2X10 cm/s and g(E~)=3 states/eV Cu, ' we
estimate that (0= 12 A and that the cutoff wave vector
q, =2, /go )2.5 A, both reasonable values.

The CAS formalism matches both mean-field results
and critical behavior in the limit Y—+1 and Y~O, re-
spectively. However, as seen in Fig. 5, Y does not ap-
proached either limit within the experimentally accessible
range. Indeed, even as t~1 (T=2T, ), Y only ap-
proaches the value 0.5. We somewhat arbitrarily take as
our crossover criterion the value of t„ for which
Y(t„)=Y(I)/2=0. 25, which gives t„=0.1. The devia-
tions from the Gaussian fit shown in Fig. 1 correspond to
t =0.04 and Y =0.17. Clearly, our initial assertion that
the experimental data are entirely in the crossover region
between mean-field and XY-like critical behavior is ade-
quately supported by this analysis. Finally, we include in
Fig. 5 the calculated variation in the order parameter and
the critical part of the free energy. The change of curva-

ture in 5 A near T, is apparent on this scale, but not the
vertical approach of ~g~ toward zero.

The CAS approach to crossover phenomena provides
the experimentalist with a useful tool for analyzing data
when go is mesoscopic. It is particularly valuable here,
where the critical region has not yet been reached, ' and
yet the corrections to mean-field theory appear to be
inadequate. Further, it supports our assertion' that the
application of a magnetic field, which is known to
enhance fluctuations, moves the experimentally accessible
range fully into the critical regime. While the analysis
presented here is involved, it has the distinct advantage
of being asymptotically correct both near and far from
T„giving us confidence that these data are in the cross-
over region, and that they belong to the n =2, d=3
universality class.
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